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Preface 

This monograph presents perturbation analysis for max-plus linear stochastic 
systems. Max-Plus algebra has been successfully applied to many areas of sto­
chastic networks. For example, applying Kingman's subadditive ergodic theorem 
to max-plus linear queuing networks, one can establish ergodicity of the inverse 
throughput. More generally, applying backward coupling arguments, stability 
results for max-plus linear queuing systems follow. In addition to that, stability 
results for waiting times in open queuing networks can be obtained. 

Part I of this book is a self-contained introduction to stochastic max-plus 
linear systems. Chapter 1 provides an introduction to the max-plus algebra. 
More specifically, we introduce the basic algebraic concepts and properties of 
max-plus algebra. The emphasis of the chapter is on modeling issues, that is, 
we will discuss what kind of discrete event systems, such as queueing networks, 
can be modeled by max-plus algebra. Chapter 2 deals with the ergodic theory 
for stochastic max-plus linear systems. The common approaches are discussed 
and the chapter may serve as a reference to max-plus ergodic theory. 

Max-Plus algebra is an area of intensive research and a complete treatment 
of the theory of max-plus linear stochastic systems is beyond the scope of this 
book. An area of applications of max-plus linearity to queuing systems not 
covered in this monograph is the generalization of Lindley-type results for the 
GI /G/1 queue to max-plus linear queuing networks. For example, in [1, 2] Alt-
man, Gaujal and Hordijk extend a result of Hajek [59] on admission control to 
a GI /G/1 queue to max-plus linear queuing networks. FYirthermore, the focus 
of this monograph is on stochastic systems and we only briefly present the main 
results of the theory of deterministic max-plus systems. Readers particularly 
interested in deterministic theory are referred to [10] and the more recent book 
[65]. For this reason, network calculus, a min-plus based mathematical theory 
for analyzing the flow in deterministic queueing networks, is not covered either 
and readers interested in this approach are referred to [79]. Various approaches 
that are extensions of, or, closely related to max-plus algebra are not addressed 
in this monograph. Readers interested in min-max-plus systems are referred to 
[37, 72, 87, 98]. References on the theory of non-expansive maps are [43, 49, 58], 
and for M M functions we refer to [38, 39]. For applications of max-plus methods 
to control theory, we refer to [85]. 

Part II studies perturbation analysis of max-plus linear systems. Our ap­
proach to perturbation analysis of max-plus linear systems mirrors the hierar-
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chical structure inherited by the structure of the problem. More precisely, the 
individual chapters will have the following internal structure: 

Random variable level: We set off with carefully developing a concept of 
differentiation for random variables and distributions, respectively. 

Matrix level: For the kind of applications we have in mind, the dynamic of a 
system is modeled by random matrices, the elements of which are (sums 
of) simple random variables. Our theory will provide sufficient conditions 
such that (higher-order) differentiability or analyticity of the elements of 
a matrix in the max-plus algebra implies (higher-order) differentiability 
or analyticity of the matrix itself 

System level: For (higher-order) differentiability or analyticity we then pro­
vide product rules, that is, we will establish conditions under which the 
(random) product (or sum) of differentiable (respectively, analytic) ma­
trices is again differentiable (respectively, analytic). In other words, we 
establish sufficient conditions for (higher-order) differentiability or ana­
lyticity of the state-vector of max-plus linear systems. 

Performance level: The concept of differentiability is such that it allows 
statements about (higher-order) derivatives or Taylor series expansions 
for a predefined class of performance functions applied to max-plus linear 
systems. We will work with a particular class of performance functions 
that covers many functions that are of interest in applications and that is 
most suitable to work with in a max-plus environment. 

The reason for choosing this hierarchical approach to perturbation analysis is 
that we want to provide conditions for differentiability that are easy to check. 
One of the highlights of this approach is that we will show that if a particular ser­
vice time in a max-plus linear queuing network is differentiable [random variable 
level], then the matrix modeling the network dynamic is differentiable [matrix 
level] and by virtue of our product rule of differentiation the state-vector of 
the system is differentiable [system level]. This fact can then be translated into 
expressions for the derivative of the expected value of the performance of the 
system measured by performance functions out of a predefined class [perform­
ance level]. We conclude our analysis with a study of Taylor series expansions 
of stationary characteristics of max-plus linear systems. 

Part II is organized as follows. Chapter 3 introduces our concept of weak 
differentiation of measures, called ^-differentiation of measures. Using the al­
gebraic properties of max-plus, we extend this concept to max-plus matrices 
and vectors and thereby establish a calculus of unbiased gradient estimators. In 
Chapter 4, we extend the ^-differentiation approach of Chapter 3 to higher-
order derivatives. In Chapter 5 we turn our attention to Taylor series expansions 
of max-plus systems. This area of application of max-plus linearity has been 
initiated by Baccelli and Schmidt who showed in their pioneering paper [17] 
that waiting times in max-plus linear queuing networks with Poisson-A-arrival 
stream can be obtained via Taylor expansions w.r.t. A, see [15]. For certain 
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classes of open queuing networks this yields a feasible way of calculating the 
waiting time distribution, see [71]. Concerning analyticity of closed networks, 
there are promising first results, see [7], but a general theory has still to be de­
veloped. We provide a unified approach to the aforementioned results on Taylor 
series expansions and new results will be established as well. 

A reader interested in an introduction to stochastic max-plus linear systems 
will benefit from Part I of this book, whereas the reader interested in pertur­
bation analysis, will benefit from Chapter 3 and Chapter 4, where the theory 
of ^-differentiation is developed. The full power of this method can be appre­
ciated when studying Taylor series expansions, and we consider Chapter 5 the 
highlight of the book. 

Notation and Conventions 

This monograph covers two areas in applied probability that have been disjoint 
until now. Both areas (that of max-plus linear stochastic systems and that of per­
turbation analysis) have developed their own terminology independently. This 
has led to notational conventions that are sometimes not compatible. Through­
out this monograph we stick to the established notation as much as possible. 
In two prominent cases, we even choose for ambiguity of notation in order to 
honor notational conventions. The first instance of ambiguity will be the symbol 
9. More specifically, in ergodic theory of max-plus linear stochastic systems (in 
the first part of this monograph) the shift operator on the sample space fi, tra­
ditionally denoted by 6, is the standard means for analysis. On the other hand, 
the parameter of interest in perturbation analysis is typically denoted by 9 too, 
and we will follow this standard notation in the second part of the monograph. 
Fortunately, the shift operator is only used in the first part of the monograph 
and from the context it will always be clear which interpretation of 9 is meant. 
The second instance of ambiguity will be the symbol A. More specifically, for 
ergodic theory of max-plus linear stochastic systems we will denote by A the 
Lyapunov exponent of the system and A will also be used to denote the inten­
sity of a given Poisson process. Both notations are classical and it will always 
be clear from the context which interpretation of A is meant. 

Throughout this monograph, we assume that an underlying probability 
space [Q,,A,P) is given and that any random variable introduced is defined 
on (n,yl , P ) . Furthermore, we will use the standard abbreviation 'i.i.d.' for 'in­
dependent and identically distributed,' and 'a.s.' for 'almost surely.' To avoid 
an inflation of subscripts, we will suppress in Part II the subscript 9 when this 
causes no confusion. In addition to that, we will write E^ in order to denote the 
expected value of a random variable evaluated at 9. Furthermore, let a <b, for 
a, 6 6 K, and let / : (a, &) —* E be n times differentiable with respect to 9 on 
(a, 6), then we write ^ | g ^ g f{9) for the n*'' derivative of / evaluated at 9o. 
We will frequently work with the set R U {—oo} and we introduce the following 
convention: for any a; 6 R we set a; -|- (—oo) = —oo 4- a; = —oo = —oo — x, 
X — (—oo) = oo, and —oo + (—oo) = —oo and —oo — (—oo) = 0. 
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Max-Plus Algebra 



Chapter 1 

Max-Plus Linear Stochastic 
Systems 

In this chapter we introduce max-plus algebra. The basic properties of max-plus 
algebra are discussed in Section 1.1. A first example of a max-plus linear system 
is presented in Section 1.2. A variant of the basic max-plus model best suited 
for studying the asymptotic behavior of max-plus linear systems is presented 
in Section 1.3. In general, the type of system that can be analyzed through 
max-plus techniques is best described in terms of Petri nets which are intro­
duced in Section 1.4. To make the modeling aspects involved more transparent, 
we present in Section 1.5 a characterization of max-plus Hnearity in terms of 
queueing networks. This section also contains many examples of max-plus linear 
systems. Finally, we discuss in Section 1.6 properties of max-plus algebra that 
are of importance when max-plus linear recurrences are studied. In particular, 
we present approaches with which the growth rate of a max-plus linear system 
can be measured and we discuss various ways of making max-plus algebra a 
metric space. 

1.1 The Max-Plus Algebra 

In this section we introduce max-plus algebra. For an extensive discussion of the 
max-plus algebra and similar structures we refer to [10, 65]. An early reference 
is [37]. A historical overview on the beginnings of the max-plus theory can be 
found in [47]. 

Max-Plus algebra is usually introduced as follows. Let e = —oo, e = 0 and 
denote by Rmax the set RUfe}. For elements a, 6 G Kmax we define the operations 
® and ® by 

a ® 6 = max(a, 6) and o ® 6 = a + 6, (1-1) 

where we adopt the convention that for all a £ K: max(a, —oo) = max(—oo, a) = 
a and a+ (—oo) = —oo-f-a = —oo. The set K^ax together with the operations ® 
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and ® is called max-plus algebra and is denoted by 7?-max = (Rmaxj®; ®je)e). 
In particular, e is the neutral element for the operation ® and absorbing for ®, 
that is, for all a £ Rmax^ a® e = e ® a = e. The neutral element for (gi is e = 0. 

The max-plus algebra is an example of an algebraic structure, called semi­
ring, that is introduced below. 

Definition 1.1.1 A semiring is a nonempty set R endowed with two binary 
relations, ®R and ®R, so that ® R is associative and commutative with identity 
element SR; ®R distributes over (BR, is associative, has identity element CR and 
£R is absorbing for ®R. Such a semiring is denoted byTZ= {R,®R,®R,£R,eR). 
We call Tl commutative if ®R is commutative and we call it idempotent if 
a ®R a = a for all a € R. To simplify the notation, the relation ®R precedes 

The following example provides interpretations of TZ which are of interest in 
applications. 

Example 1.1.1 

• / / we identify ®R with conventional addition and ®R with conventional 
multiplication, then the neutral elements are SR = 0 and CR = 1. We call 
TZst = (IK,-,+,0,1) the standard model of TZ. Since conventional multipli­
cation is commutative, the standard model of TZ is a commutative semiring. 
Note that the standard model is not idempotent. 

• The structure T^max i^ on idempotent semiring and we call T̂ -max the max-
plus model ofTZ. Note that ® is commutative. Hence, the max-plus model 
ofTZ is an idempotent, commutative semiring. 

• In the same way as for the max-plus model of TZ we find the min-plus 
model TZmin = (Kmin = R U {oo}, min ,+ , oo, 0) 0/7?.. Note that TZmin is 
an idempotent, commutative semiring. 

• Let S be a non-empty set. Denote the power set of S by R, then 
{R, U, n, 0, S) is a commutative, idempotent semiring. 

For more examples of semirings we refer to the excellent overview in [47]. 
To keep the notation simple, we will in the following suppress the subscript R 
when referring to a semi-ring. 

An element A € R'^'^ is called matrix and its elements are denoted by Aij 
for 1 < i < / , 1 < j < J . A matrix A € R^^'^ is called regular if A contains 
at least one element different from s in each row. The transpose of a matrix 
A, denoted by A'^, is defined in the usual way: {A'^)ij = Aji for all i,j. For 
matrices A 6 R^^'^ and B G R''^^ the matrix product A® B \s defined in the 
usual way as follows: 

J 

{A ® B)ik = 0 Aij ® Bjk =^ Aji ® 5ifc ® • • • ® Aij ® Bjk , (1.2) 
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for 1 < i < / , 1 < fc < if, and for A{k) e R''^'', 1 < k < m, 

m 

0 A{k) = ' Aim) ® A{m - 1) ® • • • ® A{\). 
fc=i 

Specifically, for J4 6 i?^'^'' and a £ -R, scalar multiplication is defined by 

{a®A)ij=a®Aij, (1.3) 

for 1 < i < / , 1 < j < J . Addition of matrices A e R^^-' and B e i?^^-^, 
denoted by yl ® B , is defined through 

{A®B)ij=Aij®Bij, (1.4) 

for 1 < i < / , 1 < j < J , and for A{k) € i?^'*'^, 1 < A; < m. 

0 A{k) =* ^ ( m ) 0 A{m - 1) ® • • • ® yl(l) def 

Let £ ( / , J ) denote the I x J matrix with all elements equal to e and 
E[I,J) the matrix with e on the diagonal and s elsewhere. For R'^'^, the 
®-sum, as defined in (1.4), is associative, commutative and has zero element 
£{I,J), and for R'^^'' the (gi-product is associative, distributive with respect 
to ®, has identity element E{J, J) and £{J, J) is absorbing for ®. Idempo-
tent semirings are called dioids in [10]. Note that if ® is idempotent, then the 
addition of matrices in (1.4) is idempotent. Thus, if © is idempotent, then 
•jlJ^J = [RJ^'^,Q,0,S{J,J),E{J,J)) is a dioid. For example, both the max-
plus model and the min-plus model of ??• are dioids, cf. Example 1.1.1. Observe 
that generally TZ'^^'' fails to be commutative even if 72. is a commutative semi­
ring, which is due to the definition of the matrix product in (1.2). 

Remark 1.1.1 The elements of R'^ = R^^^ are called vectors. In the following 
we will carefully distinguish R'^ (the set of J -dimensional vectors in R), R'^'^ 
(the set of I X J -dimensional matrices in R), and R^"^^ (the set of square 
matrices in R). Note that for A 6 R^^'^ and x e R"^ the product A ® x is 
defined in (1-2), whereas A® A is only defined for A G i?'^^'^. 

For the kind of applications we will study in this monograph, we focus on 
the max-plus semiring. Roughly speaking TS-max is used to model departure 
times, called daters, in a class of discrete event dynamic systems which will be 
introduced in Section 1.4 and Section 1.5. In what follows formulas have thus 
to be interpreted in max-plus algebra. 

Let Ahe a, JxJ dimensional matrix. We denote the communication graph of 
A by GiA) = {U{A),T>{A)), where A^(^) = { 1 , . . . , J } denotes the set of nodes 
a n d l ' ( ^ ) C { 1 , . . . , J } x { l , . . . , J } the set of arcs where {i,j) 6 I>(^) if and only 
if Aji 7̂  £. For any two nodes i,j, a sequence of arcs p = {{in,jn) : 1 < « < rn), 
so that i = ii, jn = in+i for 1 < n < m and jm = j , is called a path from 
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i to j . In case i = j , p is also called a circuit. For any arc {i,j) in G{A), 
we call Aji the weight of arc {i,j). The weight of a path in Q{A) is defined 
by the sum of the weights of all arcs constituting the path; more formally, let 
P = {{imjn) '• i ^ n < m) be a path from i to j of length m, then the weight of 
p, denoted by \p\w, is given by 

\p\w = Yl :̂'"*" = 0 Ĵ 

Let A" denote the n^^ power of A, or, more formally, set A{k) = yl, for 1 < A; < 
n, and 

n 
^n d|f ^®„ ^ (g)^(fc)^ (1.5) 

fc=l 

where A° = E. With these definitions it can be shown that A'^^ is equal to the 
maximal weight of paths of length n (that is, consisting of n arcs) from node i 
to node j , and ^"j = £ refers to the fact that there is no path of length n from 
i to j , see [10] or [37]. 

Some remarks on the particularities of max-plus algebra seem to be in order 
here. Idempotency of ® implies that ® has no inverse. Indeed, if a ^ £ had an 
inverse element, say 6, w.r.t. ®, then o ® 6 = £ would imply a® a®h = a® e. 
By idempotency, the left-hand side equals a ® 6, whereas the right-hand side 
is equal to a. Hence, we have a ® b = a., which contradicts a ® h — e. For 
more details on idempotency, see [43]. For this reason, TJ-max is by no means an 
algebra in the classical sense. The name 'max-plus algebra' is only historically 
justified and the correct name for 72.max would be 'idempotent semiring' or 
'dioid' (which may explain why the name 'max-plus algebra' is still predominant 
in the literature). The structure T̂ -max is richer than that of a dioid since ® is 
commutative and has an inverse. However, in what follows we will work with 
matrices in Rmax and thereby lose, like in conventional algebra, commutativity 
and general invertibility of the product. 

In the following we will study matrix-vector recurrence relations defined 
over a semiring. With respect to applications this means that we study systems 
whose dynamic can be described in such a way that the state-vector of the 
system, denoted by x{k), follows the linear recurrence relation 

x{k + l) = A{k)®x{k)®B{k), k>0, 

with a;(0) = XQ, where {yl(fc)} is a sequence of matrices and {B{k)} a sequence of 
vectors of appropriate size. The above recurrence relation is said to be inhomo-
geneous. As we will see below, many systems can be described by homogeneous 
recurrence relation of type 

x{k + 1) = A{k) ® x{k) , k>0, 

with a;(0) = xo, where {A{k)} is a sequence of square matrices. See Section 1.4.3 
for more details. As explained above, examples of this kind of systems are con­
ventional linear systems, that is, ® represents conventional matrix-vector multi­
plication and © conventional addition of vectors, max-plus linear and min-plus 
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linear systems. Since max-plus linear systems are of most interest in applica­
tions, we will work with max-plus algebra in the remainder of this book. Hence, 
the basic operations ® and ® are defined as in (1.1) and extended to matrix 
operations as explained in (1.4) and (1.2). 

1.2 Heap of Pieces 

In this section, we present a first example of a max-plus linear system. The type 
of system studied in this section is called heap models. In a heap model, solid 
blocks are piled up according to a 'Tetris game' mechanism. More specifically, 
consider the blocks, labeled 'a', '/3' and '7 ' , in Figure 1.1 to Figure 1.3. 

2 3 4 5 

Figure 1.1: Block a 

I I 

1 2 3 4 5 

Figure 1.2: Block 0 

1 2 3 4 5 

Figure 1.3: Block 7 

The blocks occupy columns out of a finite set of columns TZ, in our example 
given by the set {1,2, . . . , 5 } . When we pile these blocks up according to a 
fixed sequence, like, for example, ' a /3 a 7 /3', this results in the heap shown 
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in Figure 1.4. Situations like the one pictured in Figure 1.4 typically arise in 
scheduling problems. Here, blocks represent tasks that compete for a limited 
number of resources, represented by the columns. The extent of an individual 
block over a particular column can be interpreted as the time required by the 
task of this resource. See [28, 51, 50] for more on applications of heap models 
in scheduling. 

1 1 1 
1 2 3 4 

Figure 1.4: The heap w = af3a^ f3. 

Before we can continue, we have to introduce some notation. Let A denote 
the finite set of blocks, in our example A = {a , /? ,7}. We call a sequence of 
blocks out of .4 a heap. For example, w = affajP is a heap. We denote the 
upper contour of a heap w by a vector x-j-c (w) € R^, where {xn (w))r is the height 
of the heap on column r, for example, x-n{oij3a^P) = (3,4,4,3,3), where we 
started from ground level. The upper contour of the heap afia'yP is indicated 
by the boldfaced line in Figure 1.4. 

A piece a e Ais characterized by its lower contour, denoted by /(a), and its 
upper contour, denoted by u{a). Denote by 7l{a) the set of resources required 
by a. The upper and lower contour of a piece a enjoy the following properties: 
1(a),u{a) 6 Rmaxi ''•(o) < Ur{a) for r G Ti-ia), and lr{a) = Ur{a) = —e for 
r ^ 72.(0). We associate a matrix M{a) with piece a through 

{M(a))rs = 
for s = r , r 0 TZ{a), 

ls(a) for r,s e 71(a), 
otherwise. 
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The matrices corresponding to the blocks a, /3 and 7 are as follows: 

M{a) = 

M{f3) = 

/ i l l —00 —00 \ 

1 1 1 —00 —00 

—00—00 0 —00 —00 

—00—00—00 0 —00 

\—00—00—00 —00 0 / 

/ 0 —00 —00 —00 —00 \ 
- 0 0 1 1 2 1 
- 0 0 1 1 2 1 
- 0 0 1 1 2 1 

\ - o o 2 2 3 2 / 

and 

M(7) = 

/ 2 
1 
1 

—00 —00 \ 

—00 —00 

—00 —00 

-00 —00 —00 0 —00 
y —00 —00 —00 —00 0 J 

For a heap w and a block 7; 6 ^ , we write w rj for the heap constituted out 
of piling block rj on heap w. It is easily checked that the upper contour follows 
the recurrence relation: 

{x-H{wrj))r = max{(iW"(77))„ + {xn{w))s • s e Tl} , 

with initial contour x-^i^) = ( 0 , . . . ,0). Elaborating on the notational power of 
the max-plus semiring, the above recurrence relation reads: 

{xn{wri))r = 0 ( M ( ? ? ) ) „ ® (a;-K(w)), , reU, 
sell 

or, m a more concise way, 

x-n{wrf) = M{ri)®X'H{w) . 

For a given sequence ?;>;, A; € N, of pieces, set Xfi{k) = xnivi V2 
M{k) = M{r]k)- The upper contour follows the recursive relation: 

xn{k + l) = M[k)®xn{k), k>0, 

Vk) and 

where xn{0) — ( 0 , . . . ,0). For given schedule r?fc, fc € N, the asymptotic growth 
rate of the heap model, given by 

lim jxn{k) , 
fc—>oo K 

provided that the limit exists, describes the speed or efficiency of the schedule. 
Limits of the above type are studied in Chapter 2. 
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1.3 The Projective Space 

On Kĵ ^x W6 introduce an equivalence relation, denoted by =, as follows: for 
Y,Z e Ri,g^^, F ^ Z if and only if there is an a e K so that Y = atg)Z, that is, 
Fi = a + Zj, 1 < ? < J , or, in a more concise way, 

Y ^ Z <!==> 3a e K : Y = a®Z . 

li Y = Z, we say that Y and Z are linear dependent, and if y ^ Z, we say 
that Y and Z are linear independent. For example, (1,0)^ = (0, — l)""̂  and the 
vectors (1,0)^ and (0,-1) ' '" are linear dependent; and (1,0)^ 9̂  (0,0)^ which 
implies that the vectors (1,0)^ and (0, —1)^ are linear independent. 

For Z € K;^^^, we write Z for the set {Y e Ri^^ : Y ^ Z}. Let ^M^^^ 
denote the quotient space of K^^x by equivalence relation =, or, more formally, 

J — i~i7 . '7 1^ nJ 
max 

= {Z : Z G R; ; , ,} 

^l^max 's called the projective space of Rĵ ^x ^^^1^ respect to =. The bar-operator 
is the canonical projection of R^ax onto PRi^^x- ^^ the same vein, we denote 
by IPR'^ the quotient space of R'' by the above equivalence relation. 

For X G R'', set z{x) = (0,X2 — Xi,Xz — Xi,... ,xj — Xi)^. For example, 
0((2, 3,1)"^) = (0,1, -1)"^. Consider x e P R ' ' with x e R'^. Then, z{x) lies in x, 
which stems from the fact that Xi®z{x) = x. Moreover, for any vectors u,v €x 
it holds that z{u) — z(v), which can be expressed by saying that z maps 'x onto 
a single element of R"' the first component of which is equal to zero. We may 
thus disregard the first element and set 'z(x) = {xi — x\,xz — x\,... ,xj — x\)^. 
For example, ^((2,3, l)""") = (1, —1)^. Hence, !.{•) identifies any element in PR- ' 
with an element in R''"-'. 

1.4 Petri Nets 

In this section, we study discrete event systems whose sample path dynamic 
can be modeled by max-plus algebra. Section 1.4.1 introduces the modeling tool 
of Petri nets. In Section 1.4.2, we discuss max-plus linear recurrence relations 
for so called autonomous and non-autonomous Petri nets. In Section 1.4.3, we 
explain the relation between autonomous and non-autonomous representations 
of a discrete event system, such as, for example, a queueing network, and an 
algebraic property, called irreducibility, of the max-plus model. Eventually, Sec­
tion 1.4.4 discusses some particular issues that arise when dealing with waiting 
times in non-autonomous systems. 

1.4.1 Basic Definitions 

Max-Plus algebra allows one to describe the dynamics of a class of networks, 
called stochastic event graphs, via vectorial equations. Before we are able to 
give a precise definition of an event graph, we have to provide a brief intro­
duction to Petri nets. A Petri net is denoted by ^ = {'P,Q,T,Mo), where 
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V = { p i , . . . ,PYP\} is the set of places, Q ~ {g i , . . . ,g|Q|} is the set of transi­
tions (also called nodes for event graphs), ^ c Q x P U T ' x Q i s the set of arcs 
and A^o : 7-* —> { 0 , 1 , . . . , M } ' ^ ' is the initial number of tokens in each place, 
called initial marking; M is called the maximal marking. For {pi,qj) 6 ^ we 
say that pi is an upstream place for qj, and for iqj,Pi) G ^ we say that pi is 
a downstream place for qj and call qj an upstream transition of pi. We denote 
the set of all upstream places of transition j by 7r'(j), i.e., i G 7r''(j) if and only 
if {pi,qj) 6 T, and the set of all upstream transitions of place i by n^{i), i.e., 
j G 7rP(i) if and only if {qj,Pi) G J^- We denote by TT^^ the set of places having 
downstream transition qj and upstream transition qi. 

Roughly speaking, places represent conditions and transitions represent 
events. A certain transition (that is, event) has a certain number of input and 
output places representing the pre-conditions and post-conditions of the event. 
The presence of a token in a place is interpreted as the condition associated with 
the place being fulfilled. In another interpretation, mi tokens are put into a place 
Pi to indicate that rrii data items or resources are available. If a token represents 
data, then a typical example of transitions is a computation step for which these 
data are needed as an input. The marking of a Petri net is identified with the 
state. Changes occur according to the following rules: (1) a transition is said to 
be enabled if each upstream place contains at least one token, (2) a firing of an 
enabled transition removes one token from each of its upstream places and adds 
one token to each of its downstream places. A transition without predecessor(s) 
is called source transition or simply source. Similarly, a transition which does 
not have successor(s) is called sink transition or simply sink. A source transition 
is an input of the network, a sink transition is an output of the network. If there 
are no sources in the network, then we talk about an autonomous network and 
we call it nonautonomous otherwise. It is assumed that only transitions can 
be sources or sinks (which is no loss of generality, since one can always add a 
transition upstream or downstream to a place if necessary). 

A Petri net is called an event graph if each place has exactly one upstream 
and one downstream transition, that is, for all i G P it holds |7r''(j)| = 1 and 
|{j G Q : i G •7r'(j)}| = 1. Event graphs are sometimes also referred to as marked 
graphs or decision free Petri nets. Typical examples are the G/G/1-queue, net­
works of (finite) queues in tandem, Kanban systems, flexible manufacturing 
systems, fork/join queues or any parallel and/or series composition made by 
these elements. 

The original theory of Petri nets deals with the ordering of events, and 
questions pertaining to when events take place are not addressed. However, for 
questions related to performance evaluation it is necessary to introduce time. 
This can be done in two basic ways by associating durations with either transi­
tion firings or with the sojourn times of tokens in places. 

The firing time of a transition is the time that elapses between the starting 
and the completion of the firing of the transition. We adopt the convention that 
the tokens that are to be consumed by the transition remain in the preceding 
places during the firing time. Such tokens are called reserved tokens. Firing times 
can be used to represent production times in a manufacturing environment. 
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where transitions represent machines, the length of a code in a computer science 
setting etc. 

The holding time of a place is the time a token must spend in the place 
before contributing to the enabling of the downstream transitions. Firing times 
represent the actual time it takes to fire a transition, whereas holding times 
can be viewed as minimal time tokens have to spend in places. In practical 
situations, both types of durations may be present. However, it can be shown 
that for event graphs one can disregard durations associated with transitions 
without loss of generality (or vice versa). In what follows we associate durations 
with places and assume that the firing of transitions consumes no time. 

A Petri net is said to be timed if such durations are given as data associated 
with the network. If these times are random variables defined on a coihmon 
probability space, then we call the Petri net a stochastic Petri net. 

A place Pi is said to be first in first out (FIFO) if the fc*'' token to enter this 
place is also the A;*'' token which becomes available in this place. In the same 
way, we call a transition QJ FIFO if the &*'' firing of QJ to start is also the fc"' 
firing to complete. If all places and transitions are FIFO, then the Petri net is 
said to be FIFO. 

1.4.2 The Max-Plus Recursion for Firing Times 

In what follows we study (stochastic) FIFO event graphs. We discuss the au­
tonomous case in Section 1.4.2.1 and the non-autonomous case in Section 1.4.2.2. 

1.4.2.1 The Autonomous Case 

Let ai{k) denote the fc*'* holding time incurred by place pi and let Xj{k) denote 
the time when transition j fires for the A;*'' time. We take the vector X{k) = 
{Xi{k),... ,X^Q^{k)) as state of the system. 

To any stochastic event graph, we can associate matrices 
A{0,k),...,A{M,k), all of size \Q\ x \Q\, given by 

{A{m,k))ji = 0 ai{k), (1.6) 
{ieir3^\Mo{i)=m} 

for j , I G Q, and in case the set on the right-hand side is empty, we set 
{A{m,k))ji = £. In other words, to obtain {A{m,k))ji we consider all places 
with downstream transition QJ and upstream transition qi with initially m to­
kens, and we take as {A{m, k))ji the maximum of the A;*'' holding time of these 
places. 

If we consider the state variables Xi{k), which denote the k*'^ time transi­
tion i initiates firing, then the vector X{k) = {Xi{k),..., X^Q\{k)) satisfies the 
following (linear) equation: 

X{k) = ^ (0 , k) ® X{k) ®A{l,k)®X{k-l) (B (1.7) 

•••eA{M,k)^X{k-M), 
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see Corollary 2.62 in [10]. 
A Petri net is said to be live (for the initial marking A^o) if for each marking 

M reachable from MQ and for each transition q, there exists a marking A/' 
which is reachable from M such that q is enabled in A/". For a live Petri net, 
any arbitrary transition can be fired an infinite number of times. A Petri net 
that is not live is called deadlocked. An event graph is live if and only if there 
exists a permutation P of the coordinates so that the matrix P^ ® yl(0, fc) ® P 
is strictly lower triangular for all k. 

We define the formal power series of A(0, k) by 

oo 

t=0 

If the event graph is live, then ^ (0 , k) is (up to a permutation) a lower triangular 
matrix, and a finite number p exists, such that 

^*(0,fc) = 0^'(O,fc). (1.8) 

Set 

then (1.7) reduces to 

i = 0 

M 

b{k) = ^A{i,k)®X{k-i), 

X{k) = A{0, k) ® X{k) ® h{k) . (1.9) 

For fixed fc, the above equation is of type x = A® x®h.\i \s well-known that 
A* ®h solves this equation, see Theorem 3.17 in [10] or Theorem 2.10 in [65]. 
Therefore, X{k) can be written 

X{k) = A*[Q,k)®h{k), 

or, more explicitly, 

X{k) = A*(0, k)®A{l, k)®X{k-l)®- • •®^*(0, k)<g,A{M, k)®X{k-M). (1.10) 

The difference between (1.7) and (1.10) is that the latter contains no 0*'' or­
der recurrence relation, that is, X{k) occurs only on the left-hand side of the 
equation. 

As a next step we transform (1.10) into a first-order recurrence relation. In 
order to do so, we take as new state vector the (jQj x M)-dimensional vector 

x{k) = {X{k),X{k - I),... ,X{k - M + 1)^ (1.11) 
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and {\Q\ x M) x (|Q| x M)-dimensional matrices 

A{k-1) = 

/ A*{0,k)®A{l,k) A*{0,k)®A{2,k) 
E E 

S E 

A*{Q,k)®A{M,k)\ 
£ 

E I 
(1.12) 

\ & e 
Then (1.10) can be written as 

x{k) = A{k-\)®x{k-\), k>l, 

or, equivalently, 
x{k + l) = A{k)®x{k), k>0. 

We call the above equation the standard autonomous equation. Any live FIFO 
autonomous event graph can be modeled by a standard autonomous equation. 

1.4.2.2 The Non-Autonomous Case 

Let I C Q denote the set of input transitions, set Q' = Q\I, and denote the 
maximal initial marking of the input places by M'. We let ai{k) denote the fc*'' 
firing time of input transition Q,. We now define |Q' | x \X\ dimensional matrices 
B(0, k),..., B(M', k), so that 

{B{m,k))ji = 0 o-i{k), 

{ienJ'\Mo(i)=m} 

for j e Q' and I € J , and in case the set on the right-hand side is empty, 
we set {B{m,k))ji = e. In words, to obtain {B{m,k))ji we consider all places 
with downstream transition qj (being not an input transition) and upstream 
transition qi (being an input transition) with initially m tokens. We take as 
{B{m,k))ji the maximum of the fc*'' holding time of these places. Furthermore, 
we let U{k) be a |Z|-dimensional vector, where Ui{k) denotes the time of the 
fc*'' firing of input transition i. 

The vector of the A;"" firing times satisfies the following (linear) equation: 

X{k) = A{0, k) ® X{k) ® v4(l, k) ® X{k - 1) ® 

e S ( 0 , k) ® U{k) ® B{1, k) ® U{k - 1) ® 

•••®B{M',k)®U{k-M'), 

®A{M,k)®X[k-M) 

(1.13) 

where Xj{k) and Uj{k) are £ if A; < 0, see Theorem 2.80 in [10]. Note that X{k) 
is the vector of k*^ firing times of transitions q^ with i e Q'. Put differently, 
X{k) models the firing times of all transitions which are not input transitions. 

In what follows, we say that the non-autonomous event graph is live if the 
associated autonomous event graph is live (that is, if the event graph obtained 
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from the non-autonomous one through deleting all input transitions is live). 
Prom now on we restrict ourselves to non-autonomous event graphs that are 
live. 

Equation (1.13) is equivalent to 

Xik) = .4*(0, k) ® A{1, fc) ® X(fc - 1) ® • • • © ^*(0, k) ® A{M, k) ® X{k - M) 

®A*{0, k) ® B{0, k) ® U{k) ® • • • 

•••(BA*{Q,k)® B(M', k) ® U{k - M'), (1.14) 

compare recurrence relation (1.10) for the autonomous case; and we define x{k) 
like in (1.11). 

Define the ( | I | x (M' 4- l))-dimensional vector 

u(k) = (C/(/t), Uik -l),...,U{k- M') f 

and the ( |Q' | x M) x ( |J | x (M' + 1)) matrix 

fA*{0,k)®B{0,k) A*{0,k)®Bil,k) ••• A*{0,k)®B{M',k)\ 
£ S ••• S 

B(k-1) = 

\ £ £ ••• £ 

Then (1.14) can be written as 

x{k) = A{k - 1) » x{k - 1) 0 B{k - 1) » u{k), fc > 1 , 

with A{k — 1) as defined in (1.12) or, equivalently, 

x{k + 1) = A{k) <S> x{k) © B{k) <8)u{k + l), fc > 0 . (1.15) 

We call the above equation the standard non-autonomous equation. Any live 
FIFO non-autonomous event graph can be modeled by a standard non-
autonomous equation. 

1.4.3 Autonomous Systems and Irreducible Matrices 

So far we have distinguished two types of max-plus recurrence relations for firing 
times in event graphs: homogeneous recurrence relations of type 

a;(fc-t-l) = A{k)®x{k) (1.16) 

that describe the firing times in an autonomous event graph and inhomogeneous 
recurrence relations of type 

x{k + 1) = A{k) ® x{k) © B{k) (g) u{k + 1) (1.17) 

that describe the firing times in a non-autonomous event graph. 
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In principle, the sample dynamic of a max-plus linear discrete event system 
can be modeled either by a homogeneous or an inhomogeneous recurrence rela­
tion. Indeed, recurrence relation (1.17) is easily transformed into a recurrence 
relation of type (1.16). To see this, assume, for the sake of simplicity, that there 
is only one input transition, i.e., | / | = 1, and that the initial marking of this 
input place is one, i.e., M' = 1. This implies, that w(fc) is a scalar, and denoting 
the A;*'' firing time of the source transition by o-o(A;) it holds that 

fc 

In order to do transform (1.17) into an inhomogeneous equation, set 

and 

*(^^ ~ \x{k) 

^^"^ " \B{k)®ao{k + l) A{k)J • 

Then, it is immediate that (1.17) can be rewritten as 

x{k + l) = A{k)^x{k). (1.18) 

This transformation is tantamount to viewing the input transition as a recycled 
transition where the holding times of the recycling place are given by the se­
quence ao{k). In the following we study the difference between (1.17) and (1.18) 
more closely, which leads to the important notion of irreducibility. 

We call a matrix A € Kmajf irreducible if its communication graph G{A) is 
strongly connected, that is, if for any two nodes «, j there is a sequence of arcs 
((in,in) : 1 < n < m) so that i = ii, j „ = z„+i for 1 < n < m and jm = j - This 
definition is equivalent to the definition of irreducibility that is predominant in 
algebra, namely, that a matrix is called irreducible if no permutation matrix P 
exists, such that P^ ® A® P has an upper triangular block structure, see [10] 
for more details. If a matrix is not irreducible, it is called reducible. 

Remark 1.4.1 If A is irreducible, then every row of A contains at least one 
finite element. In other words, an irreducible matrix is regular. 

The relation between the (algebraic) type of recurrence relation (1.18) and 
the type of system modeled can now be phrased as follows: If A{k) is irreducible, 
then x{k) models the sample path dynamic of an autonomous system, or, in 
terms of queueing, that of a closed network; see Section 1.5 for a description of 
closed queueing systems. If, on the other hand, A{k) is of the above particular 
form (and thus not irreducible), then x{k) models the sample path dynamic of 
an non-autonomous systems, or, in terms of queueing, that of an open queueing 
system; see Section 1.5 for a description of open queueing systems. Hence, a 
homogeneous equation can model either an autonomous or a non-autonomous 
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system. However, given that A{k) is irreducible, homogeneous equations are 
related to non-autonomous systems. 

In order to define irreducibility for random matrices, we introduce the con­
cept of fixed support of a matrix. 

Definition 1.4.1 We say that A(k) has fixed support if the probability that 
{A{k))ij equals s is either 0 or 1 and does not depend on k. 

With the definition of fixed support at hand, we say that a random matrix A 
is irreducible if (a) it has fixed support and (b) it is irreducible with probability 
one. For random matrices, irreducibility thus implies fixed support. 

The following lemma establishes an important consequence of the irreducibil­
ity of a (random) matrix: there exists a power of the matrix such that all entries 
are different from e. 

Lemma 1.4.1 Let A{k) £ R;̂ ax'> fork > 0, be irreducible such that (i) all finite 
elements are bounded from below by some finite constant 5 and (ii) all diagonal 
elements are different from e. Then, 

k-\ 

G{k) 11' (g) A[j) , fork>J, 
j=k-J 

satisfies {G{k))ij > J • 5 for all (i, j ) & J x J. 

Proof: Without loss of generahty assume that 5 = 0. Let Aij = 0 if Aij (k) ^ 
E with probability one and Aij = e otherwise. For the proof of the lemma it 
suffices to show that Af, 7̂  e for any z, j . Because A{k^ is irreducible, so is A. 
Hence, for any node i, j there exists a number ruij., such that there is a path of 
length TOy from i to f in the communication graph of A. Such a path contains 
each arc at most once and is hence of maximal length J . We have thus shown 
that for any i, j a my < J exists such that (^™'^)y 7̂  e. Since all diagonal 
elements of A are different from e, this yields 

Vn > my : (>l")y 7̂  e , 

for any i, f. Indeed, we can add arbitrarily many recycling loops (i, i) to the path. 
Using the fact that max(my : 1,2) < J, completes the proof of the lemma. • 

1.4.4 The MEIX-PIUS Recursion for Waiting Times in Non-
Autonomous Event Graphs 

We consider a non-autonomous event graph with one source transition denoted 
by 5o- We furthermore assume that the initial marking of this source is equal to 
one and that the maximal marking of the input place of the source transition 
equals one as well. For each transition q in 5 we consider the set P{q) of all 
paths from go to q. We denote by 

M(7r) = 5;]A^O(P) 
p67r 
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the total number of all initial tokens on path TT, and set 

L(q) = min M(7r) . 
7reP((?) 

Lemma 1.4.2 The {k + L{q)Y'^ firing of transition q of Q consumes a token 
produced by the k*'^ firing of transition qo • 

Proof: Let s , be the shortest path from qo to q with L{q) tokens. The 
length of Sg is called the distance from qo to q. The proof holds by induction 
w.r.t. the length of Sg. If Sg = 0, then q = qo and the result is true. Suppose 
that the result is true for all transitions with distance k — 1 from qo. Choose 
q at distance k, then the transition q' preceding q on path s , is at distance 
fe — 1 from qo and the induction applies to q'. Now the place p between q' and 
q contains m tokens. By definition of q', L{q') = L[q) — m, and, by induction, 
the (fc + L{q')Y^ firing of transition q' uses token number k. Because the place 
between q' and q is FIFO, the {k + L{q)Y^ firing of q will use that token. D 

For the sake of simplicity we assume that for every transition q vci Q there 
exists a path from qo to q that contains no tokens. For queueing networks this 
condition means that the network is initially empty. Note that the queueing 
network being empty does not mean that the initial marking in the Petri net 
model is zero in all places. This stems from the fact that tokens representing 
physical constrains, like limited buffer capacity, are still present in the Petri net 
model even though the queueing network is empty. We now set 

Wg{k) = Xg{k) - U{k) , l<q<Q', (1.19) 

for ^ > 1. In a queueing network interpretation, let the firing of transition q 
represent the beginning of service at a particular server j . Then Lemma 1.4.2 jus­
tifies the interpretation of Wq{k) as the travel time of the /c*'' customer between 
her/his entrance in the system and the beginning of her/his service at node j . 
Since we consider a non-autonomous system, the basic recurrence relation for 
the firing times is given as 

x{k +1) = A{k) ® x{k) ® B{k) ® u{k + 1 ) . (1.20) 

We have assumed that there is only one input transition, i.e., \I\ = 1, and 
that the initial marking of this input place is one, i.e., M' = 1. This implies, 
that u{k + 1) is a scalar. If we consider only component Xg(k), we can subtract 
u{k + 1) on both sides of equation (1.20) and get 

Wg{k + l)=xgik + l)-u{k+l) 

={A{k) ® x{k))g (8 {-u{k + 1)) e Bg{k) . 

Let ooik) denote the fc*'' firing time of the source transition, that is, 

fc 

"C^) = ^(^o{i), 
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then 

{A{k) ® x{k))g ® {-u{k + 1))= 0 Agr{k) ® {-cro{k + 1)) (gi {xrik) - M(fc)) 
reS ' 

= 0 V W ® (-'^o(fc + 1)) ® W r̂lfc) . 
r£Q' 

Let C{h) denote a diagonal matrix with —h on the diagonal and e else. Then, 
we can write the expression on the right-hand side of the above equation as 
follows 

0 V ( f e ) ® i-Mk + 1)) ® Wr{k)=^{A ® Ciaoik + 1)) ® Ty(A;))^ . 
reQ' 

Combining the above formulas, we obtain the following vectorial form of the 
recurrence relation for W{k + 1): 

W{k + 1) = A(k) ® C{ffo{k + 1)) ® W{k) ® B(/c). (1.21) 

Lemma 1.4.3 Let XQ = (0, . . . , 0 ) in (1.20). If W{Q) = XQ in (1.21), then 
W{l) = B{Q). 

Proof: We have assumed that the Petri net is live. There exists thus a path 
from the source QQ to any transition q. The element Agr{Q) is the time it takes 
for the first firing of transition r to trigger the first firing of transition q, and 
AqriQ) = £ if transition r has no influence on transition q. Moreover, the time it 
takes for the first firing of the source transition to trigger a firing of transition 
q is 5 , (0) . Because any transition r that can possibly trigger a firing of q lies 
on a path from qo to g, it holds that 

or, equivalently, 

which yields 

Agr{Q) < 5 , ( 0 ) , reQ', 

0 ^,,(0) < 5(0), 
re 2 ' 

A{Q)®xo< 5(0) 

The above inequality implies 

^ ( 0 ) ® C ( a o ( l ) ) ® a : o < 5 ( 0 ) . 

By equation (1.21), it follows Vl^(l) = 5(0) , which concludes the proof of the 
lemma. D 
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By using elementary matrix operations in the max-plus algebra, Equation 
(1.21) can be rewritten as 

k 

W{k + 1) = (g ) A{i) ® C{ao{i + 1)) ® W{0) 
i=0 

k k 

® 0 (8) A{j)®C{ao{j + l))®B{i), (1.22) 
i=0 i=i+l 

with W{Q) = xo-
When it comes to queueing networks, we obtain from (1.22) a closed-form 

expression for the vector of (fc+ 1)** waiting/sojourn times in an open queueing 
network that is initially empty and whose sequence of interarrival times is given 
by {aoik)}. More precisely, depending on whether we model beginning of service 
or departure times by x{k), Wj{k) models the time the fc*'' arriving customer 
spends in the system until her/his service at server j starts, or until she/he 
departs from server j ; see also Section 1.5.3.3. Equation (1,22) is called the 
forward construction of waiting times. 

1.5 Queueing Systems and Timed Event Graphs 

Petri net models of queueing networks heavily depend on the initial population. 
In particular, for a given timed event graph we cannot tell whether a token 
represents a physical restriction, like a finite buffer capacity, or a moving item, 
like a customer. This violates the queueing theorist's intuition that physical 
aspects of the system and items/customers moving through the network re­
present different levels of information. In other words, Petri-net theory is not 
(yet) a standard tool for queueing theorists, and the characterization of max-
plus linearity via subclasses of Petri-nets does not contribute to understanding. 
We therefore provide a purely queueing theoretic characterization of max-plus 
linearity. 

As we will explain in Chapter 2, in order to obtain stability results for 
queueing networks via Kingman's subadditive ergodic theorem, a max-plus lin­
ear model has to satisfy structural conditions. The most important of these 
conditions is that the matrices, which govern the transitions in a max-plus lin­
ear system, have fixed support. See Definition 1.4.1. In other words, besides 
identifying max-plus linear queueing networks, we have to find conditions that 
imply that the corresponding max-plus models have fixed support. In order to 
do so, we first obtain a recurrence relation for departure times in a general 
queueing network, called general sample path formula (GSPF). Using the GSPF 
we derive the standard max-plus linear model for the departure times. We then 
identify structural conditions guaranteeing that the max-plus linear model has 
fixed support. In a last step, we show that these structural limitations can 
be summarized in a simple condition. This condition is based on the flow of 
items/customers through the network. We introduce the notion of distance of 
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customers, where the distance of two customers, say k and fc', at a certain node, 
say j , measures the difference between the position of k and k' in the arrival 
stream at j : If fc triggers the m*'' arrival at j whereas k' triggers the n"* one, 
then the distance between k and k' is \m — n\. We then prove that a queueing 
network is max-plus linear with fixed support if and only if distances between 
customers are invariant, that is, (1) customers enter nodes in the same order 
as they leave them, (2) if A; is n 'customers ahead' of k' at j , then k is always 
exactly n customers ahead, and (3) if two customers visit the same node, then 
they have the same route through the network. 

Stability analysis of queueing networks via Kingman's subadditive ergodic 
theorem requires that the matrices, which govern the transitions in a max-plus 
linear system, have fixed support. From the above it is clear that this imposes a 
severe restriction on the class of queueing systems that can be treated. However, 
elaborating on backward coupling arguments, Mairesse developed a different 
approach to stability analysis of max-plus linear queueing systems, which does 
not require that the system dynamic has fixed support. Here, the key property 
is that the max-plus linear system has a pattern, see [84]. A more detailed 
description of this approach and a discussion of the modeling issues will be 
given in Section 2.5. 

The present section is organized as follows. In Section 1.5.1 we describe the 
class of queueing networks whose max-plus linearity we will study. Examples of 
max-plus models of queueing networks are given in Section 1.5.2. Section 1.5.3 
provides an analysis of the sample path behavior of the queueing networks under 
consideration. In Section 1.5.4 we derive a simple structural condition for a 
queueing network to be max-plus linear. Section 1.5.5 studies possible extensions 
of our results to other types of queueing networks. Finally, Section 1.5.6 discusses 
modeling issues when the fixed support assumption is dropped. The material 
put forward in this section is based on [61]. 

1.5.1 Queueing Networks 

Roughly speaking, a queueing network is a system consisting of nodes, which 
are connected through routes. Items circulate through the system via the routes 
and are delayed on their way at the nodes. A node consists of two kinds of 
places: service and buffer places. On a service place an item is delayed for a 
predefined (stochastic) time, called 'service time.' When an item arrives at a 
node and receives no service place, it has to wait for service on a buffer place. In 
the following we give a precise description of the dynamics of a generic queueing 
network. 

We consider a queueing network with J nodes. If items arrive at the network 
from the outside and leave the network, we call the network open, otherwise we 
call it closed. To facilitate considering both the open and the closed case, we 
assume that there is only one stream of arrivals. We include a fictitious node 0, 
which is never idle, from which all arrivals to the system originate and to which 
all departures from the system go. Typically, items are divided into several 
distinct classes. However, in what follows we assume that all items belong to 
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one class. As will become clear later, this restriction is necessary to obtain a 
max-plus linear model, see Section 1.5.5.1. 

The interactions between the nodes, carried out through the items, are gov­
erned by the following phenomena: 

• Fork: A departure from a node may generate arrivals at more than one 
node, that is, items may split up into several (sub) items. More precisely, 
the fc*'' departure from node j generates arrivals at the nodes out of the set 
B{j, k). For example, B{j, k) = {ji , J2} means that the item which triggers 
the fc*'' departure from j splits up into two new items: one moving to node 
ji, the other to node J2. We call node j a fork node if \B{j,k)\ > 1 for 
some k. 

• Blocking: Upon service completion, an item finds no place at the next 
node. Therefore, the item is forced to stay at the current node and can 
only move on if a place becomes available at the next node. 

Due to a fork mechanism an item may have to wait for buffer places at 
several nodes. In this case we assume that the fork operation takes place 
after the item has left the node and before it reaches the next (ones). In 
particular, the k*^ item departing from j can only be blocked by the nodes 
in B{j,k). If the network is open, we assume that the source cannot be 
blocked, that is, we assume B{0, fc) = 0 for all k. 

• Join: If a node can only commence service if one item from each of the 
upstream nodes has arrived, we call this node a join node. Service of an 
item at a join node consumes one item of each of the upstream nodes. 
The join operation is tantamount to synchronizing arrival streams. More 
precisely, let the fc*'' item departing from j originate from an arrival from 
each of the nodes i 6 A{j,k). For example, A{j,k) — {^1,^2} means 
that the A;*'' item departing from j originates from joining two items: 
one arriving from j \ , the other from 32- We say that j is a join node if 
\A{j, fc)| > 1 for some k. In particular, we assume that the join mechanism 
is applied only to the newly arriving items and that the items initially 
present at j have already been 'joined.' If the network is open, we set 
A{j, k) = 0, which expresses the fact that no arrivals occur at the source. 

Another frequently used join mechanism is called hatching. Here, several 
items originating from one node are grouped together to form one new 
item. However, this join mechanism is ruled out by max-plus linearity, as 
will be demonstrated in Section 1.5.5.4. 

• Variable Origins: We say that a node admits variable origins if an arrival 
to the node may originate from different nodes. If there are no variable 
origins at j , then A{j, k) = A{j) for all k. In other words, a node j has no 
variable origins if j is either (1) a join node, so that for each item present, 
exactly one item must arrive from each node out of the set A{j), or, (2) 
there is exactly one node from which items can directly reach j . 
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• Variable Dest inations: After completing service at a node, say j , an 
item may split up according to a fork mechanism. If the set of nodes 
receiving an (sub) item upon a departure from j varies over time, then 
this phenomenon is called variable destinations. On the other hand, if 
there are no variable destinations, then B{j, k) does not depend on time, 
i.e., B{j,k) = B{j), for all k. In other words, a node j does not admit 
variable destinations if j is either (1) a fork node, so that each departure 
at j always leads to an arrival of an item at each node out of the set B{j), 
or, (2) there is exactly one node to which all items go directly from j . 

A particular node may admit variable origins but no variable destinations, 
or the node may admit variable destinations and no variable origins. In 
what follows we say that a queueing network admits no routing if all nodes 
admit neither variable origins nor variable destinations. 

• Internal Overtaking: In general, the order in which items leave a node 
is different from the order in which they enter the node. Internal overtake 
freeness can be forced by a so-called resequencing mechanism. A rese-
quencing queue is such that an item whose service is completed remains 
on its service place until the service of all items that entered the node 
before this particular item is finished. The resequencing mechanism is of 
importance in computer communication systems where the flow of pack­
ets or messages entering a communication system in chronological order 
from the same port or from different ports may be disordered, see [9] for 
more details. We call a node where items are reordered according to a 
resequencing mechanism a resequencing node. 

The way in which the items are processed at the nodes is called the queueing 
discipline. The most prominent example is the first come, first served (FCFS) 
queueing discipline. If one node simultaneously blocks several other nodes, then 
the order in which this blocking is resolved is determined via a blocking dis­
cipline, like, for example, first blocked, first unblocked (FBFU). If an item is 
blocked, we assume that the item is blocked at the end of service and remains 
on its service place until a free place at the next node becomes available. This is 
referred to as blocking after service (of manufacturing type), see eg. [31]. To keep 
the presentation simple, we postpone the discussion of other possible blocking 
schemes to Section 1.5.5.3. 

Remark 1.5.1 Internal overtake-freeness at a single-server node implies 
FCFS. At multi-server nodes, one can have more sophisticated queueing dis­
ciplines, such as processor sharing or exchangeable items, see [40]. However, 
this implies that the service times are state dependent which rules out max-plus 
linearity, see Section 1.5.5.2. 

For ease of reference, we summarize our assumptions; 

(A) The queueing network under consideration has only one class of items, 
no state-dependent service times, all queues are FCFS with blocking af-
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ter service (of manufacturing type) and blocking is resolved according to 
FBFU. 

Although it seems a bit awkward to reduce our analysis a priori to networks 
satisfying (A), it will turn out that (A) identifies the class of networks for 
which we can derive necessary and sufficient conditions for max-plus linearity. 
In other words, condition (A) actually imposes no restriction with respect to the 
generality of our results. This will be discussed in more detail in Section 1.5.5. 
The reason for postponing this discussion is that it requires more background 
on the modeling of queueing networks via max-plus recurrence relations (which 
will be provided in the next sections). 

Remark 1.5.2 In the above description we associated fork and join operations 
with nodes, that is, a join operation can only take place immediately before a 
node (i.e., this particular node is a join node) and a fork operation can only take 
place immediately after a node (i.e., this particular node is fork node). However, 
one may want to model an isolated fork/join operation that is not attached to a 
node. Figure 1.5 shows a sample network with four nodes and an isolated join 
operation. 
Items arrive from the outside at node 1. After finishing service at node 1, items 

Figure 1.5: A network with an isolated join operation. 

are split up into three (sub) items proceeding either to node 4 or to node 2 and 
3, respectively. Items finishing their service at node 2 and 3, respectively, are 
joined to form a new (super) item and this new item proceeds to node 4- This 
join operation is not attached to a node and, therefore, this network does not 
fall into the class of queueing networks we introduced so far. However, we may 
include an fictitious node so that the join operation takes place immediately 
before this node, that is, the node is a join node. Letting this particular node be 
a single-server node with infinite buffer capacity and setting the service times 
equal to zero, we obtain a network that is equivalent to that in Figure 1,5 but 
that falls into the class of queueing networks introduced above. Figure 1.6 shows 
the modified network. 

1.5.2 Examples of Max-Plus Linear Systems 

This section provides a series of examples of max-plus linear queueing systems. 
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Figure 1.6: The network in Figure 1.5 with a fictitious node included. 

Example 1.5.1 Consider a closed system of J single-server queues in tandem, 
with infinite buffers. In the system, customers have to pass through the queues 
consecutively so as to receive service at each server. After service completion at 
the J*'' server, the customers return to the first queue for a new cycle of service. 

We denote the number of customers initially residing at queue j by HJ . We 
assume that there are J customers circulating through the network and that 
initially there is one customer in each queue, that is, Uj = 1 for 1 < j < J. 

Figure 1.7 shows the initial 
represented by the symbol '•'. 

state of the tandem network, customers are 

1 

Figure 1.7: The closed tandem queueing system at initial state Uj 

l<j<J. 

1 for 

Let aj {k) denote the fc*'' service time at queue j and let Xj (fc) be the time of 
the fc*'' service completion at node j , then the time evolution of the system can 
be described by a J -dimensional vector x{k) — (xi(fc),... ,a;j(/c)) following the 
homogeneous equation 

x{k + 1) = A{k) ® x{k), (1.23) 

where the matrix A{k) looks like 

(ai{k) e 
a2{k) a2{k) 

A{k-1) = 

ai(fc) \ 

e o-j-i(fc) aj-i(k) e 
e aj{k) ffj{k) J 

(1.24) 
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for k > 1. Observe that A{k) is irreducible and that equation (1.23) is noticeably 
the standard autonomous equation. 

Example 1.5.2 We now consider the open variant of the tandem network in 
Example 1.5.1. Let queue 0 represent an external arrival stream of customers. 
Each customer who arrives at the system has to pass through queues 1 to J and 
then leaves the system. We assume that the system starts empty. Denoting the 
number of customers initially present at queue j by rij, we assume rij = 0 for 
I < j < J. Figure 1.8 shows the initial state of the tandem network. 

1 2 J 

Figure 1.8: The open tandem queueing system at initial state Uj = 0 for 1 < 

3<J-

Again, we let Xj (k) denote the time of the k*^ service completion at station 
j . In particular, we let xo{k) denote the fc*'' arrival epoch at the system. The 
time evolution of the system can then be described by a {J + I)-dimensional 
vector x{k) = (a;o(A;),. .. ,a;j(fc)) following the homogeneous equation 

x{k + 1) = A{k) ® x{k), (1.25) 

where the matrix A(k — 1) looks like 

( o-o{k) e e ... £ 

ao{k)®ai{k) cFi{k) e ••• e 
cTo{k) ® (Ti{k) iSi ffiik) o-i(fc) ® a2(fc) cr2(fc) ••• e 

\ cro(A;)® •••®c7jr(A;) ai{k) ^ • • • 0 aj{k) a2{k) ® • • • ®aj{k) •••(rj{k)j 
(1.26) 

for fc > 1. 
Alternatively, we could describe the system via a J dimensional vector x{k) = 

{xi{k),... ,xj{k)) following the inhomogeneous equation 

x{k + 1) = A{k) ® x{k) ® B{k) ® T{k + 1) , (1.27) 

where the matrix A{k) looks like (1.26), except for the first column and the first 
row which are missing, that is, {A{k))ij = {A{k))i+\j.^.i for 1 < i,j < J; the 
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vector B{k) is given by 

i 
B{k)^ 

a i ( A ; + l ) \ 
ai(fc + l)®o-2(fc + l) 

jor k >0; and 

\(7i(A; + l)®(T2(A; + l) 

•̂ W = Xl«^o(i) 

)aj{k + l)J 

denotes the k*'^ arrival time. Notice that matrices A{k) and A{k) are reducible 
and that (1.27) is the standard non-autonomous equation. Notice that Bj{0), 
for 1 < j < J, denotes the time it takes the first customer from entering the 
system until departing from station j , c.f. Lemma I.4.3. 

The transformation from the homogenuous equation (1.25) to the in-
homogenuous equation (1.27) is the inverse transformation to the one described 
in Section 1.4.3. 

Example 1.5.3 (Example 1.5.2 revisited) We consider the system as described 
in the above example. However, in contrast to Example 1.5.2, we let Xj{k) denote 
the time of the k''^ beginning of service at station j , with I < j < J. The standard 
non-autonomous equation now reads 

x{k + 1) = A{k) ® x{k) ® B{k) ® T(k + 1) , 

with A{k) given by 

(1.28) 

iMk)h = 
for i < j , 

[ a J (k) ® (S)lJj o-h{k + l) fori>j 

for I <i,j < J, where we set crj(O) = 0, and 

I 

B{k) = 

0 \ 
<Ti(A;+l) 

CTi(A; + l)®a2(fc + l) 

\ai{k + 1) ® a2{k + 1) ^ )aj^i{k + l)J 

for k > 0. An element Bj{0) denotes the time it takes the first customer from 
entering the system until reaching station j , c.f. Lemma 1.4-3. Notice that A{k) 
is reducible. 

Example 1.5.1 and Example 1.5.2 model sequences of departure times from 
the queues via a max-plus recurrence relation and a model for beginning of 
service times is given in Example 1.5.3. We now turn to another important 
application of max-plus linear models: waiting times. 
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Example 1.5.4 Consider the open tandem network described in Example 1.5.3. 
Let Wj{k) be the time the fc*'' customer arriving at the network spends in the 
system until the beginning of her/his service at station j . Then, the vector of 
waiting times W{k) = {Wi{k),..., Wj{k)) follows the recurrence relation 

W{k + 1) = A{k) ® C{ao{k + 1)) ® W{k) ® B{k), k>0, 

with W{0) = ( 0 , . . . , 0) and C{r) a matrix with diagonal entries —r and all other 
entries equal to e, see Section 1.4.4-

Taking J = I, the above recurrence relation for the waiting times reads 

W{k + 1) = cri(fc) ® {-ao{k + 1)) ® W{k) ® 0 

= max(cri(A;)-o-o(A: + l ) + W^(A;), 0) , A; > 0 , 

with (Ti(0) = 0, which is Lindley's equation for the actual waiting time in a 
G/G/1 queue. 

If we had letx{k) describe departure times at the stations, c.f. Example 1.5.2, 
then W{k) would yield the vector of sojourn times of the A;*'' customer. In other 
words, Wj{k) would model the time the k*'^ customer arriving at the network 
spends in the system until leaving station j . 

In the above examples the positions which are equal to s are fixed and 
the randomness is generated by letting the entries different from e be random 
variables. The next example is of a different kind. Here, the matrix as a whole is 
random, that is, the values of the elements are completely random in the sense 
that an element can with positive probability be equal to s or finite. 

Example 1.5.5 (Baccelli & Hong, [7]) Consider a cyclic tandem queueing net­
work consisting of a single server and a multi server, each with deterministic 
service time. Service times at the single-server station equal a, whereas service 
times at the multi-server station equal a'. Three customers circulate in the net­
work. Initially, one customer is in service at station 1, the single server, one 
customer is in service at station 2, the multi-server, and the third customer is 
just about to enter station 2. The time evolution of this network is described 
by a max-plus linear sequence x{k) = {xi{k),... ,X4{k)), where xi{k) is the fc*'' 
beginning of service at the single-server station and X2{k) is the A;"* departure 
epoch at the single-server station; X3{k) is the fc"* beginning of service at the 
multi-server station and X4{k) is the &"* departure epoch from the multi-server 
station. The system then follows 

a;(A; + l) = D2i»x{k), 

where 

Do 

/ a e a' s\ 
a e £ e 
e e € e 

\ £ £ a' £ J 
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Figure 1.9: The initial state of the multi-server system (three customers). 

with x{0) = (0,0,0,0). For a detailed discussion of the above model, see Sec­
tion B in the Appendix. Figure 1.9 shows the initial state of this system. 

Consider the cyclic tandem network again, but one of the servers of the multi-
server station has broken down. The system is thus a tandem network with two 
single server stations. Initially one customer is in service at station 1, one cus­
tomer is in service at station 2, and the third customer is waiting at station 2 
for service. This system follows 

x{k+ 1) = Di ®x{k) , 

where 

Di = 

( a e a' e\ 
a £ e e 
e e a' e 

\e e a' E j 

with a;(0) = (0,0,0,0), see Section B in the Appendix for details. Figure 1.10 
shows the initial state of the system with breakdown. 

Assume that whenever a customer enters station 2, the second server of the 
multi server station breaks down with probability 6. Let A0{k) have distribution 

P{Ae{k)r=Di) = e 

and 

then 

P{Ae{k) = D2) = \ - e , 

xe(k + l) = Ae{k) ® xe{k) 

describes the time evolution of the system with breakdowns. That the above recur­
rence relation indeed models the sample path dynamic of the system with break­
downs is not obvious and a proof can be found in [7]. See also Section 1.5.3.3. 
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Figure 1.10: 
customers). 

The initial state of the multi-server system with breakdown (three 

1.5.3 Sample Path Dynamics 

This section provides the analysis of the sample path dynamic of a queueing 
network. Section 1.5.3.1 introduces a recursive formula describing the departure 
times from queues. From this sample path recurrence relation, we derive in 
Section 1.5.3.2 a max-plus linear model of the departure times in a queueing 
network. The relation between max-plus models for departure times and for 
begin of service times are discussed in Section 1.5.3.3. Finally, in Section 1.5.3.4, 
we study max-plus linear queueing networks for which the structure of the max-
plus model is time independent. 

1.5.3.1 The General Sample Path Recursion 

Consider a queueing network satisfying condition (A). Let Bj denote the buffer 
size of node j and Sj the number of service places, respectively, i.e., node j has 

def 

Pj = Bj + Sj places, where we adopt the convention c»- |-n = oo = n - foo fo r 
n G N. The number of items initially present at node j is rij, with rij < Pj. We 
denote the A;*'' service time at node j by crj{k) and the k*'^ departure epoch at 
j by Xj{k). In particular, for k < mm{nj,Sj), crj{k) is the residual service time 
of an item initially in service at j . For technical reasons, we set Xj{k) = e for 
fc<0. 

At node j initially rij items are present. Therefore, the item that is the first 
to arrive at j only finds a service place if the (max(l -I- Uj — 5,-, 0))*'' departure 
from j has taken place. Indeed, if rij — Sj < 0, then the first arriving item finds 
a service place upon arrival. If rij — Sj > 0, the arriving item has to wait for a 
service place. From FCFS follows that this place only becomes available if the 
(1 + rij — SjY^ departure has taken place. More general, the m*^ item arriving 
at j cannot be served before the (max(m -I- rij — Sj, 0))*'' departure has taken 
place. We now let d{j, k) denote the arrival number of the A;*'' item departing 
from j , where we set d{j,k) = 0 if the /c*'' item departing from j is initially 
present at j . Then, the k^^ item departing from j can only be served at j if 
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departure 
c{j,k) = d{j,k) + nj-Sj (1.29) 

has taken place. If the k*^ item departing from j initially resides at a service 
place at j (where we assume rij > Sj), we set c{j,k) = 0, and if this item was 
in position m in the initial queue at j , we set c{j, k) — m — Sj. We call c(j, k) 
the service index. For example, if j is an infinite server, i.e., Sj — oo, then 
c(j, k) — —00 for all k such that the A;*'* item departing from j was not initially 
present at j ; which means that all items find a service place upon arrival. If the 
network is open, we set c(0, A;) = fc — 1 for all k, in words: the fc*'' interarrival 
time is initiated by the {k — 1)** arrival. 

We now consider the arrival process at j more closely. Let the A;*'' item 
departing from j be constituted out of the items which triggered the {ai{j^ k)Y'^ 
departure from i G A{j, k). If the item was initially present at j , set aj{j, fc) = 0 
and A{j,k) = {j]. Then, the item that constitutes the k*'^ departure from j 
arrives at j at time 

aj{k)-ma,yi{xi{ai{j,k)) : ieA{j,k)) 

= 0 Xi{ai{j,k)) (1.30) 
ieAU,k) 

and we call ai{j, k) the arrival index. If the network is open, we set ai(0, k) = e 
for all i and all k, which is tantamount to assuming that the source does not 
have to wait for arrivals. 

FCFS queueing discipline implies that the service of the A;*'* item departing 
from j starts at 

I3j{k) = xaa.x.{aj{k),Xj{c[j,k))) 

= aj{k) ®Xj{c{j,k)) 

^'=^ 0 Xi{ai{j,k))®Xj{c{j,k)). (1.31) 
ieAiJ,k) 

Let the item triggering the fc*'' departure from j receive the {s{j, A;))*'' ser­
vice time at j . We call s(j,k) the service-time index. For example, if j is a 
single-server node, then the FCFS queueing discipline impHes s{j,k) = k. If the 
network is open, we assume s(0, k) = k, that is, the A;"* arrival occurs upon the 
completion of the A;*'' interarrival time. Utilising (1.31), the service completion 
time of the A:*'' item departing from j is given by 

lj{k) = Pj{k)+ajis{j,k)) 

= I3j{k)®aj{s{j,k)) 

(1.31) 
0 Xi{ai{o, k)) ® Xj{c{j, k)) ® aj{s{j, k)) . (1.32) 

\ieA(j,k) I 

In order to determine the departure epochs at j , we have to study the resequen-
cing and the blocking mechanism. 
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First, we consider the resequencing mechanism. If j is a resequencing node, 
then finished items can only leave the node when all items that arrived at the 
node before have been served completely. Let Pj{k) be the time when the fc*'' 
item departing from j is ready to leave the node. Furthermore, let a{j, k) be 
the arrival number of the item that triggers the /c*'' departure at j . For k < rij, 
we associated numbers 1.. .nj to the rij items initially present, so that a{j,k) 
is defined for all A; > 1. The index a{j, k) counts the arrivals after possible join 
operations. The set of all items arriving prior to the k*'^ item departing from j 
is given by 

{k' : a{j,k')<aij,k)} 

and the A;*'' item departing from node j is ready to leave node j at 

Pj{k) = lj{k)<S> 0 Jjik'). 
k'e{l:a{j,l)<a{j,k)} 

We now set 
7^(i,fc) = {k' : a{j,k')<a{j,k)} 

and call TZ{j,k) the resequencing domain. Note that k G Tl{j,k). If j is no 
resequencing node, then 7l{j,k) = {k}. The resequencing mechanism can then 
be expressed through 

Pjik) = © yjik') 

' = ' ^ 0 I 0 Xiiai{j,k'))®xMJ,k'))\»^Mhk')).{1.33) 
k'e'R.U,k)\ieAU,k') J 

We now turn to the blocking mechanism. At node j ' there are initially riji 
items present. Therefore, the first Pji — rij/ items arriving at j ' certainly find a 
place at node j ' . However, in general, the m*'' arriving item finds only a place 
at f if the (m — {Pj' — nj'))*'' departure from j ' has taken place. Let the A;*'' 
departure from j trigger the {dj'{j,k)y^ arrival at j ' . Then, the A;"' departure 
from j can only take place if the {dji{j, k) — {Pji — nji)Y^ departure from j ' has 
taken place. We call 

hj>{3,k) = dy{j,k) - {Pj> -nj>) 

the blocking index. If the right-hand side of the above equation is smaller than 
zero, then the A;*'' departing item from j will never be blocked. For example, if 
/ has infinitely many places, then bji{j, k) = —oo for all j and k. Therefore, the 
A;*'' departure epoch at j satisfies 

Xj{k) < max {pj{k), max {xi[ bi{j, k)) : i € B{j, k))) 

= Pj{k)(B 0 Xi{hi{j,k)). (1.34) 
i€B(j,fc) 
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If the network is open, we set bi{0, k) = e for all i and all k, which is tantamount 
to assuming that the source cannot be blocked. 

Combining (1.34) with (1.32) yields the fc*'' departure time from j ; and we 
obtain the following general recurrence relation for the departure times in a 
queueing network: 

® 0 ( 0 Xi{ai{j,k'))®xj{c{j,k'))UaMJ,k')),{^-35) 
k'e-R.U,k)\ieA(j,k') / 

for j < J. We call the above recurrence relation the general sample-path formula 
(GSPF). It will provide the basis of our further analysis. 

Definition 1.5.1 We say that the GSPF is of order M{k) if the right-hand side 
of (1.35) contains at most the values x{k),x{k — 1 ) , . . . ,x{k — M{k)). Further­
more, we say that the GSPF is of finite order if 

M = sup{M(fc) : A; € N} < 00 . 

The next lemma provides structural conditions for finiteness of the order of 
the GSPF. 

Lemma 1.5.1 Consider a queueing network satisfying condition (A). If the 
network admits no routing and no internal overtaking, and if all resequencing 
queues have only finitely many service places, then the associated GSPF is of 
finite order. Moreover, for all j < J, we obtain for the arrival index 

aiU, k) = {k- nj)lk>nj , for i e A{j) , 

for the service index 

c{j,k) = [k - Sj)lsj<k , 

for the service-time index 
s{j,k) = fc, 

for the resequencing domain 

n{j,k) = {k,...,k-Sj + \)r\n 

and for the blocking index 

biij, k) = k-{Pi- m), forie B{3) . 

If the network is open, we obtain for all k and alii < J 

c{0,k) = k - l , s{0,k) = k and ai{0,k) = e = bi{0,k) . 
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Proof: Internal overtake-freeness implies that items leave the nodes in the same 
order as they arrive at them. In particular, the first nj departures from j are 
triggered by the rij items initially present at j , which implies ai{j,k) = 0 for 
k < rij. Consider the case k > Uj. Under FCFS items are served in the order of 
their arrival. Therefore, the /c"* item departing from j triggered the (k — rijf^ 
arrival at j . Under 'no routing' each departure from the nodes i € A(j) causes 
an arrival at j . Therefore, the {k — n.jY'^ arrival at j corresponds to the (fc-rij)*'' 
departure from i £ A(j), which gives 

FCFS implies that the items are served in the order of their arrival which is, by 
internal overtake freeness, the order in which the items depart. Therefore, the 
first Sj items departing from j can immediately receive a service place, which 
gives 

c(i,k) = 0, ioT k< Sj . 

If Uj > Sj, then for Uj > k > Sj, the /c*'' item departing from j is initially at a 
waiting place k — Sj at j . The definition of c{j, k) therefore implies 

c(i, k) = k — Sj , for Sj < k < rij . 

For k > meix{nj,Sj), the A;*'' item departing from j constitutes the (fc — n^)*'* 
arrival at j , that is, d{j, k) = k — rij in the defining relation (1.29). This yields 

c(j, k) = k — Sj for rij < k . 

Combining these results yields 

c{j,k) = {k-Sj)lsj<k • 

Internal overtake-freeness together with FCFS implies that the /c*'' item de­
parting from j is also the item that initiated the /:*'' service time at j , that is, 
s{j,k) = k. 

We now turn to the resequencing domain. The items leave the node in the 
same order as they arrive at it. For k < Sj, the fc*'' item departing from j can 
only leave the node if the items with departure number k' < k are completely 
serviced, that is, 

nij,k)=-{k'\k' <k}, k<Sj. 

Consider the item that triggers the (Sj + 1)** departure from j . This item could 
only be serviced at j because a free service place was available. We assumed 
that there is no internal overtaking, so this departure was triggered by the first 
departure from j . Hence, the {Sj + I) ' ' ' item can only be delayed by the items 
that arrived before and are still in service, that is, by the items with departure 
numbers 2,... ,Sj. This gives 

niJ,Sj + l) = {2<k' <Sj + l}. 
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Induction with respect to k completes the proof. 
Eventually, we deal with the blocking index. The k*^ item departing from 

j might possibly split up and require a free place at each node i G B{j). 'No 
routing' implies that the k*'^ departure from j constitutes the fc*'' arrival at 
i 6 B{j). Therefore, di{j, k) in the definition of bi{j, k) equals k. 

From the particular form of the indices follows that the GSPF is of finite 
order, which completes the proof. D 

Example 1.5.6 (Example 1.5.1 cont.) Consider the closed tandem queueing 
system, that is, all nodes have infinite capacity Pj = oo and initially one item 
resides at each node, that is, Uj = 1 for j < J • This network satisfies condition 
(A) and Lemma 1.5.1 implies ai{k,j) = c{j,k) = k — l,fork > 2, and ai{k,j) = 
c(ji^) = 0, for k = 1. Furthermore, TZ{j,k) = {k}, s{j,k) — k and bi{j,k) — 
—00 for all j and k. In particular, for nodes j , with 2 < j < J, we obtain 
•^U) = {j " 1}> whereas for node 1 we have A{1) = {J}. The GSPF now reads 

Xj{k)=Xj^i{k - l)®Xj{k - 1) (gi crj(fc), (1.36) 

for j < J and fc G N, where we let xo{k) = xj{k). We can write (1.36) in 
vectorial notation. In order to do so, we set 

M'-i))« = {:̂ <"i; i= j orie A{j) , 

This yields the matrix given in (1.24). Consequently, (1.36) reads 

x{k + 1) = A{k)®x{k) , 

for /c e N. 

E x a m p l e 1.5.7 Consider a GI/G/2/oo resequencing queue, that is. Si = 2 
and Pi = oo. Let the system be initially empty. This system satisfies condition 
(A) and Lemma 1.5.1 implies c(l,/c) = k — 2, for k > 3, and c{l,k) = 0, for 
k = 1,2. Furthermore, s{l,k) = ai{l,k) — k, bj(l,A;) = —oo for all j and k. 
The resequencing domain is given by TZ{j,k) = {A;, A; — 1} for k >2. Then the 
GSPF reads 

xi{k) = ({xo{k - l)®xi{k - 3)) ® ai{k - I)) 

®({xo{k)®Xi{k-2)) (Siai{k)] , 

for 3 < J. 

Example 1.5.8 (Example 1.5.2 cont.) Consider the open tandem queueing 
system again, that is, all nodes have infinite capacity Pj = oo and the system 
starts empty, that is, Uj = 0 forj < J. This network satisfies condition (A) and 
Lemma 1.5.1 implies ai{k,j) = k and c{j,k) = k — 1, for k > I. Furthermore, 
TZ{j, k) = {k}, s{j, k) = k and bi{j, k) = —oo for all j and k. In particular, for 
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'O 

Figure 1.11: The initial state of an open tandem system with a multi-server 
station. 

nodes j , with I < j < J, we obtain A{j) = {j — 1], where node 0 represents the 
source. The GSPF now reads 

Xj(k)=Xj^i{k) ® Xj{k — 1) ® cFj{k). (1.37) 

forj < J and fc 6 N. Note that x{k) occurs on both sides of the above recurrence 
relation. This is different from the situation in Example 1.5.6, where in the 
corresponding recurrence relation (1.36) x{k) occurs only on the right-hand side. 
However, in the following section we provide the means for transforming (1.37) 
into a vectorial form. 

Example 1.5.9 Consider the following open queueing system. Let queue 0 re­
present an external arrival stream of customers. Each customer who arrives at 
the system has to pass through station 1 and 2, where station 1 is a single-server 
station with unlimited buffer space and station 2 is multi-server station with 3 
identical servers and unlimited buffer space. We assume that the system starts 
empty, i.e., ni = 0 = n2- Figure 1.11 shows the initial state of the network. 

Provided that the service times at station 2 are deterministic, this network 
satisfies condition (A) and Lemma 1.5.1 implies ai{k,j) = k, for k > 1. Fur­
thermore, TZ{j,k) = {k}, s{j,k) = k and bi{j,k) = —oo for all j and k. Fur­
thermore, c{l,k) = k — 1 and c(2,k) = fc — 3. In particular, for nodes j , with 
1 < j < J , we obtain A{j) = {j — 1}, where node 0 represents the source. The 
GSPF now reads 

xo{k)=xo{k - 1) ® ao{k) , 

xi{k)=[xo{k) ® Xi{k - 1)) (gicri(/c) , 

Xi{k)®X2 ik-3)) (1.38) 

for k &N, where a^ denotes the service time at station 2. Note that, like in the 
previous example, x{k) occurs on both sides of the above recurrence relation. 
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In the subsequent section we will show how a GSPF of finite order can be 
algebraically simplified by means of max-plus algebra. 

1.5.3.2 The Standard Max-Plus Linear Model 

In this section we transform (1.35) into a standard max-plus linear model. In 
particular, we will show how a GSPF of finite order can be transformed into a 
first-order GSPF. 

In what follows we assume that the GSPF is of finite order. We now define 
J X J dimensional matrices Am{k), where 0 < m < M, with 

[A^[k))ji — ' 

'ajisij, k')) if ai{3, k') = k- m, for i € A{j, k') W k' e n{j, k), 
or, if c{j, k') = k — m, for k' € Tl{j, k) , 

0 if 6j(j, k) = k — m, for i G B{j, k) , 
e else, 

(1.39) 
cf. equation (1.6) which is the Petri net counterpart of the above definition. 
Then, recurrence relation (1.35) reads 

M 

x{k) = ^ Am{k) ® x{k - m). (1.40) 
m=0 

In what follows, we will transform (1.40) into a recurrence relation of type 
x{k + 1) = A{k) ® x{k), where we follow the line of argument in Section 1.4.2. 

If AQ{k) is a lower triangular matrix, then a finite number p exists, such that 

Alik) = 0 4 W -
i=0 

where Aglk) denotes the i*'' power of Ao{k), see (1.5) for a definition. We now 
turn to the algebraic manipulation of (1.40). Set 

M 

b{k) = ^ Am{k) iS> x{k - m) , 
T n = l 

then (1.40) reduces to 

x{k) = Ao{k) ® x{k) e b{k) . (1.41) 

For fixed A;, the above equation can be written a; = yl <8i a; © b. It is well known 
that X = A* (S)b solves this equation, see Theorem 3.17 in [10]. Therefore, (1.9) 
can be written 

x{k) = A*o{k)®b{k), 

or, more explicitly, 

M 

x(k) = A*o{k) ® ^ Arriik) ® x{k - m) . (1.42) 
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The difference between (1.40) and (1.42) is that the latter contains no O"'-
order recurrence relation, that is, x(k) occurs only on the left-hand side of the 
equation. 

As a next step we transform (1.42) into a first-order recurrence relation. In 
order to do so, we set 

x{k) = ix{k),x{k - 1),... ,x(k - M + 1))'^ 

and 

A{k - 1) 

fA*o{k)®Ai{k) A*o{k)®A2{k) 
E £ 

£ E 

• Al{k) ® AM{k)\ 
S 

\ S £ ••• E 

Then, (1.40) (and therefore (1.35)) can be written 

x{k) = A{k- l)®x{k- 1) , 

or, in standard form, 
x{k-it 1) = A{k) ®x{k) . (1.43) 

The above recurrence relation is the standard max-plus linear representation 
of the departure times in a queueing network. 

Definition 1.5.2 We call a queueing network max-plus linear if the departure 
times from the queues admit a representation like in (I.4S). 

Example 1.5.10 (Example 1.5.6 cont.) For the closed tandem network, we 
obtain M = \ and j4o(fc) = £. Hence, V4Q(A;) = E and the standard max-plus 
linear model reads x{k -f- 1) = ^i(fe) ® x{k), where Ai{k) is the same as the 
matrix A{k) as defined in (1.24). 

Example 1.5.11 (Example 1.5.8 cont.) The open tandem queueing system 
is of order M = 1 and we obtain 

( e e 

(Ti(fc) e 

Ao{k) = 

£ 

e aj-i{k) e e 
£ <Tj{k) e J 
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Figure 1.12: The open tandem queueing system at initial state rij 

l<j<J. 
= 1 for 

and 
(ao{k) e 

e cri(fe) £ 

Ai{k) 

\ 

e crj_i(/c) e 
e e (rj(k) J 

For this particular example, p, cf. (1.8), turns out to he J +1, which gives 

Al{k) = 0A*,(fc). 

Let A{k) he defined as in (1.26), then it is easily checked that 

A{k-l)^®iioAi{k)®Mk)-

Example 1.5.12 We now consider the open tandem queueing system in Ex­
ample 1.5.2 hut with initial population rij = 1 for I < j < J. Figure 1.12 shows 
the initial state of the tandem network, where customers are represented by the 
symbol '•'. 
This yields Ao{k) = £, which implies Aglk) = E and 

fao{k) £ 
aoik) (Tiik) 

Ai{k) = 

\ 

(1.44) 

£ aj-.2{k) cTj_i{k) £ 

for k > 1. Therefore, we obtain x{k + 1) = A{k) ^ x{k) as our max-plus model, 
with A{k) = Ai{k+1). Comparing (1.44) with (1.26) illustrates the sensitivity 
of the max-plus model with respect to the initial population. 
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E x a m p l e 1.5.13 ( E x a m p l e 1.5.9 cont . ) For the open tandem system with 
multi-server station we obtain 

Ao = 

A2 = S, and 

Ai = 

A, 

(To(fc) £ £ 
e ai{k) £ 
e e e 

We compute AQ{k) as follows 

Al{k) = 
e £ e 

(Ti(/c) e £ 

We now set 

and 

A{k- 1) = 

x{k) = (x{k),x{k - 1), x{k - 2) f 

(Al{k)®Ai{k) £ Al{k)®A3{k)\ 
[ E S S 
\ S E S J 

I o-o(fe) £ £ 
o-o(fc) ® ai(fc) cri(fc) e 

(To(A;) ® (Ti(fc) ® era o'i(fc)®cr2 £ 

v 
E 

S 

s 

E 

and obtain 

£ £ £ \ 

£ £ £ 

£ £ <72 

S 

s J 

x{k + l) = A{k)<g>x{k) 

as max-plus model for the system, which recovers recurrence relation (1.38). 

E x a m p l e 1.5.14 We consider the system in Example 1.5.9 again, but with ini­
tially one customer in service at station 1 and 3 customers in service at station 
2. Figure 1.13 shows the initial state of the tandem network, where customers 
are represented by the symbol '•'. 
Computing like in the previous example, this system follows 

x{k-h 1) = A{k)<Six{k), 
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Figure 1.13: The initial state of the open tandem system with a multi-server 
station and 4 initial customers. 

with 

A{k-1) = 

fao{k) £ £ 
(Ti{k) (Ti(fc) £ 

£ £ £ 

E 

£ £ £ \ 

£ £ £ 

£ (72 0'2 

V £ E E ) 

and obtain 
x{k + 1) = A{k) iSix{k) 

as max-plus model for the system. The above recurrence relations reads in ex­
plicit form 

xo{k)=xo{k - 1) ® cTo{k), 

xi{k)=(xo{k - 1) ® xi{k - 1) j ® <Ti(fc) 

X2{k)=(xi{k - Z) e X2{k - 3)^ ®(J2 , 

for A; 6 N. Comparing A{k) with A{k) in Example 1.5.9 (respectively, the above 
set of equations and (1.38)), illustrates the influence of the initial population on 
the max-plus model. 

We obtain the following characterization of the max-plus linearity of a queue­
ing network. 

Theorem 1,5.1 Consider a queueing network satisfying (A). The queueing 
network is max-plus linear if and only if the associated GSPF is of finite order. 

Proof: The GSPF can be transformed into matrix form of fixed dimension if 
and only if the GSPF is of finite order. D 

The following example shows that Markovian routing implies that the GSPF 
is not of finite order and thereby rules out max-plus linearity. 
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Example 1.5.15 Consider a queueing network with three nodes. Upon leaving 
node 1 items move independently of everything else with probability p > 0 to node 
2 and with probability 1—p > 0 to node 3. For the sake of simplicity, assume that 
initially no item is present at node 2. The k*^ departure from node 2 depends 
on the {k + m)"* departure from node 1 if exactly m items have been directed 
to node 2, that is, ai{2,k) = k + m; and the probability that ai{2,k) = k + m 
is equal to p*'(l — p)™. Hence, all numbers m have positive probability, which 
implies that with positive probability ai(2, k) = k-\-m for all m G N. Therefore, 
the GSPF is not of finite order. 

1.5.3.3 Departure Times vs. Beginning of Service Times 

We developed max-plus linear models for departure times from queues. Fol­
lowing the same line of argument one can derive a similar recurrence relation 
for the beginning of service times at queues. Using such a beginning of service 
time based approach, a queueing network would be called max-plus linear if 
the beginning of service times at the queues admitted a representation like in 
(1.43), cf. Definition 1.5.2. The difference between a max-plus linear recurrence 
relation for departure times and beginning of service times is illustrated by 
Example 1.5.2 together with Example 1.5.3. 

Apart from modeling beginning of service times rather than departure times 
one might include both, beginning of service times and departure times, into 
the state-vector; see Example 1.5.5. In the following we provide our standard 
max-plus model for the system in Example 1.5.5. Recall that X2{k) denotes the 
&*'' departure time from the single-server station and that X4{k) denotes the A:*'* 
departure time from the multi-server station. Applying Lemma 1.5.1, the GSPF 
for the system with no breakdown reads: 

X2ik +1) = {X2{k) © X4{k)) ® a 

X4{k + 1) = {x2{k - 1) ® Xi{k - 1)) ® a' , 

for fc > 0, where we set 

a;2(0) = 0:4(0) = 0 and a;2(—1) = X4{~1) = e . 

The GSPF for the system with breakdown reads: 

(1.45) 

X2{k +1) = {x2{k) ® X4(fc)) ® a 

X4(k + 1) = {X2{k - 1) ® X4{k)) igi a', 

for fc > 0, and (1.45). Both GSPF's are of order M = 2. In order to obtain the 
standard max-plus linear model, we therefore have to enlarge the state-space. 
This leads for the system with no breakdown to the following standard max-plus 
linear model: 

fx2{k + l)\ 
X4{k+1) 

X2{k) 
0:4 (fc) 

(a a z £ \ 
£ £ a' & 
e £ £ e 

\£ e £ £ ) 

( \ X2{k) 
X4{k) 

X2{k-1) 
\x4ik - 1)J 
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for k > 0. The standard model for the system with breakdown reads: 

fx2ik + l)\ I a a e e\ / X2{k) \ 
X4{k + 1) _ e a' a' e X4{k) 

X2{k) e s s e X2{k — 1) 
\ X4{k) J \e e e e/ \x4{k — 1)J 

for fc > 0. Note that the quahtative aspects of the model have not been altered: 
the matrix for the system with no breakdown is still irreducible, whereas the 
matrix for the system with breakdown is reducible. 

The main difference between the models in Example 1.5.5 and the one above 
is that the above state-vectors comprise fc"* and {k + 1)*' departure times, 
whereas in the original models the state-vectors only contained fc*'' departure 
and beginning of service times. However, to model a randomly occurring break­
down, we require a model whose state space only contains time variables refer­
ring to the same transition, which is achieved by the original model. Hence, the 
standard max-plus linear model is not always appropriate and providing a good 
model remains an art. 

1.5.3.4 Models v̂ îth Fixed Support 

For stability or ergodicity results the mere existence of a max-plus linear model 
is not sufficient. For this type of analysis one requires a certain structural insen-
sitivity of the transition matrix A{k) of the standard max-plus model, namely, 
that A{k) has fixed support; see Definition 1.4.1. 

As we will explain in Chapter 2, if a queueing network is max-plus linear, 
then Kingman's subadditive ergodic theorem applies, and we obtain the ergod­
icity of the maximal growth rate max{xi{k),... ,xj{k))/k. If A{k) has fixed 
support, then the ergodicity of the maximal growth rate implies that of the in­
dividual growth rates Xj{k)/k (which are related to the inverse throughput of a 
station in a queueing networks). With respect to applications, ergodicity of the 
individual growth rate is of key importance. Unfortunately, the fixed-support 
condition imposes strong restrictions on the class of queueing networks for which 
ergodicity and stability results can be obtained. More specifically, a max-plus 
linear representation of departure times via a matrix with fixed support has the 
following interpretation: The fc*'' beginning of service at j is always triggered by 
the {k — 1)*' departure(s) of the same set of nodes, that is, these nodes do not 
vary over time. 

In what follows we will give a necessary and sufficient condition for a queue­
ing system to be max-plus linear with fixed support. 

Theorem 1.5.2 Consider a queueing network satisfying (A). The network is 
max-plus linear with fixed support if and only if the network admits no routing, 
no internal overtaking and all resequencing nodes have only finitely many service 
places. 

Proof: If the network admits no routing, no internal overtaking and if all re-
sequencing nodes have finitely many service places, then Lemma 1.5.1 implies 
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that the corresponding GSPF is of finite order. Hence, Theorem 1.5.1 apphes 
and max-plus linearity follows. The position of the service times as well as that 
of the zeros in the matrices in recurrence relation (1.39) only depends on the 
arrival, service and blocking indices and the resequencing domain. The special 
form of these indicators, as stated in Lemma 1.5.1, implies that the resulting 
matrix has fixed support. 

Now suppose that the queueing network is max-plus linear with fixed sup­
port. Then the interactions between departure epochs are time invariant, which 
rules out routing, internal overtaking and a resequencing node with infinitely 
many service places. D 

Example 1.5.16 Consider a GI/G/s/oo system satisfying (A) with s > 1. If 
the system is a resequencing queue, then it is internal overtake-free and a max-
plus linear model exists, see Example 1.5.7. On the other hand, if the system 
does not operate with resequencing, then, in general, this system, is not max-plus 
linear because it admits internal overtaking. However, if the service times are 
deterministic, then internal overtaking is ruled out and a max-plus linear model 
exists. 

In the following section we will give a simple characterization of networks 
with fixed support. 

1.5.4 Invariant Queueing Networks 

Let /C be the countable set of items moving through the network, that is, we 
count the items present in the network. The items initially present in the network 
can be easily counted. Furthermore, if, during the operation of the network, 
items are generated via a fork mechanism, we count them as new ones, as we 
do for items arriving from the outside. 

In what follows we describe the path of an item through the network. There 
are two kinds of new items: those created by the external source, and those that 
result when an existing item splits up into (sub) items. In the latter case, the 
original item ceases to exist. On the other hand, items also vanish if they leave 
the network or if they are consumed by a join mechanism in order to generate 
a new (super) item. The route of item k € IC is given by 

w{k) = {w{k,l),...,w{k,S{k)), 

where S{k) e N U {oo} is called the length of w(A;). The elements w{k,n) 6 
{ 1 , . . . , J } are called stages of route w{k). If an item k that is created by a 
fork operation is immediately afterwards consumed by an join operation, we set 
w{k) = (0) and take S{k) = 0 as the length of the route of k. 

All nodes out of the set J{k) = {w{k,n) : n < S{k)} are visited by item k. 
More precisely, the first visit of k at node j G J{k) is represented by 

Vj{k, 1) = {k,m) with m = inf{n e N : w{k,n) = j} . 
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In a similar way, we find the pair Vj{k,2) which represents k'a second visit at 
j . In total, k visits j Vj{k) times and we set Vj{k,m) = —1 for all m > Vj{k). 
Furthermore, we set Vj{k,m) = —1 for all m > 1 and j ^ J{k). 

We denote the number of the arrival triggered by k at node w{k,n) by 
A{k,n). In the same way, we let D{k,n) denote the number of the departure 
triggered by item k at node w(fc,n). Then, k's first visit to node j triggers the 
{A{vj{k,l))Y'^ arrival at j and the (Z)(wj(fc, 1)))*'' departure from j . Consider 
two items: k and k', and a node j with j e J{k)r\J{k'). We say that the distance 
between k and k' upon their first arrival at j is given by 

\A{vi{k,\))- A{v^{k',\))\. 

Let ^(—1) = oo, then 

dj{k,k';m) = \A{vj{k,m)) - A{vj{k',m))\ 

is the distance between k and k' upon their m*'' visit at node j . If A; visits 
node j at least m times but k' does not, then dj{k,k';m) = oo. On the other 
hand, if k and k' both visit j less than m times, then dj{k,k';m) = 0. For 
0 < dj{k,k';m) < oo, there are exactly dj{k,k';m) arrivals between the arrival 
of k and k' on their m*'' visit at j . 

We can now easily detect whether two items overtake each other at a certain 
node j : for k, k' with j € J{k) n J{k') we set 

fj{k,k';m) = \A{vj{k,m)) - D{vj{k,m)) - (A(vj{k',Tn)) - D{vj{k',m))j\ , 

and otherwise zero. Then, fj(k, k'; m) is greater than zero if k and k' do overtake 
each other during their m"" visit. We now call 

5j{k,k';m) - dj{k,k';m) + oolf.(k,k';m)>o 

the distance between k and k' at j . The distance equals oo if either only one of 
the items visits j m times or if the items overtake each other during their m"* 
visit. If the distances between all items visiting a node j are finite, then the 
items arrive at the node in exactly the same order in which they departed from 
it. 

Definition 1.5.3 We call a queueing network invariant if for all k,k' G /C, 
TO € N and for all j < J 

5{k,k') = 5j{k,k';m) . 

The invariance of a queueing network is tantamount to viewing the distances 
between items as constant. For example, if item k and k' both visit node j and 
k' is three places ahead of k, that is, there are two items between k' and k, then 
there are exactly two items between k and k' at every node these two items 
visit. On the other hand, if k visits a node k' does not visit, then they have no 
common node on their route. This gives rise to the following: 
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Theorem 1.5.3 Provided the queueing network satisfies (A), then the queueing 
network is invariant if and only if it admits no routing, no internal overtaking 
and all resequencing nodes have only finitely many service places. 

Combining the above theorem with Theorem 1.5.2, we can summarize our 
analysis as follows. 

Corollary 1.5.1 A queueing network satisfying (A) is max-plus linear with 
fixed support if and only if it is invariant. 

Remark 1.5.3 Consider the network shown in Figure 1.5. Formally, this net­
work is invariant and satisfies condition (A). Hence, Corollary 1.5.1 implies 
that the network is max-plus linear. However, this reasoning is not correct! To 
see this, recall that we assumed for our analysis that the networks contain no 
isolated fork or join operations, see Remark 1.5.2. Since the network in Fig­
ure 1.5 contains an isolated join operation. Corollary 1.5.1 does not apply to 
this network. However, we may consider the equivalent network, as shown in 
Figure 1.6, that falls into our framework. This network is not invariant and 
applying Corollary 1.5.1 we (correctly) conclude that the networks in Figure 1.6 
and Figure 1.5, respectively, are not max-plus linear. 

1.5.5 Condition (A) Revisited 
This section provides a detailed discussion of assumption (A). Section 1.5.5.1 
discusses the assumption that the routing is state independent. Section 1.5.5.2 
discusses queueing disciplines other than FCFS. Blocking schemes other than 
blocking-after-service are addressed in Section 1.5.5.3. Finally, Section 1.5.5.4 
treats batch processing. 

1.5.5.1 State-Dependent Dynamics 

In max-plus linear models we have no information about the physical state of 
the system in terms of queue lengths. Therefore, any dependence of the service 
times on the physical state cannot be covered by a max-plus linear model. 
For example, in many situations items are divided into classes. These classes 
determine the route and/or the service time distribution of items along their 
route. Due to lack of information about the actual queue-length vector at a 
node, we cannot determine the class of the item being served, that is, classes 
may not influence the service time or the routing decisions. Hence, a queueing 
network is only max-plus linear if there is only one class of items present. For 
the same reasons, state-dependent queueing disciplines, like processor sharing, 
cannot be incorporated into a max-plus linear model. 

For the sake of completeness we remark that in some cases class-dependent 
service times can be incorporated into a max-plus linear model. For example, 
in a GI /G/1/oo system with two customer classes where Fi is the service time 
distribution of class 1 customers and F2 is the service time distribution of class 
2 customers, and where an arriving customer is of class 1 with probability p. 
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we can consider a new service time distribution G which is the mixture of Fj 
and F2 with weights p and (1 — p), respectively. Then the resulting single-class 
model mimics the dynamic of the queue with two classes and is max-plus linear. 
However, apart from such model isomorphisms, multi-class queueing systems 
are not max-plus linear. 

Another example of such a model isomorphism is the round robin routing 
discipline: A node j sends items to nodes i i , . . . , i „ ; the first item is sent to 
node zi, the second to node i^ and so on; once n items have left the node, the 
cycle starts again. As Krivulin shows in [78], a node with 'round robin' routing 
discipline can be modeled by a max-plus linear model if this particular node is 
replaced by a subnetwork of n nodes. 

1.5.5.2 Queueing Disciplines 

State-dependent queueing disciplines like processor sharing are ruled out by 
max-plus linearity as explained in Section 1.5.5.1. This extends to queueing 
disciplines that require information on the physical state of the system, like the 
last come, first served rule. 

For the sake of completeness, we remark that Baccelli et al. discuss in Sec­
tion 1.2.3 of [10] a production network where three types of parts, called pi to 
P3, are produced on three machines. It is assumed that the sequencing of part 
types on the machines is known and fixed. Put another way, the machines do not 
operate according to FCFS but process the parts according to a fixed sequence. 
Consider machine Mi which is visited by, say, parts of type p\ and P2- If the 
sequencing of parts at machine Mi is (pi,P2)i then machine Mi synchronizes the 
pi and p2 arrival stream in such a way that it always first produces on a pi part 
and then on a p2 part. Hence, the fc*'' beginning of service on a p2 part equals 
the maximum of the (fc —1)** departure time of a p i part and the fc"* arrival time 
of a p2 part. This system is max-plus linear even though the machines do not 
operate according to FCFS and there are several types of customers. However, 
it should be clear from the model that the fact that this system is max-plus 
linear stems from the particular combination of priority service discipline and 
classes of customers (parts). 

1.5.5.3 Blocking Schemes 

We have already considered blocking after service of manufacturing type. An­
other frequently used blocking scheme is blocking before service, that is, an item 
is only processed if a place is available at the next station. Under blocking before 
service, the basic recurrence relation (1.35) reads 

Xj{k)= ^ Xi{hi{j,k))®aj{s{j,k)) ® ^ Xi{ai{j,k)) ® cjj{s{j,k)) 

i€BU,k) ieAU,k) 

®xj{cij,k))®ajis{j,k)) , (1.46) 

for j < J and A; 6 N. The standard (max-t-)-model follows just as easily. We 
remark that blocking schemes considered here can be extended by including 
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transportation time between nodes, see [14]. 
Another extension of the blocking mechanism is the so-called general blocking 

mechanism: items that have been successfully processed are put in an output 
buffer; they leave the output buffer when they find a free place at the next node. 
This scheme allows the server to process items even though the node is blocked. 
See [54] for more details. 

For max-plus linear systems with fixed support, variable origins are ruled 
out, that is, each arrival originates from the same node or, if j is a join node, 
from the same set of nodes. Therefore, it is not necessary to assume a particular 
blocking discipline like FBFU for systems without variable origins. 

1.5.5.4 Batching 

Consider a GI/G/1/oo system with batch arrivals. For the sake of simplicity, 
assume that the batch size equals two. Hence, the first batch is constituted out 
of the first two arriving items. More generally, the k*^ batch is constituted out 
of the items that triggered the (2A;)*'' and (2fc — l)* ' arrival at the queue. This 
implies that the arrival index ao{k,j) equals 2k and is therefore not bounded. 
In other words, the order of the GSPF is not bounded for the above system. 
Therefore, no standard max-plus linear model exists. 

1.5.6 B e y o n d F i x e d Support : P a t t e r n s 

In this section we explain how new max-plus linear models can be obtained from 
existing ones through a kind of stochastic mixing. 

So far, we considered the initial population and the physical layout of the 
queueing network as given. Consider, for the sake of simplicity, the GSPF of a 
queueing network with fixed support as given in (1.36). The GSPF depends via 
the arrival and blocking index on the initial population ( n i , . . . ,nj). There is no 
mathematical reason why Uj should not depend on k. For example, Baccelli and 
Hong [7] consider a window flow control model where the initial population is 
non-unique. In particular, they consider two versions of the system, one started 
with initial population n^ = {n\,..., rij) and the other with n^ = (nf, . . . , n^). 
The idea behind this is that the version with v} is the window flow system 
under normal load whereas the n^ version represents the window flow control 
under reduced load, that is, with fewer items circulating through the system. 
Both versions of the system are max-plus linear with fixed support, that is, 
there exists A^{k) and A^(k), so that x^(k + 1) = A^{k) ® x^{k) represents 
the time evolution under n^ and x'^{k + 1) = A^lk) ® x^{k) that under n^. 
Now assume that after the fc*'' departure epoch the system runs under normal 
load with probability p and under reduced load with probability 1 — p. Define 
A{k) so that P{A{k) = A^k)) = p and P{A{k) = A^{k)) = 1 - p, then 
x{k -t- 1) = A{k) ® x{k) models the window flow control scheme with stochastic 
change of load. In particular, A{k) fails to have fixed support, which stems from 
the fact that the support of A^{k) and A'^{k) doesn't coincide. 
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Another example of this kind is the multi-server queue with a variable num­
ber of servers modeling breakdowns of servers. See Example 1.5.5. Observe that 
the multi-server queue with breakdowns fails to have fixed support. 

Consider a sequence {^{k) : A; G N}, like in the above example, and assume 
for the sake of simplicity that A{k) has only finitely many outcomes. Put another 
way, {A{k) ; A; G N} is a stochastic mixture of finitely many deterministic max-
plus linear systems. We say that {A{k) : A; e N} admits a pattern if A'̂  > 1 exists 
such that with positive probability A = A{k + N) ^ • • • ̂  A{k + 1), where A 
is an irreducible matrix of cyclicity one and its eigenspace is of dimension one. 
As we will explain in Section 2.5, if {A[k) : A; G N} admits a pattern, then x{k) 
converges in total variation towards a unique stationary regime. Moreover, it 
can be shown that x{k) couples in almost surely finite time with the stationary 
version. In other words, the concept of a pattern plays an important role for the 
stability theory of systems that fail to have fixed support. 

This approach extends the class of systems that can be analyzed via max-
plus stability theory. However, mixing max-plus linear systems in the above 
way is not straightforward and for a particular system we have to prove that 
the way in which we combine the elementary systems reflects the dynamic of 
the compound system. See Section B in the Appendix where the correctness of 
the multi-server model with breakdowns is shown. Furthermore, the existence 
of a pattern requires that a finite product of possible outcomes of the transition 
dynamic of the system results in a matrix which satisfies certain conditions. 
Unfortunately, this property is analytic and cannot be expressed in terms of the 
model alone. 

We conclude with the remark that, even though the fixed support condition 
can be relaxed, we still need a GSPF that is of finite order to obtain a max-plus 
linear model. In other words, we are still limited to systems satisfying condition 
(A), that is, the discussion in Section 1.5.5 remains valid. 

1.6 Bounds and Metrics 

Our study is devoted to max-plus linear systems. Specifically, we are interested 
in the asymptotic growth rate of a max-plus linear system. A prerequisite for 
this type of analysis is that we provide bounds and metrics, respectively, on 
IKmax- Section 1.6.1 discusses bounds, which serve as substitutes for norms, 
for semirings. In Section 1.6.2, we turn to the particular case of the max-plus 
semiring. In Section 1.6.3, we illustrate how Rmax can be made a metric space. 

1.6.1 Real-Valued Upper Bounds for Semirings 

To set the stage, we state the definition of an upper bound on a semiring. 

Definition 1.6.1 Let R be a non-empty set. Any mapping || • || : i? ^ [0, oo) is 
called an upper bound on set R, or, an upper hound on R for short. We write 
II • \\R for such an upper bound when we want to indicate the set on which the 
upper bound is defined. 
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Let TZ = {R, ®, ®, e, e) he a semiring. If\\'\\isan upper bound on the set R 
such that for any r,s €. R it holds that 

| | r ® s | | < llrll + | |s | | and | |r <8> s|| < | |r | | + | |s | | , 

then II • II is called an upper bound on semiring TZ, or, an upper hound on Tl for 
short. 

On Rmax we introduce the following upper bound 

A r\ for r G (—00,00) 
0 otherwise. 

That II • II© is indeed an upper bound on Rmax follows easily from the fact that 
for any x,y £ Rmax it holds 

a;©y < | |a ;0 j / | | e <||a;||® + II2/II®, 0 = ® , ® . (1.47) 

The upper bound 11 • 11® is extended to matrices in the obvious way: for A G Rmlx 
let 

| |A| |e = max{| | .4y| |e : 1 < i < / , 1 < j < J } 

Note that | |f ||® = ||-E||® = 0 and || • H® thus fails to be a norm on Rmlx-
Let yl be a random element in R^ax defined on a probability space (f2, A, P). 

We call A integrable if 

Elll^ll®] < 00. 

Hence, A is integrable if 

E[lA,,>e\Aij\] < o o , l < i < / , l < i < J . 

In words, integrability of a matrix is defined through integrability of its non-e 
elements. If A is integrable, then the expected value of A is given by the matrix 
E[A] with 

fEUl) = inU,,>eAij] for P{Aij ^ e) > 0, 
^ ^ ^'"^ \e for P{Aij = e) = 1, 

for 1 < i < / , 1 < j < J . Note that if x e K'̂  and A G R(^J. are integrable and 
A is a.s. regular, then ^ ® a; is integrable. 

We show that || • ||® is indeed an upper bound. 

Lemma 1.6.1 For A e W^J^ and B G Rmalc'̂ , 

|M®B||e < M||® + ||5||®. 

Furthermore, for A G W^J, and B G K^^;^, 

\\A®B\\^ < |M| |® + | | B | | e . 
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Proof: Observe that Aij < \\A\\^. Making use of the fact that © is idem-
potent, we calculate as follows: 

/ J 

\\A®B\\^ = 0 0 | | ( ^ ® S ) y | | e 

i= i j = i fc=i 

(1 .47) -̂  '̂  M •''• II 

^ 0 0 | 0IMifcll®®l|5^ill®|L 
j = l j=l fc=l 

^ 00||0iMi i®®ii5i i®|L 

= IMI|®®||5||e 
= IMI|® + | | 5 | | e . 

The proof of the second part of the lemma follows from the same line of argument 
and is therefore omitted. D 

An immediate consequence of the definition of || • H^ is that the || • ||®-value 
of a matrix A is always bounded by the sum of all possible sub-matrices of A. 
The following corollary gives a precise statement. 

Corollary 1.6.1 For A € M'^H, B 6 K^,x/ and C = {A,B) e W^J, x R^,x,^ 
it holds that 

| |C | | e< |Hle + ||B||®. 

1.6.2 General Uppe r Bounds over t he Maoc-Plus Semiring 

In the previous section, we required that an upper-bound maps the elements 
of a given semiring on [0, oo). We now extend the usual order relation on R to 
Kmax by setting e < a: for all x £ Rmax' Recalling that e is the zero-element of 
Kmax, the natural extension of Definition 1.6.1 to the max-plus semiring is as 
follows. 

Definition 1.6.2 A mapping || • || : Rmax —* K^ax is called a max-plus upper 
hound if 

• for any r € Rmax it holds \\r\\ > s, 

• for any r,s & Rmax is holds 

| | r ® s | | < | |r | | ® | | s | | and Ik ® s|| < | |r | | ® | | s | | . 

We introduce on Kmlx the following max-plus upper bounds: 

IMIImin = ' min m i n ^ y 
i<i<i i<j<J 
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and 

def 
max max An = fln (-ft Au . 

A direct consequence of the above definitions is that for any A 6 K^lx 

IMIImin < ll^llmax 5 

The main difference between |m|min, ||^||max and | |^| |® is that ||A||min, ||^||max 
can have negative values whereas the definition of || • H^ implies that for any A 
it holds that | |^| |© > 0. More precisely, if Aij G [-00,0) for all elements (i, j ) , 
then Pllmax < \\A.\\®. Hence, ||A||min, ||^||max and | |^| |® are max-plus upper 
bounds but only \\A\\^ is an upper bound. For example, let 

then 

||vl||max = - 1 < 4 = l l ^ l l a -

On the other hand, if all finite elements of A are greater than or equal to 0 and 
if A has at least one finite element, then ||yl||max = 11-̂ 11©- For example, let 

then 

Ii^||max = 4 = P i l e . 

Lemma 1.6.2 For A e K^^^^ and B € R^^^, 

| M ® - B | | m a x < | | ^ | | m a x ® | | - B | | , „ a x , 

and 

I M ® S | U i n > | M | | m m ® | | - B | U i n . 

Furthermore, for A G MJ^J^ and B G R^^x' 

| M ® 5 | U a x < | M | | m a x ® | | 5 | U a x 

and 

I M ® B | | m i n > I M I I m i n ® l | S | L i n . 
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Proof: Observe that Aij < \\A Umax- Calculation yields 

I J 

I J K 

t = l j=l fc=l 

J K 

<00II^IUax®-Bfci 
j=l fc=l 

J K 

= | | ^ | | m a x ® 0 0 S f c j 

j = l fc=l 

< | M | | m a x ® | | S | | n , a x -

For II • jlmin we elaborate on the fact that Aij > ||>l||min and calculate as follows 

11^ ®-B||min= rain mm {A® B)ij 

K 

= min min ef t Aik ® -Bfc, 
i < i < / i < j < J ^ ^ •' 
— fc=i 

> min 0 | | ^ |U in (8 )Bfc , -
-•'- fc=l 

= M | | m i n ® m i n 0 B f c j 

- • ' - fc=i 

>IMI|min®l|5|Uin. 

The proof of the second part of the lemma follows from the same line of argument 
and is therefore omitted. D 

For A,B ^ I^maxi let yl — 5 denote the component-wise difference, that is, 
{A — B)ij = Aij — Bij, where we set {A — 5 ) y = e if both Aij and By are 
equal to e. Recall that the positions of finite elements of a matrix A G R^^'' is 
given by set of edges of the communication graph of A, denoted by T){A). More 
precisely, Aij is finite if {j,i) G 2?(J4). 

Lemma 1.6.3 Let A,B £ R^lx ^^ regular and let x,y be J dimensional vectors 
with finite entries. If ^^{A) = T){B), then it holds that 

||^(8>a;-B(8)2/||max < M - S|Uax + ||a; - j/|Uax-

Proof: Let j '^(j) be such that 

J 

{A ® x)i = AijA(^i) + XjA(^i) = 0 Aij ® Xj. 
3 = 1 
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and j ^ (i) be such that 

J 

{B ® y)i = i5yB(i) + yjB(i) = 0 By ® j / j . 

Regularity of A and B implies that ^ij/i(t) and BijB(^i-^ are finite. Moreover, the 
fact that the positions of finite entries of A and B coincide implies that AijB^i-^ 
and BijA(j^) are finite as well. This yields 

BijA(i) + VjA^i) < BijB(i) + 2/jB(i). 

Hence, 

AijA(i) + a;j.4(i) - {BijB^i>) + VjB^i)) < AijAf^i) + x^Ai^i) - {BijA(^i) + VjAf^i^). 

Note that for any i 

{A ® a;)i - (B ® 2/)i<yly,4(j) - By.4(i) + a;j-.4(j) - yjA^i) 

<p-B| |max + lk-2/ | Imax-

Taking the maximum with respect to i on the left-hand side of the above formula 
proves the claim. D 

1.6.3 T h e Max-P lus Semiring as a Met r ic Space 

If we want to equip Rmax with a metric, then a natural first choice would be 
d{A,B) = 11^ — B\\Q. Such a definition is to no avail, since Rmax is a semiring, 
and we cannot give meaning to the '-' operation. However, we may equip Rmax 
with a metric through embedding Rmax into [0,oo). We will illustrate this in 
Section 1.6.3.1. 

Elaborating on the projective space, a metric can be introduced that is 
most helpful in studying max-plus linear recurrence relations. This approach is 
presented in Section 1.6.3.2. 

1.6.3.1 Exponential Lifting 

Kmax can be embedded into [0, oo) in the following way. We map x € Rmax, 
where x is different from e, onto e^ and for x = e, we set e^ = e~°° = 0. With 
the help of the mapping e^ we are able to introduce the following metric on 
yixJ 
max 

d{A,B) =^max (^e'"'̂ >'(^*J-»'̂ ) - e™"^'^'^"^'^) : l < i < / , l < j < j ) 

= max(|e'^'^ - e^'^| : l < i < / , l < j < J ) . 

For A € R^1;J, let e-* G R^^'^ be given through (e'^)ij = e^«, for 1 < i < 7, 
I < j < J. With this notation, we obtain 

| | e ^ | L = d ( ^ , 5 ) . (1.48) 
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Consider the metric space (Kmlxi "^('i "))• ^ sequence {A{k)} of matrices in R^^x 
converges to a matrix A in Rm^xi ^^ symbols A{k) -^ A, if and only if for any 
element {i,j) it holds that 

Hence, if Aij € R, then 

lim d{Aij{k),Aij) = 0 . 
fc--*oo 

lim Aij{k) = Aij 
fc—>oo 

and if Aij = e, then Aij{k) tends to —oo for k towards oo. 

E x a m p l e 1.6.1 The mapping ||-||max : Rmlx ~^ l̂ max is continuous with respect 
to the topology induced by the metric d{-, •). To see this consider A{k) £ ttmlx> 
for fc e N, with 

A{k) -i A 

for some matrix A G R^lx • Continuity of the maximum operation then yields 
that 

l i m | | ^ ( f c ) | | m a x = l l ^ l l m a x , 
K—»oo 

which implies continuity of\\- ||max- More specifically, recall that C ( J 4 ) is the set 

of edges of the communication graph of A indicating the positions of the finite 

elements of A. Hence, A{k) -+ A implies 

\/{j, i) e V{A) : lim Aij{k) = Aij e R, 

whereas for {j, i) ^ T>{A) we have 

lim Aij{k) = —oo. 
fc—>oo 

Provided that V{A) contains at least one element, continuity of the maximum 
operation yields that 

lim ||A(A;)|Uax= lim 0 ^y(/c) = 
«—>oo «—»oo ^^ 

U,i)€V(A) 

In case 'DiA) = 0, we obtain again by continuity of the maximum operation that 

lim | |^(fc)||max = - 0 0 = l l ^ l l s . 
K—*00 

Apart from the || • Umax upper bound, what kind of mappings are continuous 
with respect to the metric d( ' , ' ) on Rmax? Iii the following we give a partial 
answer by showing that any continuous mapping from R to R that satisfies 
a certain technical condition can be continuously extended to Rmax. Let g be 
a continuous real-valued mapping defined on R. We extend g to a mapping 
g •• Rmax -* Rraax by setting 

gix) = g(x), xeR, (1.49) 
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and 
§ (£ )= lim g{x), (1.50) 

X — * — O O 

provided that the limit exists. In particular, we set g{x) = e if 

limsup g{x{k)) = liminf p(a;(A;)) = —oo. 
k—>0O K—»00 

The following lemma shows that g is again a continuous mapping. 

Lemma 1.6.4 Let g : R —» R 6e continuous and let g be defined as in (1-49) 
and (1.50). Then g is continuous with respect to the topology induced by the 
metric d{-; •). 

Proof: Let x{k) € Rmax be a sequence such that x{k) —» a; for a; £ Rmax- If 
X y^ £, then 

g{x{k)) -» ^ ( x ) = lim d{g{x{k)),g{x)) 
k-~*oo 

— iJui /'emax(9(a;(fc)),g(a:)) _ ^mm{g{x{k)),g{w))\ 

fc~+oo \ / 
_ l i j j j /'gmax(g(a;(fc)),9(x)) _ ^min(g(x{k)),g(x))\ 

fc—*oo \ / 

Since, g{-), e^, max and min are continuous as mappings on R, the above equality 

implies that g{x{k)) —* g(x), which shows the continuity of g{-) on R. 
Now let a; = e and assume that x{k) e R for A; 6 N. Convergence of x(k) 

towards e implies that x{k) tends to —oo for k towards oo. By (1.50), it follows 

lim g{x[k))= lim g{x{k)) 
/c—»oo k—KX) 

=g lim x{k) , 
\k—*oo J 

which yields continuity of g(-) in e. D 
We conclude this section with some thoughts on the definition of the upper 

bound II • II0. In the light of the above analysis, one might be tempted to 
introduce the bound 

infill = l|e^ll® * '= '*r f (A,£) . 

Unfortunately, ||| • ||| is not an upper bound on Rmax- To see this, consider the 
matrix 

11 
^ = V i i 

For this particular matrix one obtains 

I H J e = 1 and | | |^ | | | = eV 
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and 

A®A= (^11 

implies that 
\\A®A\\^ = 2 = ll^lle + I H I ® , 

| | | ^ ® y l | | | = 6^ > 2 e ^ = infill + | | | y l | | | . 

Hence, ||| • ||| fails to be an upper bound on Rmax (that || • ||® is indeed an upper 
bound on Rmax has been shown in Lemma 1.6.1). 

1.6.3.2 A Metric on the Project ive Space 

On IPR'^ we define the projective norm by 

IWlip ='||x|Ux-||x|Uin, xex. 
It is easy to check that ||X||]p does not depend on the representative X. Fur­
thermore, | |X | | p > 0 for any X e IPR*' and 

||X||]p = 0 if and only if X = 0 , 

that is, ll^llip = 0 if and only if for any X & X \i holds that all components 
are equal. For /x e R, let /u • X be defined as the component-wise conventional 
multiplication of X by ii. Thus fi • X = jiX, which implies 

| | / i - Z | | p - | / ^ | - | | X | | p , / L i G R . X e l P R ^ 

In the same vein, for X,Y £ M.^', let X -t- y be defined as the component-wise 
conventional addition of X and Y, then || • | |p satisfies the triangular inequality. 
To see this, let X , F € IPR'^, then, for any X 6 X and Y eY, 

\\X + Y\\p = maxiXi + Yi) - miniXi+ Yi) 
i i 

<max(max(X^) + Fj) - min(min(X,)-I-Yi) 
i i i 3 

= maxXj — minXj + max(Fi) — min(yi) 
j j i i 

= | |X | |p + | | F | | p . 

Hence, || • ||]p is indeed a norm on PR'^. We extend the definition of || • | |p to 
IPR^ax by adopting the convention that a; — £: = o o f o r a ; ^ e and e — e = 
£ + 00 = 0. However, || • ||]p fails to be a norm on PRj^j^j^: for any X e Rmax 
with at least one finite element and at least one element equal to e it holds that 
| |X | | p = oo, whereas a norm is by definition a mapping onto R. 

On IPR'', we define X — F as the component-wise conventional difference 
of X and Y. With this definition, we obtain a metric dp(-, •) on IPR'^ in the 
natural way: for X £ X and Y EY set 

dTp(X,Y) = | | X - F | | p , 
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or, more explicitly, 

dp(x,Y) =\\x - y|Uax - \\Y - x|Ui„ 
=max(X,- ~ Yj) — mm{Xj — Yj) 

3 3 

=max(K,- - Xj) — min(i^- - Xj), 
3 3 

where for the last equality we have used that maxj{Xj — Yj) = — minj(Yj — Xj). 
The metric d]p(-, •) is called projective metric. We extend the definition of dip(', •) 
to PR;^jjx by adopting the convention that e—x — e, for x ^ e. Note that d\p{-, •) 
fails to be a metric on PR;^^^. To see this, let Y be such that for y € F it holds 
that all components of Y are equal to e. Then, for any X G P R ' ' , it follows 
that dTp{X,Y) = 0 . 



Chapter 2 

Ergodic Theory 

Ergodic theory for stochastic max-plus linear systems studies the asymptotic 
behavior of the sequence 

x{k + 1) = A{k) ® a;(A;) , A; > 0 , 

where {A{k)} is a sequence of regular matrices in R'^^ and a;(0) = XQ G R^ax-
One distinguishes between two types of asymptotic results: 

(Type I) first-order limits 

l i m ^ , 
fc—»oo k 

(Type II) second-order limits of type 

(a) lim (xi{k) — Xj{k)) and (6) lim (xj{k-\-1) — Xj{k)) . 

A first-order limit of departure times is an inverse throughput in a queu­
ing network. For example, the throughput of the tandem queuing network in 
Example 1.5.2 can be obtained from 

h 
lim 

fc->oo xj{k) 

provided that the limit exists. 
Second-order limits are related to steady-state waiting times and cycle times. 

Consider the closed tandem network in Example 1.5.1. There are J customers 
circulating through the system. Thus, the /c*'' and the {k 4- J )"" departure from 
queue j refers to the same (physical) customer and the cycle time of this cus­
tomer equals 

Xj {k -{- J) — Xj (fc) . 

Hence, the existence of the second-order limit Xj{k -I-1) — Xj{k) implies limit re­
sults on steady-state cycle times of customers. For more examples of the model­
ing of performance characteristics of queuing systems via first-order and second-
order expressions we refer to [10, 77, 84]. 
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The chapter is organized as follows. Section 2.1 and Section 2.2 are devoted 
to limits of type I. Section 2.1 presents background material from the theory of 
deterministic max-plus systems. In Section 2.2 we present Kingman's celebrated 
subadditive ergodic theorem. We will show that max-plus recurrence relations 
constitute in a quite natural way subadditive sequences and we will apply the 
subadditive ergodic theorem in order to obtain a first ergodic theorem for max-
plus linear systems. Limits of type Ila will be addressed in Section 2.3, where 
the stability theorem for waiting times in max-plus linear networks is addressed. 
In Section 2.4, limits of type I and type Ila will be discussed. This section is 
devoted to the study of max-plus linear systems {x{k)} such that the relative 
difference between the components of x(fc) constitutes a Harris recurrent Markov 
chain. Section 2.5 and Section 2.6 are devoted to limits of type lib and type I. 
In Section 2.5, we study ergodic theorems in the so called projective space. In 
Section 2.6, we show how the type I limit can be represented as a second-order 
limit. 

2.1 Deterministic Limit Theory (Type I) 

This section provides results from the theory of deterministic max-plus linear 
systems that will be needed for ergodic theory of max-plus linear stochastic sys­
tems. This monograph is devoted to stochastic systems and we state the results 
presented in this section without proof. To begin with, we state the celebrated 
cyclicity theorem for deterministic matrices, which is of key importance for our 
analysis. 

Let A e Rmax 1 if a; e Rmax ^ 1 * ^ at least one finite element and A € Rmax 
satisfy 

X0X = A^x , 

then we call A an eigenvalue of A and x an eigenvector associated with A. Note 
that the set of all eigenvectors associated with an eigenvalue is a vector space. 
We denote the set of eigenvectors of A by V^(^). The following theorem states 
a key result from the theory of deterministic max-plus linear systems, namely, 
that any irreducible square matrix in the max-plus semiring possesses a unique 
eigenvalue. Recall that a;®" denotes the n*'' power of a; € Kmaxi see equation 
(1.5). 

Theorem 2.1.1 (Cohen et al. [33, 34] and Heidergott et al. [65]) For any irre­
ducible matrix A € Rmajf, uniquely defined integers c{A), a {A) and a uniquely 
defined real number A = A(yl) exist such that for all n > c{A): 

In the above equation, \{A) is the eigenvalue of A; the number c{A) is called 
the coupling time of A and cr(^) is called the cyclicity of A. 

Moreover, for any finite initial vector x{0) the sequence x{k + \) = A® x{k), 
/c > 0, satisfies 

lim ^ = A , 1 < j < J . 
fc—»oo k 
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The above theorem can be seen as the max-plus analog of the Perron-
Probenius theorem in conventional linear algebra and it is for this reason that it 
is sometimes referred to as 'max-plus Perron-Probenius theorem.' We illustrate 
the above definition with a numerical example. 

Example 2.1.1 Matrix 

A = 

fl £ 2 e\ 
lees 
e e e e 

\e e 2 £ J 

has eigenvalue X{A) = 1 and coupling time c{A) = 4. The critical graph of A 
consists of the circuits (1,1) and ((1,2), (2,3), (3,1)), and A is thus of cyclicity 
a-{A) = 1. In accordance with Theorem 2.1.1, ^"+^ = 1 ® A"', for n > 4 and 

lim i^l®l2k = 1, 
k fc—>oo 

1 < i < 4, 

for any finite initial condition XQ . For matrix 

B = 

( \ £ 2 £\ 
\ £ £ £ 
£ e 2 e 

\e e 2 £ ) 

we obtain \{B) = 2, coupling time c{B) = 4. The critical graph of B consists of 
the selfloop (3,3), which implies that (T{B) = 1. Theorem 2.1.1 yields B^'^^ = 
2 (gi B"-, forn>A and 

lim 
[B'' (g> xo)j _ 

for any finite initial condition XQ. Matrix 

2, 1 < j < 4, 

C 

I £ £ 1 £\ 
3 £ £ £ 

£ e £ e 
\£ £ 7 £ J 

has eigenvalue A(C) = 3.5, coupling time c{C) = 4. The critical graph of C 
consists of the circuit ((3,4), (4,3)), which implies thata{C) = 2. Theorem 2.1.1 
yields C"+2 = 3.5®^ ® C " = 7 ® C", / o r n > 4 and 

lim 
{C' ® XQ)J 

fc—too k 

for any finite initial condition XQ, 

= 3.5, 1 < i < 4, 
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Let A G Kmajf ^^'^ recall that the communication graph of A is denoted 
by Q{A). For each circuit f = ((i = 11,12), {i2,h), • • •, {in,in+i = «)), with arcs 
(«m>«m+i) in ^(•^) for 1 < 7n < n, we define the average weight of ^ by 

-. n 1 '^ 

T n = l m = l 

Let C{A) denote the set of all circuits in Q{A). One of the main results of 
deterministic max-plus theory is that for any irreducible square matrix A its 
eigenvalue can be obtained from 

A = max w(£) . 
«ec(A) 

In words, the eigenvalue is equal to the maximal average circuit weight in QiA). 
A circuit ^ in Q{A) is called critical if its average weight is maximal, that is, 

if w(^) = A. The critical graph of A, denoted by S'^{A), is the graph consisting 
of those nodes and arcs that belong to a critical circuit in Q{A). Eigenvectors of 
A are characterized through the critical graph. However, before we are able to 
present the precise statement we have to introduce the necessary concepts from 
graph theory. 

Let {E, V) denote a graph with set of nodes E and edges V. A graph is 
called strongly connected if for any two different nodes i G. E and j & E there 
exists a path from i to j . For i,j € E, we say that iTZj if either i = j or there 
exists a path from i to j and from j to i. We split {E, V) up into equivalence 
classes {Ei,Vi),.. •, {Eq,Vq) with respect to the relation TZ. Any equivalence 
class {Ei,Vi), 1 < i < q, constitutes a strongly connected graph. Moreover, 
{Ei,Vi) is maximal in the sense that we cannot add a node from {E,V) to 
[Ei, Vi) such that the resulting graph would still be strongly connected. For 
this reason we call {Ei, Vi),..., {Eg, Vg) maximal strongly connected subgraphs 
(m.s.c.s.) of {E, V). Note that this definition implies that an isolated node or a 
node with just incoming or outgoing arcs constitutes a m.s.c.s. with an empty 
arc set. We define the reduced graph, denoted by {E, V), hy E = { 1 , . . . , g} 
and {i,j) 6 V" if there exists {k,l) e V with k € Ei and I G Ej. The cyclicity 
of a strongly connected graph is the greatest common divisor of the lengths 
of all circuits, whereas the cyclicity of a graph is the least common multiple of 
the cyclicities of the maximal strongly connected sub-graphs. As shown in [10], 
the cyclicity of a square matrix A (that is, (T{A) in Theorem 2.1.1) is given by 
the cyclicity of the critical graph of A. A class of matrices that is of importance 
in applications are irreducible square matrices whose critical graph has a single 
m.s.c.s. of cyclicity one. Following [65], we call such matrices primitive. In the 
literature, primitive matrices are also referred to as scsl-cycl matrices. For 
example, matrices A and B in Example 2.1.1 are primitive whereas matrix C 
in Example 2.1.1 is not. 

Example 2.1.2 We revisit the open tandem queuing system with initially one 
customer present at each server. The max-plus model for this system is given in 
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Example 1.5.12. Suppose that the service times are deterministic, that is, aj = 
a-j{k) fork G N andO < j < J. The communication graph of A = Ai{k) consists 
of the circuit ((0,1), ( 1 , 2 ) , . . . , (J, 0)) and the recycling loops (0,0), (1,1) to 
{J, J). Set 

L — {i : aj — max{(Ts : 0 < i < J } } . 

We distinguish between three cases. 

• If 1 = \L\, then the critical graph of A consists of the node j E L and the 
arc {j,j). The critical graph has thus a single m.s.c.s. of cyclicity one, A 
is therefore primitive. 

• / / 1 < |L| < J, then the critical graph of A consists of the nodes j € L 
and the arcs (j,j), j € L. The critical graph has thus \L\ m.s.c.s. each of 
which has cyclicity one and A fails to be primitive. 

• / / \L\ = J, then the critical graph and the communication graph coincide 
and A. The critical graph has a single m.s.c.s. of cyclicity one, and A is 
primitive. 

Let A 6 K^ax b^ irreducible. Denote by Ax the normalized matrix, that 
is, the matrix which is obtained by subtracting (in conventional algebra) the 
eigenvalue of A from all components, in formula: {A\)ij = Aij — A, for 1 < 
hj ^ J- The eigenvalue of a normalized matrix is e. For a normalized matrix of 
dimension J x J we set 

A+':^'^{A,r. (2.1) 
fc>i 

It can be shown that A'^ = Ax® (Ax)'^ ® • • • ® {Ax)'^. See, for example, Lemma 
2.2 in [65]. The eigenspaces of A and Ax are equal. To see this, let e denote the 
vector with all components equal to e; for x € V{A), it then holds that 

X^x = A®x 44- X = A^x - A ® e <=> e^x =Ax®x. 

The following theorem is an adaptation of Theorem 3.101 in [10] which charac­
terizes the eigenspace of Ax- We write A.i to indicate the i*'' column of A. 

Theorem 2.1.2 (Baccelli et al. [10]) Let A be irreducible and let A'^ be defined 
as in (2.1). 

(i) If i belongs to the critical graph, then A'\ is an eigenvector of A. 

(a) For i,j belonging to the critical graph, there exists a eR such that 

a®A+=^A+j 

if and only ifi,j belong to the same m.s.c.s. 
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(in) Every eigenvector of A can be written as a linear combination of critical 
columns, that is, for every x € V{A) it holds that 

X = 0 ai®Ati, 

where G'^{A) denotes the set of nodes belonging to the critical graph, and ai G 
' ^max ^''^^f^ ^^^^ 

Example 2.1.3 

© «. 
i6G<=(^) 

Consider the matrix 

- ( ? 

> ^ e . 

t) 
A is irreducible with eigenvalue 0 and the critical graph of A consists of the 
nodes {1,2} and recycling loops (1,1) and (2, 2). The critical graph has thus two 
m.s.c.s., namely, the recycling loops (1,1) and (2,2), and <y{A) = 1. For A it 
holds that 

A = A" = Ax = A+ , n e N . 

Theorem 2.1.2 yields the following representation of the eigenspace of A: A 
vector X e Rmax belongs to V{A) if and only if numbers ai,a2 G Rmax exist with 
ai ® ffl2 7̂  e (in words: at least one of two numbers is finite) such that 

see (1.3) for the definition of scalar multiplication of vectors. 

Let A e Kma:̂  ^^ irreducible with cyclicity one. Recall that we call v, w G 
E;^ax linear dependent if an Q G R exists such that v = a®w. We say that the 
eigenvector of A is unique if any two eigenvectors of A are linear dependent, or, 
equivalently, if there exists v € R'̂  such that 

V{A) = {a®w : a G R} . 

This can conveniently be expressed by saying that the eigenspace of A reduces 
to a single point in R;^ax-

An important consequence of Theorem 2.1.2 is that eigenvectors of prim­
itive matrices are unique. Primitive matrices enjoy the additional properties 
that, for sufficiently large k, A'' <^ x becomes an eigenvector of A for any finite 
vector X. These properties of primitive matrices will be of use in Section 2.5 and 
Section 2.6. The precise statement is as follows. 

Corollary 2.1.1 If A G ̂ majf ^^ '^ primitive matrix, then the eigenvector of A 
is unique. 
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Let x[k + 1) = J4 ® x{k), for k >0, and let x{0) be a finite vector. Then, it 
holds that x{k) G V{A) for k > c{A). Specifically, it holds that 

x{k + l) = X®x{k), k>c{A), 

where A denotes the eigenvalue of A, and consequently, for k > c{A), it holds 
that \\x{k)\\r = a for some finite constant a. 

Proof: Because A is primitive, the critical graph has only one m.s.c.s. Thus, by 
Theorem 2.1.2 (ii), there exists io in the critical graph such that 

A t = Oi ® A.i„ , i e CiA). 

Hence, by Theorem 2.1.2 (iii), any eigenvector v oi A can be written 

v= 0 ai®A+i 

«eG<=(A) 

where 
7 = 0 fli (g) a i e Rmax , 

ieG'iA) 

which establishes uniqueness of the eigenvector. 
We now turn to the proof of the second part of the corollary. Since A is 

primitive, a-{A) in Theorem 2.1.1 is equal to one. This yields for k > c{A): 
4̂*=+! = X0 A'' for any k > c{A). Multiplying both sides of the above equation 

with the initial vector xo concludes the proof. D 
Eigenvalues and eigenvectors of matrices over the max-plus semi-ring can be 

computed in an iterative way. A classical reference is [73]. For more methods 
for computing max-plus eigenvalues and eigenvectors we refer to [10, 65]. A 
recent alternative method based on policy iteration is given in [32], see also 
[65] for a detailed discussion. A general approach for computing cycle times 
(gives eigenvalues only) for so-called min-max-plus systems (an extension of 
max-plus linear systems) is established in [57, 56, 49]. Algorithms for computing 
eigenvalues and eigenvectors of both max-plus and min-max-plus systems can 
be found in [98, 101]. In particular, the algorithm given in [98] yields an upper 
bound for the cyclicity of a matrix in the max-plus semiring. Computing the 
eigenvalue of a matrix A can be achieved in polynomial time. In contrast to 
this, computing the coupling time is NP-hard (in the number of circuits of the 
critical graph), see [25]. Feasible upper bounds for the coupling time can be 
found in [60] and [25]. 
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2.2 Subadditive Ergodic Theory (Type I) 

Subadditive ergodic theory is based on Kingman's subadditive ergodic theorem 
[74, 75] and its appHcation to generalized products of random matrices. We 
start with an elementary result which appears as an exercise in [91]. A sequence 
a — {a„ : n e N} of real numbers is called subadditive if 

ftm+n <an + am , for n, m > 1 . 

If a is subadditive, then an/n has a limit as n —> oo, which may be —oo. To 
see this, note that for given m, any n can be written as n = fc„m + /„, where 
In < rn and fc„ is a multiplier that depends on n. The subadditivity of a implies 

Dividing both sides by n yields 

O n Kn . •*• 

— = —am H a;„ • 
n n n 

Noticing that fc„/n < 1/m and fc„/n -+ 1/m, we have 

lim sup — < — . 
n n m 

Since m is arbitrary, we may take the infimum w.r.t. m over the right-hand side 
and get 

1. On . - Um 
lim sup — < lim mi . 

n n m m 

Therefore, the limit an/n exists (and is equal to liminfn o„ /n) . 
Kingman's [75] result is formulated in terms of subadditive processes. These 

are double indexed processes X = {Xmn '• ITT^JTI e N} satisfying the following 
conditions: 

(SI ) li i < j < k, then Xik < Xij + Xjk a.s. 

(82) For TO > 0, the joint distributions of the process {Xm+in+i : TO < n} are 
the same as those of {Xmn : TO < n} . 

(S3) The expected value g„ = E[Xon] exists and satisfies gn > —en for some 
finite constant c > 0 and all n > 1. 

A consequence of ( S I ) , (S3) and the elementary result given above is that 

A = lim — 
n—*oo 71 

exists and is finite. We can now state Kingman's subadditive ergodic theorem: 
ii X is a subadditive process (that is, ( S I ) , (82) and (S3) hold), then the limit 

^ ,. Xon 
^ = lim 

n—^oo 71 
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exists almost surely, and K[^] = A. Condition (S2), on the shift {Xmn} ~* 
{Xm+in+i}, is a stationarity condition. If all events defined in terms of X that 
are invariant under this shift have probability zero or one, then X is ergodic. In 
this discussed in Kingman [75], the limiting random variable ^ is almost 
surely constant and equal to A. Note that the limit also holds when expected 
values are considered. 

We now turn to homogeneous equations, that is, to max-plus linear systems 
whose dynamic can be described via 

x{k+ 1) = A{k)®x{k) , 

for fc > 0, with a;(0) = xo given. In particular, we write 

x{n+l,xo) = (^A{k)»xo, n > 0 , (2.2) 
fc=0 

to indicate the initial value of the sequence. Recall that e denotes the vector 
with all components equal to e. We set 

Tn—l 

Xnm= ^ A{k)®e 

From this we recover x{k + l , e ) through a;ofc+i = x{k + l , e ) . 

L e m m a 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular and integrable 
matrices in Rj^ax • ^'*en {-||a;„m||min : m > n > 0} and {||a;„m||max ••m> n> 
0} are subadditive ergodic processes. 

Proof: For x,y € R^axi let a; < j / denote the component-wise order. Note 
that X < y implies ||a;||max < ||2/||max; in particular, x < | |a;||max®e, where 
e denotes the vector whose components are equal to e (we refer to (1.3) for 
a definition of the ®-product of a scalar and a vector). Furthermore, for any 
A 6 Kmax it holds that x < y implies A^x < A0y. Combining these statements 
it follows for X e Rj^ax and A G R^ax ^ 

\\A ® xllmax < ||.^ ® (||a;||max ® 6)Umax • (2.3) 

In the same vein, for x e R^ax and A € R^ax ^ 

\\A^x\\ 
min 

>\\A»{\\ (2.4) 
We now show the subadditive property of ||a;„m||n,ax- For 0 < n < p < w, 
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we obtain 

7̂17711 I m a x 

(2.3) 
< 

i—n 

7 7 1 — 1 

i=p 

m —1 

0 ^ ( i ) ® (i|a;„p||max®e) 
i=p 

/ m - l 

Iknpl lmax® <^ A(i) ® e 
\i=p 

m—1 

i-npl Imax + 
i=p 

•^npI Imax ' H-^pTTiUmax i 

which establishes (SI) for Hxnmllmax- The proof that (SI) holds for — ||a; 
as well follows the same line of argument: for 0 < n < p < m, 

nmi rnin 

'^nm\ |min 

(2.4) 
> 

i=n 

m~l 

<^A{i)'S>x, 

m —1 

( g ) ^ ( i ) ® ( | |a;„p|Uin®e) 

/ m - 1 

nin® ^ A{i)®i 

— iFnpHmin + (g) ^(i) ® e 

•̂ riTn mm* which establishes (SI) for —||a;„ 
The stationarity condition (S2) follows immediately from the stationarity of 

{A{k)}. 
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We now turn to condition (S3). We have assumed that each row of A{k) 
contains at least one non-e element, which implies x{k,e) G M.'' for any k. We 
may now prove by induction that x{k,e) is absolutely integrable where we use 
the fact that (i) |min(ffl, 6) | , | max(a,b)| < \a\ + \b\, (ii) A{k) is integrable, and 
that (iii) the initial condition e of x{k, e) is integrable. Prom 

E[||xofc||max] = E[||a;(A;,e)|Uax] (2.5) 

it follows that xok is integrable for any k. Let | | |^ | | | denote the smallest non-£ 
element of ^ (note that (i) and (ii) above imply that E[|||yl(A;)|||] is finite). With 
this definition it is immediate that 

J2n\mm\] <E[iKfe,e)iUx]. (2.6) 
3=0 

Stationarity of {A{k)} implies that E[ |||y4(A;)|||] = c for any k. Integrability of 
A{k) together with the fact that there are at least J finite elements in A{k) 
yields c > —oo. We obtain from (2.6): 

-A;|c|<E[| |x(/e,e)| |„,ax] 

= E[||a;o/c||max] , 

which establishes (S3) for {||a;„m||max : m > l;m > n > 0}. 
We now turn to {—||x„m||min '• m > 1; m > n > 0}. Following the above line 

of argument it holds that, for fc € N, 

E[||a;ofc||min] = E[||a:(A;,e)||min] < oo 

and 

Hence, 

max min J • 
j=Q 

fc-1 

X ^ - E [ | | > l ( i ) | U x ] < E[-\\xok\Un] , 
3=0 

for A; 6 N, and for c = E[ ||v4(l)||max], we obtain 

-\c\k < E[-||a:ofc|Uin], 

which concludes the proof of the lemma. D 
The above lemma provides the means of applying Kingman's subadditive er­

godic theorem to ||a;(A:)||min and ||x(fc)||max, respectively. The precise statement 
is given in the following theorem. 
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Theorem 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular, integrable 
square matrices. Then, finite constants A '°P and A''°* exist, so that for all (non-
random) finite initial conditions XQ : 

^bot def jjj^ ll^(^)ll"'i" < A'̂ P 1|f lim I'^'^^^ll"''^'' a.s. 

fc—>cx) k k—*oo k 

and 

lim \m<mnnn] = A''°* < lim ^E[||:c(fc)|^ax] = A*°P. 
fc—»oo K k~*oo K 

The above limits also hold for random initial conditions provided that the initial 
condition is a.s. finite and integrable. 
Proof: Lemma 2.2,1 applies and subadditivity of ||a;(/e, e)||min and \\x[k, e)||maxi 
respectively, follows. Therefore, Kingman's subadditive ergodic theorem applies 
and the proof with respect to the limit of ||a;(A;, e)||n,in as k tends to oo and the 
limit of ||a;(fc,e)||max as k tends to oo follows. 

It remains to be shown that the limit exists for any finite initial condition. 
To see this note that for any finite initial condition y it holds that: 

\\y\\mm + ||a;(A;,e)||j„ax = l|a;(fc, ||y|| 

min 'o' Gjl jmax 

max 

< ||a:(fc, | | 2 / | | m a x ® e ) | | m a x 

= | | y | | m a x + | | a : (A; ,e) | |max 

(for a proof use the fact that x < y implies A® x < A® y). Thus, 
| | y | |m in + | | a : ( fc , e ) | |max < ||a;(fc, J/) | |max < | |2/ | |max + I |a;(fc, e ) | |max 

and, by similar arguments, 

| | j / | |min + | | a ^ ( ^ i e ) | | m i n < ||a;(fc, 2/)| jmin < l k ( ^ i e ) | | min "r | |y | [max • 

Therefore, for ft > 0, 

Tll2/ | |min + 7: l |a :(A;,e) | |max < rW^ik, y)\\ra2.^ < T l | a ; ( f c , e ) | | m a x + T l ly l lmax 
K K K K rC 

(2.7) 
and 

•rllyllmin + •r||a;(A;,e)||min < •rl|a;(A;,y)||min < T\\x{k,e)\\ram +-\\y\\ma.x • 
rC K K K K 

(2.8) 
Letting k tend to infinity, it follows from (2.7) that the limits of ||a;(A;,e)||inax/^ 
and \\x{k,y)\\ma.x./k coincide. In the same vein, (2.8) implies that the Mmits of 
||a;(fc,e)||n,in/fc and ||a;(A;,2/)||tnin/fc coincide. If, in addition, XQ is integrable, we 
first prove by induction that x{k,xo) is integrable for any A; > 0. Then, we take 
expected values in (2.7) and (2.8). Using the fact that, by Kingman's subadditive 
ergodic theorem, the Hmits of E[||a;(A;,e)||j„ax]/fc and E[||a;(fc,e)||min]/fc as k 
tends to oo exist, the proof follows from letting k tend to oo. D 

The constant A '°P is called the top or maximal Lyapunov exponent of {A{k)} 
and A**"* is called the bottom Lyapunov exponent. 
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Remark 2.2.1 Irreducibility is a sufficient condition for A{k) to be a.s. regular, 
see Remark 1.4-1- Therefore, in the literature. Theorem 2.2.1 is often stated with 
irreducibility as a condition. 

Remark 2.2.2 Note that integrablity of {A{k)} is a necessary condition for 
applying Kingman's subadditive ergodic theorem in the proof of the path-wise 
statement in Theorem 2.2.1. 

Remark 2.2.3 Provided that (i) any finite element of A{k) is positive, (ii) 
A{k) is a.s. regular, and (Hi) the initial state XQ is positive, the statement in 
Theorem 2.2.1 holds for || • ||® as well. This stems from the fact that under con­
ditions (i) to (Hi) it holds that ||^(fe)||max = | |^(^) | le- •''* particular, following 
the line of argument in the proof of Lemma 2.2.1, one can show that under the 
conditions of the lemma the sequence ||a;„m||0 constitutes a subadditive process. 

2.2.1 The Irreducible Case 

In this section, we consider stationary sequences {A{k)} of integrable and irre­
ducible matrices in Rj^ax '^'^^ the additional property that all finite elements 
are non-negative and that all diagonal elements are non-negative. We consider 
x{k + 1) = A{k) ® x{k), k >0, and recall that x{k) may model an autonomous 
system (for example, a closed queuing network). See Section 1.4.3. Indeed, A{k) 
for the closed tandem queuing system in Example 1.5.1 is irreducible. As we 
will show in the following theorem, the setting of this section implies that 
A*°P = A ' ' ° ' , which in particular implies convergence oi Xi{k)/k, 1 <i < J. The 
condition that all finite elements of A{k) are non-negative is not very restrictive 
when working with queuing networks. Here the non-e elements of A{k) represent 
sums of service times at the stations, which are by definition non-negative. In 
contrast, the assumption that all diagonal elements are non-negative (and thus 
different from e) is indeed a restriction as illustrated by Example 1.5.5. The 
following theorem goes back to Cohen [35] and Baccelli et al. [10]. 

Theorem 2.2.2 Let {A{k)} be a stationary sequence of integrable and irre­
ducible matrices in IR âx^ •""^^ '̂̂ '̂ ^ "'^^ finite elements are non-negative and all 
diagonal elements are different from e. Then, a finite constant A exists, so that 
for any non-random finite initial condition XQ: 

fc—»oo k fc—»oo k k~*oo k 

and 

lim l:E[xj{k)] = lim iE[||a;(fc)[|„in] = lim iE[||a;(fe)||„ax] = A, 
K—>00 K K—too K fc—»00 K 

for 1 <i j <: J. The above limits also hold true for random initial conditions 
provided that the initial condition is a.s. finite and integrable. 
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Proof: The existence of the limits (except that for Xj{k)/k) is guaranteed 
by Theorem 2.2.1 and in order to prove the theorem we have to show that 
the component-wise limits (that is, the limit of Xj{k)/k as k tends to oo, for 
1 < i < J ) equal the limits of || • ||min and || • ||max-

Irreducibility of A{k) implies that A{k) has fixed support and the commu­
nication graph of A{k) is thus non-random. We have assumed that all elements 
different from £ are non-negative and all diagonal elements are non-negative. 
Hence, Lemma 1.4.1 applies and 

fc-i 
G(fc)= (g ) A{j), k>J, 

3=k-J 

has all elements larger than or equal to zero for all k. This implies for any 
component j 

Xj{k,e)=^{Gik))ji » Xi{k - J,e) 

J 

> 0 O ® a ; i ( A ; - J , e ) 

=||a;(/c — J,ejilmax , 

for fc > J , which yields 

||a;(fc,e)|Uin > ||a;(fe - J,e) | |„ax • (2.10) 

By (2.10), 

^l|a;(fc,e)||min > ^ l l ^ ( ^ - •^'^) 

which implies 

k-~*oo k k—*oo k 

By Theorem 2.2.1, it holds that A*'"' < A'°P and we have thus shown A^°* = A'°P. 

In other words, setting A = A"""' = A'°P we have shown 

k-~*OD k k—*oo k 

and from 

||a;(A;,e)||max > Xj{k,e) > ||a;(A;,e)||min , l<j<J, 

follows: 

lim £ i i M = A a.s. (2.12) 
fc—»oo k 
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for 1 < j < J . 
Like for the proof of Theorem 2.2.1, we show that the hmits in (2.11) and 

(2.12) are independent of the initial condition. This concludes the proof of the 
first part of the theorem. 

We now turn to the proof of the second part of the theorem. Let A, as defined 
in the first part of Theorem 2.2.2, exist. Then Theorem 2.2.1 yields, 

A = lim •-E[||a;(fc)|Uax] = lim -E[||a;(fc)|Uin] 
fc—>oo K k—too K 

and 

implies 

\m<mr^n] < \nxj{k)] < ^ 

A = l̂im -E[xj(A;)] , ..... l l 
fc—tCX) fc 

for \<j<J.n 
The constant A, as defined in (2.9) in Theorem 2.2.2, is called max-plus 

Lyapunov exponent of the sequence of random matrices {A{k)}. There is no 
ambiguity in denoting the Lyapunov exponent of {yl(fc)} and the eigenvalue of 
a matrix A by the same symbol, since for A{k) = A, for all k, the Lyapunov 
exponent of {j4(/e)} is just the eigenvalue of A. 

R e m a r k 2.2.4 Depending on the sequence {A(k)}, it is sometimes possible to 
replace an element of XQ that is equal to e by a finite element without changing 
the value of x{k), for k > 1. In these cases, Theorem 2.2.2 applies even though 
not all elements of XQ are finite. 

R e m a r k 2.2.5 We say that A,BE Rĵ ĵf have the same structure if any ele­
ment (ij) is either finite in A and B, or, is equal to £ (that is, the arc sets of 
communication graph of A and B coincide). The irreducihility condition in the 
above theorem can be replaced by the following weaker condition. There exists 
a.s. a sequence {m„} with lim„_>oo rn„ = oo, such that A{k + m„), 1 < fc < J , 
have the same structure and are irreducible. 

R e m a r k 2.2.6 / / the initial condition XQ is positive, then the statement in 
Theorem 2.2.2 holds for \\ • \\Q, as well. See Remark 2.2.3 for details. 

Computing exactly, or approximating the Lyapunov exponent of products 
of matrices over the max-plus semiring is a long standing problem [35, 96, 93, 
10, 36, 46, 11, 50, 21, 8, 7, 42]. Only for special cases exact formulae are known. 
Upper and lower bounds can be found in [14, 18, 53, 28, 29]. In [12] approaches 
are described which use parallel simulation to estimate the ratio Xj{k)/k for 
large fc. When it comes to discrete event systems, Lyapunov exponents measure 
the cycle time, i.e., the average time between two events. A classical reference on 
Lyapunov exponents of products of random matrices is [24] and a more recent 
one, dedicated to non-negative matrices, is [66]. 
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Consider the system in Example 1.5.1. If we assume that (i) the service 
times cTj(k) are i.i.d. with finite mean for each j and (ii) the sequences {crj{k)} 
[1 < j < J) are mutually independent, then Theorem 2.2.2 applies (indeed, 
{A{k)} is an i.i.d. sequence of irreducible matrices with fixed support). 

Comparing the conditions in Theorem 2.2.2 with those in Theorem 2.2.1, 
Theorem 2.2.2 imposes the additional conditions that (i) the matrices are ir­
reducible (and have thus fixed support), (ii) all elements different from e are 
non-negative and that (iii) all diagonal elements are non-negative. However, 
conditions (i)-(iii) are only needed to establish the pathwise statement in Theo­
rem 2.2.2. Hence, the second part of Theorem 2.2.2 is vaUd under weaker con­
ditions. The exact statement is as follows: 

Corollary 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular and inte-
grable matrices in Rj^^x • V 

• A''"* > A*°P, and 

• the initial condition is integrable, 

then 

lim -E[a;,(fc)] = A, 
A:—*oo k 

for all components 1 < j < J of x{k). 

Proof: By assumption, 

,. ||a;(fc)||niin ,. |p l" ' j | |max , 
fc—»oo k fc—»oo k 

with A = A''°' = A*°P, and Theorem 2.2.1 yields 

lim i M M U = iii„ lE[\\xik)\U] = A, 
fc—•oo K k—*oo K 

lim W^Mk^ = liin iE[||x(fc)|Uax] = A. 
fc—+00 K fc—»oo /C 

For any k eN and 1 < j < J , 

lE[\\x(k)\Un] < In^jik)] < i 

and taking limits yields 

A = lim hixjik)] , 
fc—>oo K 

which concludes the proof. D 
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2.2.2 The Reducible Case 

The setup is as in the previous section except that we now suppose that A{k) 
has fixed support and drop the assumption that it is irreducible. An example 
of a model that has fixed support but fails to be irreducible is the open tandem 
queuing system in Example 1.5.2. We study the homogeneous equation 

x{k+l) = A{k)0x{k), k>0. 

Notice that this setup comprises inhomogeneous equations, such as the standard 
autonomous equation as well, see Section 1.4.3 for details. 

To deal with reducible matrices A{k), we decompose A{k) into its 'irre­
ducible' components. The ergodic theorem, to be proved presently, then states 
that the Lyapunov exponent of the overall matrix is given by the maximal top 
Lyapunov exponent of its irreducible components. However, before we are able 
to present the ergodic theorem and give the proof, we need to introduce some 
concepts from graph theory. For the basic definitions we refer to Section 2.1. 

Let {A{k)} be a sequence of matrices in K^ajf with fixed support. If we 
replace any element of A{k) that is dififerent from s by e, then the resulting 
communication graph of A{k), denoted by Qe{A), is independent of k (and thus 
non-random). Let Ge{A) denote the reduced graph of QeiA). We denote by 

[i] = {j G { 1 , . . . , J } : ilZj} the set of nodes of the m.s.c.s. that contains i. The 
set of all nodes j such that there exists a path from j to i in 5e(^) is denoted 
by 7r"'"(z). Furthermore, we set 7r*{i) = {i} U7r"'"(i); and we define predecessor 
sets 

[< i] = U [J'l 
j€7r*(i) 

and [< i] = [< i] \ [i]. We denote by X^,°,^ the top Lyapunov exponent associated 
with the matrix obtained by restricting A{k) to the nodes in [i]. In case i is an 
isolated node or node with only incoming or outgoing arcs, we set AfT = e. The 
following theorem goes back to [6]. 

Theorem 2.2.3 Let {A{k)} be a stationary sequence of integrable matrices in 
^imx with fixed support such that with probability one all finite elements are non-
negative and the diagonal elements are different from e. For any (non-random) 
finite initial value XQ it holds true that 

lim -^— = A,- a.s. , 
k^oo k -^ 

with 

A,' = 

and 

lim -rE[xj{k)] = Xj , 
fc—•oo K 

for I < j < J • The above limits also hold for random initial conditions provided 
that the initial condition is a.s. finite and integrable. 
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Proof: Under the conditions of the theorem, it a.s. holds, for any k, that 
||a;(A;)||max = |N(fc)||0, see Remark 2.2.3. In the following proof we will only 
work with upper bounds on the growth rate ||a;(fc)||max/'5 and thus adopt the 
notation || • \\^ for the maximal element of a vector/matrix. 

Let i4[i][i](A;) denote the matrix that is obtained from A{k) by restricting 
A{k) to the nodes in [i] and write X[q{k) for x{k) restricted to the nodes in [i]. 
To understand the difficulty that arises when proving the theorem, it is worth 
noting that in general 

lim -||a;[ii(fc)||© ^ A|°P a.s. 

This stems from the fact that Ar̂ '̂' is the top Lyapunov exponent of the matrix 
restricted to the nodes in [i], whereas X!q{k) is also influenced by nodes others 
than those in [i] namely those in [< i] \ [i]. 

We now turn to the proof. In the same way as we have defined A^q [i]{k) and 
X[i]{k), we write ^[<t] [<i]{k) for the restriction of A{k) to the nodes in [< i] and 
X[<i]{k) for x{k) restricted to the nodes in [< i]. By Theorem 2.2.1, the maximal 
Lyapunov exponent of A[<j] [<i](fc), given by Af^P,, exists (indeed. Theorem 2.2.1 
applies to reducible matrices). Note that 

>[i](/c)| |© < Tl|a;[<i](fc)||® 

and thus 
j^u-mvn,^ - ^1 

1 1 
limsup-||a;[i](A;)||©<limsup-||a;[<i](fc)||g 

fc—+00 "^ fc—*00 f^ 

= A g , . (2.13) 

Fixed support of A{k) implies that Ge{A) is non-random. Node i can be reached 
from any node h 6 7r*(j) and since A{k) is of dimension J x J such a path is at 
most of length J . We have assumed that the diagonal elements of A{k) are all 
different from e. Hence, if there is a path of length I from h to i, then there is 
for any p > I a, path of length p from h to i (just add sufficiently many loops of 
length one at h). Any finite element of A{k) is positive and paths have therefore 
positive weights. We thus obtain for any j € [i] 

Xj{k)> 0 Xh{k-J) 
hen'{i) 

=| |a ; [<i](A;-J) | |e , (2.14) 

for k > J. Therefore, 

IN[ij(A:)||© > | |a ; [<i](fe-J) | |e , 

for k > J, which implies that 

liminf-||a;[i](fc)||©>liminf-||a;[<i](A;)||e 
K—•OO A/ K—>00 /v 

= A[<P] a.s. 
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Together with (2.13) we obtain 

£ m i||x[,](A;)||e = A g , a.s. (2.15) 

By (2.14), it holds a.s. for any j G [i] that 

i|k[il(fc)ll® > l^jik) > i | | a ; [< i ] (A;-J ) | | e , (2.16) 

and by (2.15) it follows that 

lim l\\x[^ik)\\^ = lim hx[<i]{k - J)| |® = \\Z^ , (2.17) 

which yields 

In the integrable case, (2.16) implies 

iE[| |xi<„(fc)|M > \n^i{k)] > i E [ m < i , ( & - J ) | M . 

By Theorem 2.2.1, the expected values on the right-hand side and on the left-
hand side in the above inequality converge to Af̂ ,̂ as k tends to oo. Hence, 

,i™^^E[x,-(A)] = A g ] , je[i]. 

It remains to be shown that 

^f<i] = 0 ^Ul • (2-18) 

The reduced graph Qe(A) is acyclic and we obtain 

xii]{k + l) = A[q[i]{k)®X[i]{k)®s{i,k + l), (2.19) 

where 
s{i,k + l) = yl[ij[<i](A;)®a;[<i](A;) 

and j4[i][<i](A;) is defined in the obvious way. By definition, 

\\s{i,k + l ) | | e < ||%][<i](fc)||® ® ||a;[<i](A;)||e 

<||yl(A;)||e®||x[<i,(/=)||®. (2.20) 

Note that 

lim i||yl(fc)||(B = 0 a.s. (2.21) 
K—•oo K 

Indeed, integrability of {A{k)} together with stationarity and ergodicity implies 
that 

k 
^Ihn^ I ^ \\Aik)\\^ = El\\Ail)M < oc a.s. 
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E[||^(l)|y=£m iXIll̂ WII® 
n = l 

fc-1 

(integrability of ||A(1)||® is guaranteed by integrability of A{1)), which gives 

fc 

fc-*oo k 

,. fc-1 1 
= hm —-——• 

fc->oo k k • -

= E[| |A(l) | |e] + lim U\A{k)\\^ a.s. 

and thus establishes (2.21). 
We obtain from (2.20) together with (2.21) 

l imsup- | | s ( i , A; + l)||® < Af° ,̂ a.s. 
fc—.OO ri 

At the same time, following the line of argument that has lead to (2.14), we 
obtain 

||s(i,fc + l)||© > ||a;[<i](fc-J)||® a.s., 

which implies 

l iminf- | |s( i ,fc + l)||© > Af°P, a.s. 
fc—>oo K ' ' 

and thus 

£ i n ^ i | | s ( z , f c + l ) | | e = Af°P a.s. 

It is clear from the definition of s{i,k) that 

l|a;[<ii(fe)||® > ||s(i,fc)||®, 

so that 

A S , > A;°P . (2.22) 
which in turn implies 

Now suppose that Af̂ ,̂ > Af°^i. The existence of the individual limits implies 
that for sufficiently large iiT G N it holds that 

A[i\[q{k) ® x^i^{k) > s{i,k+l) , k>K. 

Accordingly, equation (2.19) reads 

X[ii{k + 1) = ^[j][j|(fc) ®X[{i{k) > s{i,k + 1) , k> K , 

which, by Theorem 2.2.1, yields 

£rn^i||a;[i,(fc)||e = Af"" a.s. 
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and, by (2.17), this implies 
\ t o p \ t o p 

We have thus shown that 

^Si>^s ^ ^a = [̂r- (2.23) 
Combining (2.22) and (2.23) we reach at: 

\ t o p _ \ t o p _ t t o p 

Any node i 6 Gei-A) belongs to a m.s.c.s. that is represented in Ge{A) by the 
single node [i]. Let 7r([i]) denote the set of direct predecessors of [i] in Gl{A) 
and set 7r([i]) = 0 if there is no predecessor. Each element of 7r([?]) represents a 
m.s.c.s. in Qe{A) and we denote by r( i ) the set of nodes in Ge{A.) that belong to 
the m.s.c.s. corresponding to the elements of 7r([i]). If 7r([i]) = 0, we set T{i) = 0. 
Then 

jerii) 

and inserting this into the above equation yields 

, top _ , top „ / r \ X top 

j 6 T ( t ) 

We now repeat the argument until applying r yields no more nodes. In partic­
ular, going from r(i) to {T{J) : j G T{i)} and so forth, we will eventually cover 
the set 7r*(i). This concludes the proof of (2.18). D 

Remark 2.2.7 Suppose that the conditions in Theorem 2.2.3 are satisfied. Con­
tinuity of the operators max and min yields that it holds with probability one that 

A*"" = min(Aj : I < j < J) 

and 
A*°P = max(Aj- : 1 < j < J ) . 

The vector A = (Ai, A2, . . . , Aj), with \j defined in Theorem 2.2.3, is called 
the Lyapunov vector o{ {A{k)}. In the light of Theorem 2.2.2 we can state that 
irreducibility of {A{k)} is a sufficient condition for the components of A to be 
equal. 

Recalling that limfc_,oo Xj{k)/k is the (asymptotic) speed with which transi­
tion j operates, the above theorem matches our intuition that the (asymptotic) 
speed with which the system operates is determined by the slowest component 
of the system. In terms of queuing networks, the throughput of a system is de­
termined by the smallest throughput of one of its components. Moreover, if the 
queuing network is irreducible in the max-plus sense, then the throughput is 
the same at any station. 
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The key conditions on A{k) are that any element of A{k) is either equal to e 
or non-negative, that the elements on the diagonal are non-negative and that it 
has fixed support. As we have already explained, the condition that any element 
different from e has only non-negative values is a natural condition for queuing 
systems, and all examples presented in this monograph enjoy this property. The 
fixed support condition is satisfied by the queuing systems in Example 1.5.1 and 
Example 1.5.2. An example of a system that fails to have fixed support is given 
in Example 1.5.5. Such a system cannot be analyzed via the subadditive ergodic 
theory developed so far. 

2.2.3 Variations and Extensions 

One of the marvels of max-plus theory is that the existence of the top and bot­
tom Lyapunov exponent follows so easily from Kingman's subadditive ergodic 
theorem. See the proof of Theorem 2.2.1. However, the conditions in Theo­
rem 2.2.1 are too weak to guarantee that the top and bottom Lyapunov expo­
nents are equal, or, in other words, that the individual growth rates (that is, 
\imk-^aoXi{k)/k, 1 < j < J) have the same limit. In this section, we discuss 
approaches to establish equality of the top and bottom Lyapunov exponent 
without imposing conditions on the elements of A(k). 

2.2.3.1 The 'Up-Crossing' Property 

In order to show that the individual growth rates coincide we had to impose 
the assumption that (i) any non-e element of A{k) is non-negative, that (ii) 
all diagonal elements are non-negative, and that (iii) A{k) has fixed support. 
The 'non-negativity' condition on the finite elements causes no restriction for 
queuing systems. Therefore, we focus in this section on a relaxation of the 'fixed 
support' and the 'diagonal' condition. 

Inspecting the proof of Theorem 2.2.2 one sees that what is actually needed 
is the following 'up-crossing' property: a subsequence {x(kn)} and a constant 
M exist, such that for any n > 1 

\\x{kn + M)| |min > a„ + 6n||a;(fc„)||max a.S. , 

with 
lim — = 0 and lim 6„ = 1 , 

n—»oo n n—*oo 
see (2.10) on page 72 in the proof of Theorem 2.2.2, where a„ = 0 and &„ = 1 for 
all n. Indeed, Vincent uses in [102] this type of condition to show that the top 
and bottom Lyapunov exponent coincide. Provided that finite elements of A{k) 
are positive, the diagonal condition together with fixed support are sufficient 
for the above 'up-crossing' property to hold, see Lemma 1.4.1. 

2.2.3.2 The 'Memory Loss' Property 

In this section we present an alternative approach to finding sufficient conditions 
for A'°'' = A ' ' ° ' . This approach goes back to [48, 84] and applies to sequences 
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with countable state-space. 
The key observation for this approach is the following. Let A € Kma>f ^^ 

such that any two columns of A are linear dependent. Then, a finite number a 
exists such that 

| | ^®a; | | „ , ax- | | ^®a; | |min = a , xeR'' (2.24) 

(for a proof use the argument put forward in the proof of Corollary 2.1.1). A 
matrix with the property that any two columns are linear dependent is said 
to be of rank 1. While the notation of rank 1 is undisputed, there are several 
notions of rank in the literature, see [37] and [103]. 

Deflnition 2.2.1 A sequence {A{k)} of square matrices is said to have memory 
loss property (MLP) if there exists anN such that A{N-l)®A{N-2)«i- • -^AiO) 
with positive probability has only mutually linear dependent columns, i.e., is of 
rank 1. 

Let A be a matrix with mutually linear dependent columns and assume that 
{A{k)} has MLP with respect to A and N, that is, assume that a finite number 
N exists such that P{A{N - 1) ® A{N - 2) ® • • • ® A{0) = yl) > 0 and ^ is of 
rank 1. Let 

To = inf{fc > AT - 1 : A{k) ® A{k - 1) (g) • • • (E) Aik - N + I) = A} 

denote the first time a partial product of the series of matrix generates A. This 
gives 

To-N 

x{To) = yl ® (g) A{k) » xo , 
fc=0 

where we set the product to S for TQ = A'̂  — 1 and we assume that XQ G R ' ' . By 
(2.24) a finite number a exists such that 

||a;(To)||„ax-l|a;(To)l|min = a, 

for any finite initial value XQ- For n > 0, introduce the time of the (n + 1)^' 
occurrence of the event that a partial product of {A{k)} generates A by 

Tn+i = mi{k >N + Tn: A{k) ® A{k - 1) » • • • ® A{k - N + 1) = A} (2.25) 

and we obtain 
MTk)\U,^ - lla;(Tfc)||„in = a , k>0. (2.26) 

If {A{k)} is stationary and ergodic, then lim„_,oo T^ = oo and Tn < oo with 
probability one; for details see Section E.3 in the Appendix. Specifically, by 
equation (2.26), 

lim ^\\x{n)\\m,^ - ^\\xiTk)\Un = 0 a.s. (2.27) 
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If, in addition, {y4(A;)} is a sequence of a.s. regular and integrable matrices, 
Theorem 2.2.1 yields 

lim ^\\x{n)\U. = A*°P and lim ;^| |x(rfc)|Uin = X""" 

with probability one, and equality of A*°P and A*'"* follows from (2.27). We 
summarize our analysis in the following theorem: 

Theorem 2.2.4 Let {A{k)} be a stationary and ergodic sequence of integrable 
and a.s. regular matrices in M.'^^. If {A{k)} has MLP, then a finite constant A 
exists such that, for any (non-random) finite initial conditions XQ: 

^M _ ,:„ lk(̂ )llmin _ ,_ Mk)\l l i m = l i m LL^^-Lii = i i m iJ -J = A 
fc—>oo k fc—>oo k fc—>oo k 

and 

lim ^E[a;j{A;)] = lim iE[||a;(A;)|Uin] = lim iE[||a;(fc)|Uax] 

for I < j < J. The above limits also hold for random initial conditions provided 
that the initial condition is a.s. finite and integrable. 

It is worth noting that, in contrast to Theorem 2.2.3, the Lyapunov expo­
nent is unique, or, in other words, the components of the Lyapunov vector are 
equal. In view of Theorem 2.2.2 the above theorem can be phrased as follows: 
Theorem 2.2.2 remains valid in the presence of reducible matrices if MLP is 
satisfied. 

MLP is a technical condition and typically impossible to verify directly. A 
sufficient condition for {A{k)} to have MLP is the following: 

(C) There exists a primitive matrix C and N €N such that 

P(A{N - 1) ® A{N - 2) ® • • • 1^ A{0) = c ) > 0 . 

The following lemma illustrates the close relationship between primitive ma­
trices and matrices of rank 1. 

Lemma 2.2.2 / / A is primitive with coupling time c, then A'^ has only finite 
entries and is of rank 1. Moreover, for any matrix A that has only finite entries 
it holds that A is of rank 1 if and only if the projective image of A is a single 
point in the projective space. 

Proof: We first prove the second part of the lemma. '=>': Let A G R^ax be such 
that all elements are finite and that it is of rank L Denote the j * ^ column of A 
by A.j. Since A is of rank 1, there exits finite numbers QJ, with 2 < j < J, such 
that A.I = Uj ® A.j for 2 < j < J. Hence, for a; 6 ffi'^ it holds that 

J 

A«:x = l^ajigiXj®A.i, (2.28) 
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with ai = 0. Let 7^ =^ (8)/=i ^ j ® ^j- Let y 6 M\ with a; ^ y. By (2.28), 
A ® a; = 7x ® ^.1 and 4̂ ® y = 7^ ® ^.i> which implies that A® x and A ® y 
are hnear dependent. Hence, the projective image of A contains only the single 
point A.I. 

'<=': We give a proof by contradiction. Suppose that A is not of rank 1, then 
there exist at least two columns A.j and A.i of A such that A.j and A.i are 
linear independent. Then x^,x^ G R'' can be chosen such that A®x'^ = /?' ® A.i 
and A® x^ — /?•' (8) A.j for finite constants 13'', pK Since ^4.̂  and A.i are linear 
independent, the projective image of A contains at least the two distinct points 
A.i and A.j. 

We now turn to the proof of the first part of the lemma. For 1 < j < J , let 
Bj be the vector with e entries except for element j which is equal to e. Hence, 
A'^ ® Bj = A':j, where A^j denotes the j * ' ' column of A'^. By Theorem 2.1.1, 

A igi A':J = A <Si A" ® ej = X igi A" igi ej = X <S> A^.j, 

with A the unique eigenvector of J4, and the columns of A'- are thus eigenvectors 
of A. Using the fact that eigenvectors of irreducible matrices have only finite 
entries (see, for example. Lemma 2.8 in [65]), it follows that A'' has only finite 
elements. On the one hand, by Corollary 2.1.1, the eigenvector of A is unique. 
On the other hand, by Theorem 2.1.1, "̂̂  ® a; is an eigenvector of A for any x. 
Hence, the projective image of .A is a single point (in formula: 3w e IPR'' Va; € 
K'' : A'^ ®x = v). Applying the second part of the lemma then proves the claim. 
D 

We present a version of Theorem 2.2.4 with a condition that can be directly 
verified. 

Lemma 2.2.3 Let {yl(/c)} he an i.i.d. sequence of a.s. regular integrable matri­
ces in Kmajf ^'^'^ countable state space. If condition (C) holds, then the state­
ment put forward in Theorem 2.2.4 holds. 

Proof: Let C be as given as in (C) and denote the coupling time of C by 
c. Because {A{k)} is i.i.d. with countable state-space, 

P(^A{N -1) = A{N -2) = •.• = ^ ( 0 ) = C ) > 0 , 

implies 

P(A{CN - 1) ® A{cN - 2) ® • • • (g) ^(0) = 0") >0. 

Since C is primitive. Lemma 2.2.2 implies that C^ is of rank 1 and {A{k)} has 
thus MLP. Hence, Theorem 2.2.4 applies. D 

Example 2.2.1 Consider Example 1.5.5. Matrix D2 is primitive. Hence, ap­
plying Lemma 2.2.3 shows that the Lyapunov exponent of the system exists. 

Remark 2.2.8 In principle, MLP and condition (C) restrict the class of se­
quences {A{k)} that can be analyzed to those with countable state-space. A 
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possible generalization is the following. Suppose that the distribution of A{k) 
is a mixture of a discrete distribution on a countable state-space, say A'^, 
and a general distribution on an arbitrary state-space, say A^. If we require 
P{A{N - 1) (g) A{N - 2) ® • • • ® ^(0) eA'')>0 in Definition 2.2.1 and C € A" 
in condition (C), respectively, then the results in this section hold for {A{k)} 
with state space A"^ U A^ as well. 

We conclude this section by presenting a generalization of Theorem 2.2.4. 
As Baccelli and Mairesse show in [11], using the arguments put forward in this 
section, a limit result can be obtained under a slightly weaker condition than 
MLP. 

Theorem 2.2.5 Let {A{k)} be a stationary and ergodic sequence of integrable 
and a.s. regular square matrices in Kma:if • V there exists N & N such that with 
positive probability A{N — 1) ® A{N — 2) ® • • • ® ^(0) has a bounded projective 
image, then the statement put forward in Theorem 2.2.4 holds. 

Proof: By assumption, there exist finite numbers a,b &R such that 

Va ieR ' ' : \\A{N - 1) ® A{N - 2) ® ••• 0 A{0) ® x\\jp G [a,b]. 

In analogy to (2.25), let T^ denote the time index such that for the A;*'' time 
a product A{Tk) ® A{Tk - 1) ® • • • ® A{Tk - N + 1) has been observed whose 
projective image lies within the interval [a,b]; in formula: 

a < ||x(rfc)|Uax - \\x{Tk)\Un < b 

for all k. We have assumed that {A{k)} is stationary and ergodic, which implies 
lim„_,oo Tfc = 00 and T^ < oo with probability one; for details see Section E.3 in 
the Appendix. Since [a, b] is compact, the Bolzano-Weierstrass Theorem yields 
the existence of a subsequence {Tk„} of {Tfc} such that 

lim ||a;(TfcJ|Uax - ||a;(TfcJ|Um = c, 

for some finite constant c, which implies 

lim — ||a;(rfcj||„ax = lim —||a;(TfcJ||„,in. (2.29) 
n-too /e„ n—too /c„ 

By Theorem 2.2.1, convergence of the sequences ||a;(A;)||max/^ and ||a;(/c)||niax/'i; 
as k tends to infinity is guaranteed. Hence, 

lim 7||a;(A;)||max = lim —||a:(rfc„)||max 
k—>oo K n—»oo fcn 

(2.29) 1 
= lim -rrMTkJWmm 

n-*oo kn 

= lim 7||x(fc)||min, 
fc—too K 

which proves the claim. D 
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2.2.3.3 Weak Irreducibility 

An approach relaxing the concept of fixed support can be found in [69, 70]. 
This approach is based on an interpretation of the concept of 'irreducibility' for 
random matrices which we will explain in the following. 

Irreducibility of a matrix A is defined via the communication graph of A, 
denoted by G{A). Specifically, A is called irreducible if for any two nodes in G{A) 
a path from i to j exists in G{A). Let {A{k)} be a random sequence of J x J 
dimensional matrices. The communication graph of a random sequence is itself a 
random variable and we extend the definition of a path to the sequence Q{A{k)) 
as follows. For any two nodes i,j, a sequence of arcs p = ((«ni jn) : 1 < « < fn), 
with i = ii, j — jm and j „ = i„+i for 1 < n < m, is called a path of length m 
from i to j in {A{k)} if {in,jn) is an arc in Q{A{k + n — 1)) ioi 1 < n < m, for 
some k eN. We say that p is a path in Q{A{k + n— 1) : 1 < n < m). 

The weight of a path in G{A) is defined by the sum of the weights of all arcs 
constituting the path; more formally: let p = {{imjn) : 1 < n < m) he a, path 
from i to j of length m, then the weight of p, denoted by \p\w, is given by 

m 

n=l 

with i = ii and j = jm, for some k. 
We now are able to introduce the concept of weak irreducibility: A sequence 

{A{k)} of square matrices is said to be weakly irreducible if for any pair of nodes 
i,j 6 { 1 , . . . , J } a finite number my exists such that there is with positive 
probability a path of length my from i to j ; in formula: for any i,j, with 
1 < «,i < J'l rn-ij G N exists such that 

/mn — l ( / m y - 1 \ \ 

(g) Aik) > £ > 0 
V fc=0 Jji J Theorem 2.2.6 Let {A{k)} be an i.i.d. sequence of regular, integrable matrices 

in Kmajf '̂ *'̂ '* countable state-space. Assume that {A{k)} is weakly irreducible. 
If there exists at least one node j such that j lies with positive probability on a 
circuit of length one, then the Lyapunov exponent of {A{k)} exists. 

Proof: Consider the collection of numbers my for I < i,j < J. We have 
assumed that there exits at least one node j * such that ruj'j' = 1 and the 
greatest common divisor of the collection of numbers my , with 1 < i,j < J, 
is thus equal to one. This implies that a finite number N exists such that each 
m > N can be written as a linear combination of my 's , see [26]. Weak analyticity 
thus implies that for any m > N there exists with positive probability a path 
from any node to any other node; in formula: for any m> N 

Vi,i € { ! , . . . , J } : P { [ ^ A{k)\ > e\ > Q. 
\ \ fc=0 /ji / 
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Let h > N. Since J is finite, we can choose j,i € { 1 , . . . , J} such that a 
sequence {m„}, with hm„_,oo ?»n = oo. exists for which it holds that 

||a;(m„ + /i)||min = a;i(m„ + /i) and \\x{mn)\\mB.x = Xj{mn) , 

for n e N. By assumption, {yl(A;)} is a weakly irreducible i.i.d. sequence. Hence, 
we may select a subsequence {m„,} of {m„} such that there is (at least) a fixed 
path p from j to i of length h in g{A{mni+k) • 0 < k < h) (or any / and 

(g) ^(m) 

is finite. With slight abuse of notation we will identify {m„} and {m„^}. This 
yields 

\\x{mn + /l)||min = a^i(mn + h) 

J /rrin+h—l \ 

fc=l \ m=m„ / ji. ik 

> - | W i j | ®Xj{mn) 

= -\wij\ + i|a;(m„)||max , 

which establishes the up-crossing property with M = /i. D 
Theorem 2.2.6 provides a sufficient condition for the existence of the Lya-

punov exponent completely avoiding the concept of fixed support. The following 
example illustrates this. Consider Ai,A2 6 A, with 

for some finite integrable random variables Yi, 1 < i < 4. Let {A{k)} be an 
i.i.d. sequence such that P{A{k) = Ai) = p > 0 and P{A{k) = A2) = 1 - p > 0, 
for A; > 0. Then {A{k)] satisfies the condition put forward in Theorem 2.2.6. 
However, neither does {A{k)} have fixed support nor does it satisfy the diagonal 
condition. Note that the situation in Example L5.5 is covered by Theorem 2.2.6, 
which follows from the fact that D2 is irreducible and contains one finite element 
on its diagonal. 

As Hong shows in [69, 70], the condition that there is at least one node 
that lies with positive probability on a circuit of length one is not necessary for 
Theorem 2.2.6 to hold. Without this simplifying assumption the proof of the 
theorem becomes however rather technical and the interested reader is referred 
to [69, 70] for details. 

2.3 Stability Analysis of Waiting Times (Type 
Ila) 

A classical result in queuing theory states that if in a G / G / 1 queue the expected 
interarrival time is larger than the expected service time, then the sequence 
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of waiting times converges, independent of the initial condition, to a unique 
stationary regime. The proof of this result goes back to [81]. In this section, we 
generalize the classical result on stability of waiting times in the GI /G/1 queue 
to that of stability of waiting times in open max-plus linear networks. It is worth 
noting that by virtue of the max-plus formalism we can almost literally copy 
the proof of the classical result in [81]. 

We consider the following situation. An open queuing network with J sta­
tions is given such that the vector of departure times from the stations, denoted 
by x{k), follows the recurrence relation 

x{k + 1) = A{k) (g) x{k) ® r(fc -f-1) ® B{k), (2.30) 

with a;(0) = e, where r(/c) denotes the time of the fc*'' arrival to the system. 
See, equation (1.15) in Section 1.4.2.2 and equation (1.27) in Example 1.5.2, 
respectively. As usually, we denote by ao{k) the A;*'' interarrival time, so that 
the k*'^ arrival of a customer at the network happens at time 

k 

r(fc) = ^ < T o ( i ) , fc>l, 

with r(0) = 0. Then, Wj{k) = Xj{k) — T{k) denotes the time the fc"* customer 
arriving to the system spends in the system until completion of service at server 
j . The vector of fc*'' sojourn times, denoted by W{k) = {Wi{k),... ,Wj{k)), 
follows the recurrence relation 

Wik + 1) = A{k) «> C{ao{k + 1)) ® W{k) e B{k) , A; > 0 , 

with W{0) — e, where C[h) denotes a diagonal matrix with —h on the diagonal 
and £ elsewhere. See Section 1.4.4 for details. Alternatively, Xj{k) in (2.30) 
may model the times of the A;*'' beginning of service at station j . With this 
interpretation of x{k), Wj{k) defined above represents the time spent by the 
A;*'' customer arriving to the system until beginning of her/his service at j . For 
example, in the G / G / 1 queue W{k) models the waiting time. 

In the following we will establish sufficient conditions for W{k) to converge 
to a unique stationary regime. The main technical assumptions are; 

( W l ) For A; £ Z, let ^(A;) € Kmajf be a.s. regular and assume that the maximal 
Lyapunov exponent of {^(A;)} exists. 

(W2) There exists a fixed number a, with 1 < Q < J , such that the vector 
B°'{k) = {Bj{k) : 1 < i < Q) has finite elements for any k, and Bj{k) = e, 
for a < j < J and any k. 

(W3) The sequence {{A{k),B°'{k))] is stationary and ergodic, and independent 
of {T(A;)}, where r(A;) is given by 

k 

r{k)^Y.''^^^ A;>1, 
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with T ( 0 ) = 0 and {<T(A;) : A; G Z } a stationary and ergodic sequence of 
positive random variables with mean v 6 (0,oo). 

In what follows, we establish sufficient conditions for {W{k)}, with 

W{k + 1) = A{k) ® C{a{k + 1)) ® W{k) e B{k), k>0, (2.31) 

to have a unique stationary solution. 
Provided that {A(fc)} is a.s. regular and stationary, integrability of A{k) is a 

sufficient condition for ( W l ) , see Theorem 2.2.1. In terms of queuing networks, 
the main restriction imposed by these conditions stems from the non-negativity 
of the diagonal of A[k), see Section 2.2 for a detailed discussion and possible 
relaxations. The part of condition (W3) that concerns the arrival stream of the 
network is, for example, satisfied for Poisson arrival streams. 

The proof goes back to [19] and has three main steps. First, we introduce 
Loynes' scheme for sojourn times. In a second step we show that the Loynes 
variable converges a.s. to a finite limit. Finally, we show that this limit is the 
unique stationary solution of equations of type (2.31). 

Step 1 (the Loynes's scheme): Let M(fc) denote the vector of sojourn times 
at time zero provided that the sequence of waiting time vectors was started at 
time —k in B{—{k + 1)). For A; > 0, we set 

fc-i 

By recurrence relation (2.31), 

Mil) = A{-l)®C{a{Q))®B{-2)®B{-l). 

For M(2) we have to replace B{—2) by 

^ ( - 2 ) ® C(o-(- l)) ® B ( - 3 ) e B ( - 2 ) , (2.32) 

which yields 

M(2) = A{-1) ® C(o-(0)) ® A{-2) ® C ( < T ( - 1 ) ) ® S ( - 3 ) 

®.4( - l ) ® C( (T(0 ) ) ® B{-2) ® B{-\). (2.33) 

By finite induction, we obtain for M{k) 

k j 

Mik) = 0 (g ) A(-i) ® C{a{-i + 1)) ® B{~{3 + 1)) , (2.34) 
j = 0 t = l 

where we set the product 

j 

^A{-i)®C{a{-i+\)) 
i=l 
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to E for j = 0. 
The sequence {M{k)} is called Loynes sequence. The above construction 

implies that {M{k)} is monotone increasing in k. To see this, denote for x,y € 
Ĵ max the component-wise ordering of x and y hy x < y. By calculation, 

k 3 

j = 0 i = l 

fc+1 

< (g) A{-i) ® C(c7(-z + 1)) ® B(-(A; + 1)) 
i = l 

fc J 

j = 0 1=1 

fc+1 J 

= 0 0 ^(-») ® C{a{-i + 1)) ® B( - ( i + 1)) 
3=0 1=1 

==M(fc + l ) , 

for A; > 0, which proves that M{k) is monotone increasing in k. 
The matrix C(-) has the following properties. For any y € R, C{y) commutes 

with any matrix A G pJXj. 
m a x ' 

C{y) ®A = A» C{y) . 

Furthermore, for y,z E R, it holds that 

C{y) ® Ciz) = C{z) ® C{y) = C(2/ + z). 

Specifically, 

( g ) C ( a ( - z + l ) ) = a ( ( g ) a H + l ) ) = C ( - T ( - j ) ) . 

i = l \ i = l / 

Elaborating on these rules of computation, we obtain 

j j 

(g) A{-i) ® C{a{-i)) ® B{-{j + 1)) = C{-T{-j)) ® (g) ^ ( - i ) ® B ( - ( j + 1)) . 
i = l i = l 

Set 
fc 

i?(A;) = (g)A(-i)®B(-(fc + l ) ) , fc>l, 
i = l 

and, for A; = 0, set D{0) = 5 ( - l ) . Note that r(0) = 0 implies that C(-r(0)) = 
i3. Equation (2.34) now reads 

k 

M ( f c ) = 0 C ( - T ( - i ) ) ® D { i ) . 
j = 0 
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Step 2 (pathwise limit): We now show that the hmit of M{k) as k tends to 
00 exists and establish a sufficient condition for the limit to be a.s. finite. 

Because M{k) is monotone increasing in k, the random variable M, defined 
by 

hm M(fc) = 0 C ( - r ( - j ) ) ® i ? ( j ) 
fc—»oo ^ ^ 

3>0 

is either equal to oo or finite. The variable M is called Loynes variable. In what 
follows we will derive a sufficient condition for M to be a.s. finite. As a first step 
towards this result, we study three individual limits. 

(i) Under condition ( W l ) , a number a £ R exists such that, for any x G R'^, 

lim — 
fc—too k 

(ii) Under condition (W3), the strong law of large numbers (which is a special 
case of Theorem 2.2.3) implies 

J i m i | | C ( - r M ) ) l | _ = ^ l i m i r ( - f c ) 

1 
= — lim - y ^ a(i) 

fc—•oo k 

= —V 
i=-fc+l 

a.s. 

(iii) Ergodicity of {B°'{k)] (condition (W3)) implies that, for 1 < j < a, a 
hj G R exists such that 

1 *" 

fc—>oo k a.s., 

which implies that it holds with probability one that 

1 ^ 

,lii". \BA-k) + ,lim ^ ^ ^ B^{-i) 
k fc->oo k k -

1 
: lim TBj{-k) + bj 

fc—>oo re 

and thus 

lim rBji-k) = lim -B, ( - (A; + 1)) = 0 a.s., 
fc->oo k fc->oo k 
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for j < a. Prom the above we conclude that 

1 
,lim^-^l|i^(-^)IL.. = 0 

Prom Lemma 1.6.2 it follows that 

\\C{-Ti-k))®D{k)\l C ( - r ( - f c ) ) ® (g) Ai-i) ® B{-{k + 1)) 

< | | C ( - r ( - f c ) ) | U , + 

+ ||J3(-(fc + l)) | |„ 

Combining the individual limits (i)-(wi), we obtain 

lim i\\C{-T{-k))®D{k)\\^,, <^-u 
fc—»oo K 

0 y l ( - z ) ® e 

and J/ > a implies 

lim \\C{-T{-k))®D[k)\l 
K—••OO 

(2.35) 

Hence, for k sufficiently large, the vector C{—T{~k)) ® D{k) has only negative 
elements and thus doesn't contribute to M{k) (note that M{k) > 0 by defi­
nition). Consequently, M{k) is dominated by the maximum over finitely many 
vectors C(—T(—A;)) ® D{k) whose elements are all finite. We have thus shown 
that V > B. implies that M is an a.s. finite random variable. In the same vein, 
one can show that v < B. implies M = oo with probability one. 

Step 3 (stationarity and uniqueness): We revisit the construction of {M{k)}. 
Under assumption (W3), let 6 denote an ergodic shift operator such that A{k) — 
A o O'^, B{k) = B o 6^ and a{k) = a o O'', for appropriately defined random 
variables A,B,a, see Section E.3 in the Appendix. Equation (2.33) thus reads 

M(2) = Ao0-^ ® C{a) ® M ( l ) o r ^ 0 5 o 9'^ 

(to see this, note that the expression in (2.32) is equivalent to M ( l ) o 6~^). By 
finite induction, 

Mik + 1) = yl o 61-1 ® C{a) ® M{k) oO'^ ® 5 o 9'^ 

and letting k tend to oo in the above equation shows that 

M = AoQ-^ ® Cia) ® M ® BoO-"" . 

In other words, M is the stationary solution of (2.31). 
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It remains to be shown that M is the unique limit. Let M{k, w) denote the 
vector of sojourn times at time 0 provided that the sequence is started at time 
—fc with initial vector w G R'^, or, more formally, set 

1 W M{k, w) = (g) A{-i) ® C{a{-i + 1)) ( 
i=l 

fc-1 
®®C{-T{-j))®DiJ). 

Because w has only finite elements, we have ||w||max < oo. Following the line of 
argument in step 2 above, it readily follows that 

lim 
A:—*oo 

fc 

(g ) A{-i) ® C{a{-i + 1)) ® w = —00 a.s 

for f > a, and 

k fc-1 
( lim 0 A{-i) ® C{a{-i + 1)) ® w ® 0 C{-Ti-j)) <gi D{j) = M a.s. 

Hence, for any finite initial value w, M{k, w) has the same limit as M{k), which 
establishes uniqueness. We have thus shown that M{k,w) converges a.s. to a 
unique stationary limit M, independent of the initial value w. 

For w £ R'^, write W[k,w) for the vector of fc*'' system times, initiated 
at 0 to w. Assumption (W3) implies that M{k,'w) and W{k,w) are equal in 
distribution. Hence, M is the unique weak limit of {W{k,w)} for arbitrary 
w € R''. We summarize our analysis in the following theorem. 

Theorem 2.3.1 Assume that assumptions ( W l ) , (W2) and (W3) are satisfied 
and denote the maximal Lyapunov exponent of {A{k)} by a. If v > a, then the 
sequence 

W{k + 1) = A{k) (g) C{(j{k + 1)) ® W{k) ® B{k) 

converges with strong coupling to an unique stationary regime W, with 

W = D{0) © 0 C ( - r ( - j ) ) ® D{j) , 

where D{0) = B o 9'^ and 

3 

D{j) = (^A{-i)®B{-{j + l)), j > l . 

Proof: It remains to be shown that the convergence of {W{k)} towards W 
happens with strong coupling. For w € R"', let W{k, w) denote the vector of fc*'' 
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sojourn times, initiated at 0 to w. From the forward construction, see (1.22) on 
page 20, we obtain 

k 

W{k + l,w) = 0 A{i) (g> C(a{i + 1)) ® u; 
i=0 

k k 

® 0 (8) A{j)^C{a{j + l))®Bii). 

Prom the arguments provided in step 2 of the above analysis it follows that 

fc 
0 y l ( i ) ® C ( C T ( i + l ) ) ® « ; lim 

A;—>oo 
j = 0 

a.s. , 

provided that v > &. Hence, there exists an a.s. finite random variable /?(w), 
such that 

Vfc > P{w) : \ A[i) ® C{a{i + 1)) ® w 
1=0 

< 0 . 

In words, after /3(w) transitions the influence of the initial vector w dies out. 
We now compare two versions of {W{k)}. One version is initialized to W, the 
stationary regime, and the other version is initialized to an arbitrary finite vector 
w. We obtain that 

Vfc > ra&x{(3{w),l3{W)) : W{k,w) = W{k,W). 

Hence, {W{k, w)) couples after a.s. finitely many transitions with the stationary 
version {W{k,W)]. D 

It is worth noting that /3(w), defined in the proof of Theorem 2.3.1, fails to be 
a stopping time adapted to the natural filtration of {{A{k),B{k)) : fc > 0}. More 
precisely, /?(w) is measurable with respect to the cr-field a{{A{k),B{k)) : fc > 0) 
but, in general, {P{w) = m} ^ cr((A(fc), B{k)) : m > fc > 0), for m € N. 

Due to the max-plus formalism, the proof of Theorem 2.3.1 is a rather 
straightforward extension of the proof of the classical result for the G/G/1 
queue. To fully appreciate the conceptual advantage offered by the max-plus 
formalism, we refer to [6, 13] where the above theorem is shown without using 
max-plus formalism. 

2.4 Harris Recurrent Max-Plus Linear Systems 
(Type I and Type Ha) 

The Markov chain approach to stability analysis of max-plus linear systems 
presented in this section goes back to [93, 41]. Consider the recurrence relation 
x{k + 1) = ^(fc) ® x{k), fc > 0, and let 

Z^-_i(fc) = a;j-(fc)-*i(fc), j > 2 . (2.36) 
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denote the discrepancy between component Xi{k) and Xj{k) in x{k). The se­
quence {Z{k)} constitutes a Markov chain, as the following theorem shows. 

Theorem 2.4.1 The process {Z{k) : k > 0} is a Markov chain. Suppose 
Z{k) = {zi,... ,zj-i) for fixed zj G K. Then the conditional distribution of 
Zj{k + 1) given Z{k) = {zi,..., zj-i), is equal to the distribution of the random 
variable 

J J 

^ j + i i ( f c ) e 0 y l j + i i ( / c ) ® Z i - i - Aiiik) (S ^ Au{k) ® Zi-i , 
i=2 

fori <j < J -1. 

Proof: Note that 

i=2 

a®x®b®y — x=max(a + x,b + y) — 

=max(a, b+ [y — x)) 

=a®b®{y-x). 

Using the above equality, we obtain for 2 < j < J: 

x 

Zj-i{k + \)=Xj{k + 1) - a:i(fc + 1) 

= (v4(fc) ® x{k))j - {A{k) ® x{k))i 

=Aji{k) ® xi{k) e Aj2{k) ®X2{k)®---® Ajj{k) ® xj{k) -

Au(k) (g) xi(k} e Ai2{k) (g) X2ik) e • • • ® Aij(k) ® xj{k) 

=Aji{k) <S> xi{k) ® Aj2(k) ®X2{k) ® ••• ® Ajj{k) ®xj{k) - xi[k) -

{Aii{k) ® xi{k) ® Ai2{h) ® X2{k) ® • • • ® Aij{k) ® xj{k) - xi{k)) 

=Aji{k) e Aj2{k) ® {X2{k) - xi{k)) ® • • • ® Ajj{k) ® {xj{k) - xi{k)) 

Aii{k) ® Ai2{k) ® {x2{k) - xi{k)) ® • • • 0 Aij{k) ® {xj{k) - xi[k)) 

=Aji{k) ® Aj2{k) ® Zi{k) ® • • • ® Ajj{k) ® Zj-i{k) -

Aii(k) ® Ai2ik) ® Zi(/c) ® • • • ® Aij{k) ® Zj^i{k). 

Prom this expression it follows that the conditional distribution of Z{k + 1) 
given Z ( 0 ) , . . . , Z{k) equals the conditional distribution of Z{k + 1) given Z{k) 
and hence the process {Z{k) : A; > 0} is a Markov chain. D 

Now define 
D{k) = xi{k) - xi{k - 1) , k>l. 

Then, we have 
k 

xi{k) = xi{0) + ^Din), k>l, (2.37) 
n=l 

a n d 

fc 

xj{k) = xj{0) + {Zj^i{k)-Zj^i{0)) + ^D{n), k>l,j>2. (2.38) 
n=l 
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Theorem 2.4.2 For any k > 0, the distribution of {D{k + l),Z{k + 
1)) given {Z{0),D{1), Z{1),... ,D{k), Z{k)) depends only on Z{k). If 
Z{k) = {z2,... ,zj), then the conditional distribution of D{k + 1) given 
(Z(0), D(l), Z(l),..., D{k), Z{k)) is equal to the distribution of the random var­
iable 

J 

Anik) ® ^ Aij{k) 1^ Zj-i . 

Proof: We have 

Z)(A; + l)=xi(fc + l)-a;i(A;) 

=An{k) (8> xi{k) ® A^ik) ® x^ik) 0 • • • © Aij{k) ® xj{k) - xi(k) 

=^ii(A;) © Ai2{k) ® {x2ik) - Xi{k)) ® • • • © Aij(k) ® (xj(k) - Xi{k)) 

=Auik) © Ai2{k) ® Zi(A;) © • • • © Aij{k) ® Zj^i{k), 

which, together with the previous theorem, yields the desired result. D 
If {Z{k)} is uniformly ^-recurrent and aperiodic (for a definition we refer to 

the Appendix), then it is ergodic and, as will be shown in the following theorem, 
a type Ila limit holds. Elaborating on a result from Markov theory for so-called 
chain dependent processes, ergodicity of {Z{k)} yields existence of the type I 
limit and thus of the Lyapunov exponent. 

Theorem 2.4.3 Suppose that the Markov chain {Z{k) : k > 1} is aperiodic 
and uniformly (p-recurrent, and denote its unique invariant probability measure 
by TT. Then the following holds: 

(i) For I < i,j < J, Xi{k) — Xj{k) converges weakly to the unique stationary 
regime n. 

(a) If the elements of A{k) have finite first moments, then a finite number A 
exists such that 

lim ^ = A, 3 = 1,...,J, 
fc—too K 

almost surely for any finite initial value, and 

A = E, [D(1)] , 

where E,r indicates that the expected value is taken with Z(0) distributed 
according to TT. 

Proof: For the proof of the first part of the theorem note that 

Xi{k) - Xj{k) = Zi-.i{k) - Zj^i{k), 

for 2 <i,j < J, and 

Xi{k) - xi{k) = Zi^i{k), xi{k) - Xi{k) = -Zj_i(A;), 
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for 2 < i < J . Hence, weak convergence of Z{k) to a unique stationary regime 
implies weak convergence of Xi{k) — Xj{k) to a unique stationary regime. Weak 
convergence of Z{k) to a unique stationary regime follows from uniform </>-
recurrence and aperiodicity of Z{k), see Section F in the Appendix, and we 
have thus shown the first part of the theorem. 

We now turn to the second part. The process {D{k) : fc > 1} is a so-called 
chain dependent process and the limit theorem of Griggorescu and Oprisan [55] 
implies 

1 *= 
Mm - V D{n) = A = E^fD(l)] a.s. , 

fc—>oo k '—' 

for all initial values XQ. This yields for the hmit of xi{k)/k as k tends to oo: 

£mJ..(.fî himfi..(0) + i t^w) 
\ n= l / 
1 '̂  

= lim - V D ( n ) 

= A a.s. 

It remains to be shown that, for j > 2, the limit of Xj{k)/k as k tends to oo 
equals A. Suppose that for j > 2: 

lim jZj-iik) = lim - fz ,_ i ( fe ) - Z , - i (0 ) ) = 0 a.s. (2.39) 
fc—*oo k fc—*oo k \ ' 

With (2.39) it follows from (2.38) that 

lim ia;,(fc)= lim i(Z,_i(/=) - Z,_i(0)) + A 
fc—too K fc—too K 

=A a.s. , 

for j > 2. In what follows we show that (2.39) indeed holds under the conditions 
of the theorem. 

Uniform (^recurrence and aperiodicity of the Markov chain {Z{k) : k > 1} 
implies Harris ergodicity. Hence, for J — 1 > j > 1, finite constants Cj exists, 
such that 

lim 
1 
7:X]^jW = Cj a.s. 
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This implies 

1 '' 

=£-(^^^'^'^^^^^^^-^"^) 
\ n=l / 
1 fc — 1 1 ^~^ 

lim -Zj{k) + lim —;— lim y ^ Z , ( n ) 
n = l 

which yields, for J — 1 > j > 1, 

lim 7Zi(fc) = lim yiZjik) - Z,(0)) = 0 a.s. 

D 

Remark 2.4.1 Let the conditions in Theorem 2.4-3 be satisfied. If, in addition, 
the elements of A{k) and the initial vector have finite second moments, then 

^2 4s.f 

T l = l 

and if a"^ > 0, the sequence 

0 < 0-2 1î  ^ E ^ [ ( D ( 1 ) - X)(D{n) - A)] < oo , 

{xi{k),...,xj{k)) - {kX,...,kX) 

77^ ' '-'' 
converges in distribution to the random vector {Af,... ,Af), where hf is a stan­
dard normal distributed random variable. For details and proof we refer to [93]. 

Remark 2.4.2 If the state space of Z{k) is finite, then the convergence in part 
(i) of Theorem 2.4-3 happens in strong coupling. 

The computational formula for X put forward in Theorem 2.4.3 is also known 
as 'Furstenberg's cocycle representation of the Lyapunov exponent;' see [45]. 

Example 2.4.1 Consider x{k) as defined in Example 1.5.5, and let a = \ and 
a' = 2. Matrix D^ is primitive and has (unique) eigenvector (1,1,0,1)''". Let 
z{\) = ^((1,1,0,1)"'") = ( 0 , - l , 0 ) ' ' ' . It is easily checked that {Z{k)} is a Markov 
chain on state space {z{i) : 1 < i < 5}, with 

z{2) = I 0 I , z(3) = I 0 I , z[A) = I - 2 I and «(5) = j - 1 j . 
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Denoting the transition probability of Z{k) from state z{i) to state z{j), for 
1 < *ii < 5, one obtains the following transition matrix 

/ 1 - , 0 

P = 

V 1 

0 
0 
0 

-e 

0 
0 
0 

e 

e 
e 
0 
0 

0 0 \ 
i - e 0 
1-61 0 

0 1 
0 0 / 

The chain is aperiodic and since the state space is finite it is uniformly <p-
recurrent. Moreover, the unique stationary distribution of Z(k) is this given by 

(1 - ef _ ^(i - e) 02 

e{i - 0) , 0 ( 1 - 0 ) 
7r;(4)=: — and ~ — 

: , 7r^(3) 1 + 0 ( 1 - 0 ) ' 

4 + 0 ( 1 - 0 ) ""' ""^^'^ = 1 + 0 ( 1 - 0 ) • 

Applying Theorem 2.4-3, yields X = E^[£>(1)]. Evoking Theorem 2.4-2, this 
expected value can thus be computed as follows: 

5 

'^=Zl'^^w(l®2®a:2(«)) 

=7r2( l ) + 27r2(2) + 27r2(3) + ''^z{4) + 7''2(5) 

0 
" " • " 1 + 0 - 0 2 ' 

for any 0 6 [0,1]. For a different example of this kind, see f65j. 

Example 2.4.2 Let {A(k)}, with A(k) £ {0,1}2'^2^ jg ^̂ ^ j_j^^^ sequence fol­
lowing the distribution P{Aij{k) = 0) = 1/2 = P{Aij{k) = 1) for 1 < i,j < J. 
We turn to the Markov process {Z{k)} as defined in (2.36). This process has 
state space { — 1,0,1}. By Theorem 2.4-1, the transition probability of Z{k) is 
given by 

P{Z{k + l) = m\Z{k) = z) 

= P ( (^2i(fc + 1) e (^22(fc + 1) (8) z)) - An(k + 1) ® {Ai2{k + I) ® z) = m), 

form,z € {—1,0,1}, and the transition matrix on {Z{k)} can be computed as 

/ 4 2 4 » 

-3 . 5 J . 
16 8 16 

\ 1 1 1 / 
\ 4 2 4 / 

The Markov chain {Z{k)} is aperiodic (all elements ofP are positive), uniformly 
4>-recurrent (the state space is finite) and has unique stationary distribution 

' ^ - ^ = 1 4 ' ^ ° = 1 4 ' ^ ^ = 1 4 
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From Theorem 2.4-3 together with Theorem 2.4-2 follows that 

A= Y. E [ ^ n ( l ) ® ( ^ i 2 ( l ) ® 0 ) ] 7 r , 
2:6{-l,0,l} 

_ 6 
~ 7 ' 

As shown in [93], for this example a (as defined in Remark 2-4-1) is equal to 

33/343. 

The above examples are deceitfully simple in the sense that (i) the transition 
probability (in this case a matrix) of {Z{k)} can be calculated easily and (ii) we 
can deduce that {Z{k)} is aperiodic and uniformly (^-recurrent from inspecting 
the transition matrix of {Z{k)}. In [93], examples with countable state space 
are discussed. For one example, the elements of A{k) are exponentially distrib­
uted with the same parameter; for another example, the elements are assumed 
to be uniformly distributed over the unit interval. Unfortunately, even when 
the elements of A{k) are governed by these ostensibly simple distributions, the 
analysis leads to cumbersome computations. It is mainly for this reason that 
the Markov chain approach, as presented in this section, will be of avail only in 
special cases. 

2.5 Limits in the Projective Space (Type l ib) 

In the previous section, we studied the limit of differences within x{k), that is, 
Xj{k) —xi{k), for 2 < j < J . In what follows, we take a slightly different point of 
view and consider differences betweenx{k) andx{k — l), that is, Xj{k)—Xj{k—1), 
for 1 < j < J. The basic recurrence relation we study is given by 

x{k + 1) = A{k) ® x{k) , k>0, (2.40) 

with a;(0) = XQ e R^^^ and A{k) G R;^^;^, for A; > 0. 
For the following we use a definition of Z{k) that slightly differs from the 

definition in Section 2.4. We now let 

Z{k) = x{k)-x{k-l), k>l, (2.41) 

denote the component-wise increase of x{k). In particular, the components of 
Z{k) are given by 

Zj{k) = Fj{A{k-l),x{k-l)) 

def 
(^Aji{k-l)®Xi{k-l)] - Xj{k-1) 

= Ajj{k - 1) ®^Aji{k - 1) ® {xi{k - 1) - Xj{k - 1)) , j > 1 

m 
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For x{k — 1) £ IPKmaxi the value of Fj doesn't depend on the representative, 
that is, for all X G x{k - 1) we have Zj{k) = F,(^(A;-1) , X) , for 1 < j < J , and 
we write Zj{k) — Fj{A{k — l),x{k — 1)) to express this fact. For the definition 
of the modes of convergence used in the following lemma we refer to Section E.4 
in the Appendix. 

Lemma 2.5.1 Consider the situation in (2.40) and let {A{k) : k >Q} he sta­
tionary. If x{k) 6 PR'^ converges weakly to a unique invariant distribution, 
uniformly over all initial conditions, then Z{k) converges weakly to a unique 
invariant distribution, uniformly over all initial conditions. 

Proof: Consider the sequence y{k) — {A{k),x{k)), k > 0. The sequence 
A{k) is stationary by assumption with stationary distribution TTA. Let A be 
distributed according to TTA. If x{k) converges weakly to x, then y(k) converges 
weakly to {A,x). Because F — {F\,... ,Fj) defined above is continuous, we 
obtain from the continuous mapping theorem (see Appendix, Section E.4) the 
weak convergence of F{A{k),x{k)). D 

In what follows we establish sufficient conditions for weak convergence of 
x{k). By Lemma 2.5.1, this already implies weak convergence of Z{k) which 
in turn yields type l ib second-order ergodic theorems. As we will show in the 
following, in many situations, the convergence of Z{k) occurs even in strong 
coupling. In Section 2.5.1, we will study systems with countable state space 
and, in Section 2.5.2, we will address the general situation. In Section 2.5.3 we 
revisit the deterministic setup. Finally, we present a representation of type lib 
limits via a renewal type approach in Section 2.5.4. 

2.5.1 Countable Models 

In this section, we study models with countable state space. Let ^ be a finite 
or countable collection of J x J-dimensional irreducible matrices. We think of 
A as the state space of the random sequence {A{k)} following a discrete law. 

Definition 2.5.1 Let {A{k)], with A{k) e A, be a random sequence. A matrix 
A € A is called a pattern of {A{k)} if a sequence a = ( a i , . . . , a^) £ A'^ exists 
such that 

(o) A = o;v ® ajv-i ® • • • ® ai 

(fo) P{A{N + k) = aN,...,A{l + k)=ai) >0, k&N. 

We call a the sequence constituting A. 

Note that if {.(4(A;)} is i.i.d., then the second condition in the above definition 
is satisfied if we let A contain only those possible outcomes of A{k) that have 
a positive probability. In other words, in the i.i.d. case, the second condition is 
satisfied if we restrict A to the support of A{k). Existence of a pattern essentially 
implies that A is at most countable, see Remark 2.2.8. 

The main technical assumptions we need are the following: 
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(CI) The sequence {A{k)} is i.i.d. with countable state space .4. 

(C2) Each A^ Ais regular. 

(C3) There is a primitive matrix C that is a pattern of {A{k)}. 

Observe that we have already encountered the concept of a pattern - as 
expressed in condition (C3) - in condition (C) on page 82, although we haven't 
coined the name 'pattern' for it at that stage. _ _ _ 

The following theorem provides a sufficient condition for {x{k)} to converge 
in strong coupling. 

Theorem 2.5.1 Let (CI) - (C3) be satisfied, then {x{k)} converges with strong 
coupling to a unique stationary regime for all initial conditions in R'^. In par­
ticular, x{k) converges in total variation. 

Proof: Let C be defined as in (C3) and denote the coupling time of C by c. 
For the sake of simplicity, assume that C & A, which imphes N = I. Set TQ = 0 
and 

Tk+i = inf{7n > Tk + c : A{m — i) = C : 0 < i < c— 1} , k > 0 . 

In words, at time rfc we have observed for the A;*'' time a sequence of c consecutive 
occurrences of C. The i.i.d. assumption (CI ) implies that r^ < Tk+i < oo for all 
k and that limfc_cx) Tfc = oo with probability one. Let p denote the probability 
of observing C, then we observe C° with probability p'^. By construction, the 
probability of the event {TJ = m} is less than or equal to the probability of the 
event A{k) jtC,0<k<m — c, and A{k) = C, for /c = m — c + 1 , . . . , m. In 
other words, for m > c, it holds that P ( T I = m) > (1 — p)™"'^p'^. Hence, 

oo 

E [ n ] < ^ m ( l - p ) ™ - V 
m=c 

oo 

= 5](m + c)(l-p)>^ 
m - 0 

oo oo 

= c p < ^ X ^ ( l - p ) ' " + p ^ ^ m ( l - p ) ™ 
m=0 m=0 

_cp^ P^jl-p) 

P P^ 
< 0 0 , 

which implies that E[rfc+i — Tk] < oo, for k &N. 
At Tfc, x{Tk) € V{C), see Theorem 2.1.L By condition (C3), C is primitive 

and, by Corollary 2.1.1, the eigenspace of C is a single point in the projective 
space (that is, the eigenvector of C is unique). In other words, {A{k)} has MLP, 
see Lemma 2.2.2. By (C2), x{k) 6 R'', for any k, and from the above line ar­
gument it follows that {x{k)} is a Harris ergodic Markov chain and regenerates 
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whenever the chain hits the single point V{C). This impUes that {x{k)} con­
verges with strong coupling to a unique stationary regime. See Section F in the 
Appendix. D 

What happens if we consider in Theorem 2.5.1 a stationary and ergodic 
sequence instead of an i.i.d. sequence? The key argument in the proof of Theo­
rem 2.5.1 is that {A{k)} has MLP. This is guaranteed by the fact that we 
observe with positive probability a sequence of occurrences of A{k) such that 
the partial product over that sequence equals C, for some primitive matrix C, 
where c denotes the coupling time of C, see Lemma 2.2.2. If the couphng time 
of C is larger than 1, then, under i.i.d. regime, the event that C occurs c times 
in a row has positive probability. However, this reasoning doesn't apply in the 
stationary case. To see this, consider the following example. Let 0 = {wi,W2} 
and P{ijJi) = 1/2, for i = 1,2. Define the shift operator 6 by 6{(JJI) = W2 and 
6{iji>2) = t^i- Then 9 is stationary and ergodic. Consider the matrices A,B as 
defined in Example 2.1.1 and let 

{A{k,wi)} = A,B,A,B,... {Aik,iV2)} = B,A,B,A,... 

The sequence {A{k)} is thus stationary and ergodic. Furthermore, A,B are 
primitive matrices whose coupling time is 4 each. But with probability one we 
never observe a sequence of 4 occurrences in a row of either A or B. Since neither 
^ or B is of rank 1, we cannot conclude that {A{k)} has MLP and, consequently, 
that x{k), with x{k+l) = ^4=0 A{i)iS>xo, is regenerative. However, if we replace, 
for example, A by A'", for m > 4 (i.e., a matrix of rank 1), then the argument 
would apply again. For this reason, we require for the stationary and ergodic 
setup that a matrix of rank 1 exists that is a pattern, so that x{k) becomes a 
regenerative process. Note that the condition 'there exits a pattern of rank 1' 
is equivalent to the condition '{A{k)} has MLP.' The precise statement is given 
in the following theorem. For a proof we refer to [84]. 

Theorem 2.5.2 Let {A(k)} be a stationary and ergodic sequence of a.s. regular 
square matrices. If {A{k)} has MLP, then {x{k)} converges with strong coupling 
to a unique stationary regime for all initial conditions in R'^. In particular, 
{x{k)} converges in total variation. 

2.5.2 General Models 

In this section, we consider matrices A{k) the elements of which may follow 
a distribution that is either discrete or absolutely continuous with respect to 
the Lebesgue measure, or a mixture of both. For general state-space, the event 
{A{N + k) ® ••• ^ A{2 + k) ® A{1) = A} in Definition 2.5.1 typically has 
probability zero. For this reason we introduce the following extension of the 
definition of a pattern. Let M 6 Rma>f t)e a deterministic matrix and rj > 0. We 
denote by B{M, rj) the open ball with center M and radius 77 in the supremum 
norm on R'̂ **'̂ . More precisely, A G B{M,rj) if for all «, j , with 1 < i,j < J, it 
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holds that 
€ {Mij - T], Mij + rf) for Mij ^ e, 

= e ior Mij = e . 

With this notation, we can state the fact that a matrix A belongs to the support 
of a random matrix A by 

V??>0 PiAeB{A,r])) > 0 . 

This includes the case where A is a boundary point of the support. We now 
state the definition of a pattern for non-countable state-space. 

Definition 2.5.2 Let {A{k)} be a random sequence of matrices overM^^ and 
let A e ^i^x b^ ^ deterministic matrix. We call A a pattern of {A{k)} if a 
deterministic number N exists such that for any r] > 0 it holds that 

P(^A(N - 1) ^ A{N - 2) ® • • • ® A{0) 6 5 ( i , r / ) ) > 0. 

Definition 2.5.2 can be phrased as follows: Matrix A is a pattern of {A{k)} if 
Af e N exists such that A lies in the support of the random matrix A{N — 1) ® 
A{N — 2)® • • • ® ̂ (0) . The key condition for general state space is the following; 

(C4) There exists a (measurable) set of matrices C such that for any C 6 C it 
holds that C is a pattern of {A{k)} and C is of rank 1. Moreover, a finite 
number A'' exists such that 

P(A{N - 1) ® A{N - 2) ^ • • • ® A{Q) G c ) > 0. 

Under condition (C4) , the following counterpart of Theorem 2.5.2 for models 
with general state space can be established; for a proof we refer to [84]. 

Theorem 2.5.3 Let {A{k)} be a stationary and ergodic sequence of a.s. regular 
matrices in K;^^^. / / condition (C4) is satisfied, then {a:(fc)} converges with 
strong coupling to a unique stationary regime. In particular, {x{k)} converges 
in total variation to a unique stationary regime. 

In Definition 2.5.2, we required that after a fixed number of transitions the 
pattern lies in the support of the matrix product. The following, somewhat 
weaker, definition requires that an arbitrarily small Tj-neighborhood of the pat­
tern can be reached in a finite number of transitions where the number of tran­
sitions is deterministic and may depend on rj. 

Definition 2.5.3 Let {A{k)] he a random sequence of matrices overR^^ and 
let A e Kmax ^s '^ deterministic matrix. We call A an asymptotic pattern of 
{A{k)} if for any rj > 0 a deterministic number Nn exists, such that 

p(^A{Nr, - 1) ® A{Nr, - 2) ® • • • ® ^(0) G B ( i , r ? ) ) > 0 . 
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Accordingly, we obtain a variant of condition (C4). 

( C 4 ) ' There exists a matrix C such that C is an asymptotic pattern of {A{k)} 
and C is of rank 1. 

Under condition ( C 4 ) ' only weak convergence of {x{k)} can be established, 
whereas (C4) even yields total variation convergence. The precise statement is 
given in the following theorem. 

T h e o r e m 2.5.4 Let {A{k)] he a stationary and ergodic sequence of a.s. regular 
matrices in Kma>f • V condition (C4) ' is satisfied, then {x{k)} converges with 5-
coupling to a unique stationary regime. In particular, {x{k)} converges weakly 
to a unique stationary regime. 

Proof: We only give a sketch of the proof, for a detailed proof see [84]. Suppose 
that a stationary version a; o '̂̂  of x(k) exists, where 6 denotes a stationary and 
ergodic shift. We will show that x{k) converges with 5-coupling to x oO'^. Fix 
?7 > 0 and let T denote the time of the first occurrence of the pattern. Condition 
(C4) ' implies that at time r the projective distance of the two versions is at 
most ?7, in formula: 

d]p(x(r),a;o6'-^) < r?. (2.42) 

As Mairesse shows in [84], the projective distance of two sequences driven by 
the same sequence {A{k)} is non-expansive which means that (2.42) already 
implies 

^k>T : dTp{x{k),xoe'=) < T]. 

Hence, for any rj > 0, 

P[dTp{x{k),xoe'') < 7], k>T) = 1 . 

Stationarity of {A{k)} implies T < co a.s. and the above formula can be written 

lim P{dTp{x{k),xoe'') < ri) = 1. 

Hence, x{k) converges with J-coupling to a stationary regime. See the Appendix. 
Uniqueness of the limit follows from the same line of argument. D 

We conclude this presentation of convergence results by stating the most 
general result, namely, that existence of an asymptotic pattern is a necessary 
and sufficient condition for weak convergence of {x{k)}. 

T h e o r e m 2.5.5 (Theorem 7.4 in [84]) Let {^(A;)} be a stationary and ergodic 
sequence on ^i^^- ^ necessary and sufficient condition for {x{k)] to converge 
in 5-coupling (respectively, weakly) to a unique stationary regime is that (C4) ' 
is satisfied. 
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2.5.3 Periodic Regimes of Deterministic Max-Plus DES 

Consider the deterministic max-plus linear system 

x{k + 1) = A®x{k) , fc > 0 , 

with a;(0) = a;o S K'̂  and A S K^ax ^ regular matrix. A periodic regime of 
period d is a set of vectors x^,... ,x'' e R"̂  such that (i) a;' ^ X'', for 1 < i ^ 
j < d, and (ii) a finite number fj, exists which satisfies 

X '+^ = A®x\ l<i< 

and ^i^x^ = A^x'^. A consequence of the above definition is that x^,... ,x'^ are 
eigenvectors of A'^ and fi is an eigenvalue of A'^. U A is irreducible with cyclicity 
cr{A), then A will possess periodic regimes of period (T{A), see Theorem 2.1.1, 
and A"'-^' will have cr{A) mutually linear independent eigenvectors. 

From a system theoretic point of view, one is interested in the limiting be­
havior of x{k). More precisely, one is interested in the behaviour of x{k) for k 
large. If A is primitive, x{k) converges in a finite number of steps to x, where 
X denotes the unique eigenvector of A. In the general situation, however, there 
are two sources for non-uniqueness of the limiting behavior of x(k). First, if A 
has cyclicity cr{A) > 1, then {x{k)} may eventually reach a periodic regime of 
period cr{A). Secondly, even if A has cyclicity one, if the communication graph 
of A possesses m strongly connected subgraphs, with m > 1, then the eigenspace 
of yl is a TO-dimensional vector space. See Theorem 2.1.2. 

Example 2.5.1 Consider matrix 

3 6 
4 4 

A is irreducible with eigenvalue 5 and the critical graph of A consists of the 
circuit ((1,2), (2,1)). The critical graph has thus one m.s.c.s. and a-{A) = 2. It 
is easily checked that the eigenspace of A is given by 

-m l/(^) = < j ( - ) G K L x | 3 a € K : ( ^ M = a ® f J 

Starting in x{Q) 0 V{A), will lead to a periodic regime of period 2. For example, 
taking x{0) = (0,0), yields 

* ) = © . '(^)-(;2). «(3)=(;9. * ) - ( » 
In other words, A? has eigenvalue 10 and two linear independent eigenvectors, 
namely 

loj ' Uy • 
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We call the set of all initial conditions XQ such that A'' ® xp eventually 
reaches x, for some eigenvector x, (resp. periodic regime x^,..., x'^) the domain 
of attraction of x (resp. a;^,... ,x'''). For example, for the matrix given in Ex­
ample 2.5.1 above, the vector x = (0,0) lies in the domain of attraction of the 
periodic regime (6,4), (10,10). 

For J = 3, Mairesse provides a graphical representation of the domain of 
attraction in the projective space, see [83] and the extended version [82]. In 
particular, the eigenvector (resp. periodic regime) in whose domain of attraction 
an initial value XQ lies can be deduced from a graphical representation of the 
eigenspace of A in the projective space. 

2.5.4 The Cycle Formula 

We revisit the situation in Section 2.2.3.2 and use the notation as introduced 
therein. Specifically, we assume that {A{k)} has MLP. Elaborating on the pro­
jective space, (2.26) reads 

x{Tk) X , fc > 0 . 

for some fixed x G R*̂ . This constitutes a regenerative property of {x(k)}. 
Specifically, the cycles {x{k) : T). < n < Tk+i] constitute an i.i.d. sequence. 
Moreover, {Tfc} is a sequence of renewal times for the process {x{k) — x{k — l)} as 
well. Stationarity and ergodicity of {A{k)) imply that x(k) hits x a.s. infinitely 
often. Hence, {x{k) — x{k — 1)} is a regenerative process with renewal times 
{Tfc}, see Section E.9 in the Appendix. Note that 

E Y, {<k) - x{k - 1)) 
fc=To + l 

E [ x ( r i ) - x{To) 

Let X denote the unique stationary regime of {x{k)}. Provided that 
E[a;(Ti) — a;(ro)] < oo and E[Ti — To] < oo, the limit theorem for regenera­
tive processes yields 

1 ^ 
lim TrT^ {xik)-x(k-l)) = 

k=l 
E[Ti - To] 

fc=To + l 

= (fc-l)) a.s. 

Moreover, ergodicity of {A{k)] yields 

1 ^ 

N->oo N 
fc=l 

for X e X . In particular, for X 6 X, it holds that 

Eixoe-lc] = E[Xoe-x]. 

We summarize the above analysis in the following lemma. 
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Lemma 2.5.2 (Cycle Formula) Let {A{k)} he a stationary and ergodic se­
quence in Ril^ that has MLP. //E[a;(Ti) - x{To)] < oo and E[Ti - TQ] < oo, 
then 

where X denotes the unique stationary regime of {x{k)}. 

Remark 2.5.1 Note that 

X o 61 = { r I 3a : Y = a ® (X o 0) } 

= { F | 3 Q : Y = {a®X)oe] 

= Xo6> 

and the cycle formula can alternatively he phrased 

E[x(Ti) - x{To)] 
E[Xoe-X] = E[Ti - To] 

Remark 2.5.2 If {A{k)] is i.i.d., then in the above theorem the condition that 
{A{k)} has MLP can be replaced by condition (C), see Lemma 2.2.2. Moreover, 
a simple geometrical trial argument, like the one used in the proof of Theo­
rem 2.5.1, shows that EfTi — TQ] < oo. If, in addition, A{k) is integrable, one 
can show that E[a;(Ti) — x{To)] < cx) holds as well. 

In the following section we will establish sufficient conditions for M[Xo6 — X] 
to be equal to the Lyapunov exponent. 

2.6 Lyapunov Exponents via Second Order Lim­
its (Type l ib) 

The Lyapunov exponent can be defined as a first-order limit, as explained in 
Section 2.2. However, as we will show in this section, under suitable conditions, 
the Lyapunov exponent can be obtained by a second-order limit as well. In 
Section 2.6.1 we establish the general result, whereas in Section 2.6.2 we provide 
a direct analysis via backward coupling. It is this result that will prove valuable 
for the analysis provided in Part II. The basic recurrence relation we study is 
given by 

x{k-I-1) = A{k) ® x{k), fe>0, (2.43) 

with x{0) = a;o G K'̂  and {A{k)} a stationary sequence of a.s. regular matrices 
on R;^^/. 
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2.6.1 The Projective Space 

Suppose that x{k) converges in total variation and let X denote the limiting ran­
dom variable. Goldstein's maximal coupling implies the existence of a random 
variable A'' so that for all A; > A'' 

x(k) = Xoe'' a.s. , 

where, for notational convenience, we have identified the versions of the random 
variables on the underlying common probability space with the original ones. 
Let XQ denote the initial value of the recurrence relation, then we may rephrase 
the above equation as 

^(A:) <8) • • • (g> A(0) ® xo = X o f̂c , A;>A^, 

or, equivalently, 

A{0) iSi A{-1) iSi - • • iSi A{-k) ® xo = X , k>N, 

where {A{k) : k = . . . 1 , 0 , - 1 , . . . } denotes the continuation of the stationary 
sequence {A{k)} to the negative numbers. Hence, for X e X there exists a G R 
so that 

^(0) ® A{-1) ® • • • ® A{-k) ®xo = o ® X , k> N . 

This implies, ior k > N, 

A{1)®A{0) ® A{-1) ® • • • <g) A{-k) (g) xo - ^(0) » • • • (g) A{-k) ® XQ 

=.4(1) ® a ® X - a ® X 

= ^ ( 1 ) ® X - X , 

where a.s. regularity of {A{k)} and our assumption that XQ g R'̂  implies that 
the above differences are well-defined. Taking the limit, 

lim A{1) ® ^(0) ® ^ ( - 1 ) ® • • • ® ^(-A;) ® XQ - ^(0) ® • • • ® A{-k) ® xo 
fc—•OO 

= ^(1) ® ^(0) ® ^ ( - 1 ) ® • • • ® A{~N) ® Xo - A{0) ® • • • ® ^(-A' ' ) ® Xo 

= y l ( l ) ® X - X , 

for all X 6 X. We introduce the following condition: 

(D) A random variable Z G [0, oo)'^ exists such that with probability one 

s u p | ^ ( l ) ® ^ ( 0 ) ® y l ( - l ) ® - - - ® ^ ( - A ; ) ® x o - ^(0)®-••®.A(-A;)®xo| < Z 
k 

and E[Z] is finite. 

In the next section we will provide sufficient conditions for (D). 
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Suppose that condition (D) is satisfied, applying the dominated convergence 
theorem then yields 

lim E[x{k + 1) - x{k)] 
k-~*oo 

k 

= E 

= _lim 'E\A{l)®A{Q)®A{-l)^'--®A{-k)®xo - yl(0) ® • • • ® A(-fc) ® XQ] 

lim (^(1) ® ̂ (0) ® ^ ( - 1 ) ® • • • ® A{-k) ®xo - A{0) ® • • • ® A{-k) ® a;o) 
;—+00 \ / 

= E[A{1)®X -X] < o o . 

Convergence of E[x(fc + 1) — x{k)] implies convergence of the Cesaro-sums (see 
Section G.l in the Appendix) and we obtain 

J fc+i 
lim E[x{k + 1) - x{k)]= lim V E [ a ; ( i ) - x{i - 1)] 

fc—»oo fc—>oo A; + 1 T~f 

= lim E 
fc—*oo 

= lim E 
n—KXi 

= lim E 
fc—>oo 

-l^J^i^'iiJ-xii-l)) 
i=l 

Ixik) 

We summarize our analysis in the following theorem: 

Theorem 2.6.1 Consider the situation in (2.43). If 

• {x{k) : fc > 1} converges in total variation to x, 

• {A{k)} is a.s. regular and stationary, 

• condition (D) is satisfied, 

then there is an a.s. finite random variable N so that 

0 

lim E 
fc—>00 

x{k) 

k 
E ^ ( 1 ) ® 0 ^(«)®a;o - 0 A{i)(^xo 

i=-N i=-N 

for any finite initial value XQ € R'^. 

Under the conditions in Theorem 2.2.3, E[xj{k)]/k, 1 < j < J, tends to the 
Lyapunov vector of {j4(fc)} as k tends to oo. This yields the following represen­
tation for the Lyapunov vector: 

Lemma 2.6.1 Consider the situation in (2.43). If 

(i) {^(fc) : fc > 1} converges in total variation to x. 



110 Ergodic Theory 

(ii) condition (D) is satisfied, 

(iii) {j4(fc)} is an a.s. regular and stationary sequence of integrable matrices 
such that 

— {A(k)} has fixed support, 

— any finite element is a.s. non-negative, and 

— the elements on the diagonal are a.s. different from e, 

then there is an a.s. finite random variable N such that 

0 0 

E .4(1)® 0 A{i)®xo - 0 A{i)®xo 
i=-N i=-N 

= A, 

for any integrable initial value XQ € R '^ , where X denotes the Lyapunov vector 
of{A{k)}. 

Lemma 2.6.1 can be stated in various forms. For example, if we replace 
condition (iii) by the condition that {.A(fc)} has MLP, then we obtain that the 
components of the Lyapunov vector are equal, see Theorem 2.2.4. 

Recall that we have introduced e as the vector with all elements equal to e. 
For a; G R, the vector with all elements equal to x is then given by a: ® e. For 
sequences {A{k)} with countable state-space. Lemma 2.6.1 can be phrased as 
follows: 

Lemma 2.6.2 Consider the situation in (2.43). If 

• (CI ) — (C3) are satisfied, and 

• condition (D) is satisfied, 

then there is an a.s. finite random variable N so that 

0 0 

E ^ ( 1 ) ® ( ^ A{i)iS>xo - (g) A{i)<^xo 
i=-N i=-Ar 

A® e . 

for any integrable initial value XQ, where A denotes the Lyapunov exponent of 
{A{k)}. 

Proof: Conditions ( C l ) — (C3) imply convergence of {x{k) : A; > 1} in total 
variation, see Theorem 2.5.1. By condition (C3), a primitive matrix, say, C 
exists that is a pattern of {A{k)}, and we assume, for the sake of simplicity, 
that C £ A, which implies A'' = 1, Let c denote the coupling time of C. Prom 
the i.i.d. assumption it follows that the event {A{c — 1) = A{c — 2) = • • • = 
A{0) = C} has positive probability and matrix C therefore satisfies condition 
(C). By Theorem 2.2.4 we obtain limfc_oo ^[xj{k)]/k = A, for 1 < j < J. Hence, 
the proof of the lemma follows directly from Theorem 2.6.1. D 
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We conclude this section with a remark on the cycle formula in Section 2.5.4. 
Under the conditions put forward in the above Lemma it holds that 

E[A{1)<S>X - X] = A ® e . (2.44) 

The cycle formula can therefore be rephrased as follows: let the conditions in 
Lemma 2.6.2 be satisfied and let {Tk} denote the time of the fc"* occurrence of 
the c-fold concatenation of C, see Section 2.5.4 for a formal definition. A simple 
geometrical trial argument, like the one used in the proof of Theorem 2.5.1, 
shows that 

E[r i - To] < 00. (2.45) 

Elaborating on the limit theorem for regenerative processes (see Section 2.5.4 
for details), (2.45) together with (2.44) implies E[a;(T'i) - x{To)] < oo, and the 
cycle formula reads 

E[x(Ti) - x{To)] 

E[Ti - To] 

2.6.2 Backward Coupling 

In the previous section, the existence of a coupling time A'' was shown. In this 
section, we will provide an explicit construction of A'̂  via backward coupling. 
In Markov chain theory, backward coupling, or, coupling from the past, is an 
approach that allows sampling from the stationary distribution of a finite-state 
Markov chain. Suppose that we consider a family of Markov chains X^ on a fi­
nite state space S, each with the same transition probabilities and with common 
unique stationary distribution TT, but with version X" starting in state s 6 5 . If 
we can find a time T in the past such that all versions X^ starting, not at time 
0, but at time —T, have the same value at time 0, then this common value is a 
sample from n, see Theorem 1 in [92]. Intuitively, it is clear why this result holds 
with such a random time T. Consider a chain starting at —oo with TT. This chain 
must at time —T pick some value s, and from then on it follows the trajectory 
from that value. By definition of T, this trajectory reaches at time 0 the same 
state s' that is reached by X^ no matter what choice of s. Therefore, s' is a 
sample from TT. Propp and Wilson coin the name 'coupling-from-the-past' for 
this algorithm since in essence — T is a coupling time with the stationary version 
started at —oo. Based on the same principles, Borovkov and Foss developed in 
[23, 22] the so-called 'renovating events' approach to stability analysis of sto­
chastically recursive sequences. In particular, the approach to stability analysis 
via patterns (see Section 2.5) was originally inspired by backward coupling via 
'renovating events.' 

Elaborating on backward coupling, we combine our results for second-order 
limits with results for first-order limits in order to represent the Lyapunov expo­
nent (a first-order limit) by the difference of two finite horizon experiments. We 
follow the line of argument in [7]. The key assumption for our analysis is that 
{>l(fc)} possesses a pattern A such that A is primitive. The fact that {A{k)} 
admits a pattern resembles a sort of memory loss property of max-plus linear 
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systems. To see this, let x{k + 1) = A{k) ® x{k) be a stochastic sequence de­
fined via {A(/e)} and assume that {A{k)} has a pattern with associated matrix 
A and that {A{k)} is a.s. regular. For vectors x,y & R'', let x — y denote the 
component-wise difference, that is, (a; — y)j = Xj — yj. In what follows we con­
sider the limit of x{k + 1) — x{k) as k tends to oo, where the hmit has to be 
understood component-wise. In order to prove the existence of this limit we will 
work with a backward coupling argument. For this reason it is more convenient 
to let the index k run backwards. More precisely, we set 

0 

Al^ = ' A{Qi) ® A{-1) ® • • • ® A{-m) = ' (g) A{k) 

and 

^0 4?.f AO '^A°_^®xo = (g) A{k)®xo, 

k=—m 

with XQ = a;o e K'^, that is, xt^ is the state of the sequence {x{k)}, started at 
time —m in XQ, at time 0. The sequence {x^^ : m > 0} evolves backwards in 
time according to 

a;° {„+!) = A°_^ (g. A{-{m + 1)) ® xo • 

Note that x{k + 1) and a;̂ ,̂ are equal in distribution. With this notation the 
second-order limit reads 

/ 0 0 \ 

lim ^(1) (gi xlk - x%= lim ^(1) (g) (g) A{m) ® a;o - (g ) A{m) ®xo] • 
K—* OO K—*00 \ / 

\ m=: —fc m=~k / 

Note that the above differences are well-defined due to the a.s. regularity of 
{A{k)} and our assumption that XQ € K'^. 

Let condition (C3) be satisfied. Suppose that, after going 1] steps backwards 
in time, we observe for the first time the c(vl)-fold concatenation of the sequence 
constituting A, the pattern of {A{k)}. More precisely, let (oAr,Ojv-i,. • • ,a i ) 
denote the sequence constituting A, that is, ^ = ajv ® • • • ® a i , and let a denote 
the c(j4)-fold concatenation of the string (a^, ajv-i , • . . , oi) , which implies that 
a has M = c{A) • N components. Then, 

M 

fc=i 

and 7] is defined by 

T] = inf{fc > 01 A{-k) = auA{-k + 1) = a s , . . . , A{-k + {M - 1)) = QM} • 
(2.46) 
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In accordance with Theorem 2.1.1, we obtain that the random variable 

0 

( ^ A{k)®xo, n>0, 

is an eigenvector of A, in formula: 

0 

(g ) A{k)®xo e V{A), n > 0 . 
k=-{ri+n) 

Remark 2.6.1 The random variable ri denotes the index of the matrix that 
completes the first occurrence of a. Since we start counting the elements of the 
series of matrices from zero, the total number of transitions until this happens 
is T] + 1. 

Recall that multiplication of a vector v e Kmax with a scalar 7 € Kmax is 
defined by component-wise multiplication: (7 ® u)j = 7 (gi MJ . It can be easily 
checked that 

V7 e Kmax , V e K;^ax • B®v-C ®v = B®{-y®v)-C®{-y®v) , (2.47) 

for all B,C 6 l^mlx- We now use the fact that the eigenvector of a primitive 
matrix is unique (up to scalar multiphcation): if u, r; 6 V{A), then a 7 G Rmax 
exists such that w = 7 ® u, see Corollary 2.1.1. Hence, (2.47) implies 

Vw, u e V{A) : B®v-C®v = B®u-C®u, (2.48) 

for matrices A,B,C G ^i^x- Combining the above arguments, we obtain 

lim A{1) ® x°_k - x°_k 
fc—+00 

= lim ( A{1) <8) ( ^ A{m) ® XQ - (g) Mm) ® XQ J 
\ m=~k m = —A: / 

0 _ - i ; - l 

= .-4(1)® 0 A{m) <S> A"'-'^^ ® (^ A{m)®xo 

ev(A) 
0 _ - i ; - l 

- (g ) A{m) ® A"'-^^ <8> ( ^ A{m)®xo 
m=—r)+M m.= —00 

^ V ' 

ev(A) 
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(2.48) 
.4(1) ® (g) A{m) (8> A<^'> ® xo 

m,= — ri+M 

0 

m——ri+M 

0 

ev(A) 

A{m) ® A"^^'^ (g) a;o 

eK(A) 

0 

-4 (1 )® (g) yl(TO)®a;o - ( ^ yl(m) ® a;o 

A{1) ® A° ^ (g) Xo - .A'L^ ® aJo < oo . 

Hence, the second-order limit can be represented by a random horizon experi­
ment. 

Next, we will show that the above limit representation also holds if we con­
sider expected values. We have assumed that xo € R"̂ . This together with 
a.s. regularity of A{k) yields that x{k) G K'̂  a.s. for all k. Let {•)j denote the 
projection on the j * ' ' component. Applying Lemma 1.6.1 yields 

k—~m 

< 

fc=—m 

-I- (g ) A{k) iSixo 

A{1)® (g ) ^(A;)®a;oJ - I ( ^ A{k) ® XQ 
—m / j \k= 

0 

A{1)® (g ) A{k)0Xo 
k=~m 

1 

< 2 Y^ \\A{k)\\^ + 2\\xo\\^ . 
k^ — m 

Prom the preceding analysis follows that, for any m, 

A[l)<g) (g) A{k)»xo] - i (g) A{k)S>xo 
k=—m / j \fc=—m 

1 

< 2 ^ ||^(fc)||e -f 2||a:o||e . 
k~~Tj 

Let A{1) be integrable, then E[||A(1)||0] < oo, and assume that E[r]] < oo. By 
construction, for m > 0, the event {77 = m} is independent of {A{—k) : k > m}. 
Provided that {A{k)} is i.i.d., Wald's equality (see Section E.8 in the Appendix) 
yields 

1 

= E[77+l]E[ | |^( l ) | | e ] < 00 E 
k~~rj 

Hence, provided that E[?7] < oo, we may apply the dominated convergence 
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theorem to the second-order limit and obtain 

Urn E[x{k + 1) - x{k)] 
k—*oo 

= \ymE[A{l)<2>x'L^-x°_k] 
fc—too 

= E 

= E 

lim {Ail)®x°_,-x°_,) 
fc—»oo 

1 

( ^ A{k)®xo - ( ^ A{k)»xo 
k~~r} k—~7] 

< 00 . (2.49) 

In particular, the above analysis shows that if E[?7] < oo, then (CI ) — (C3) 
already imply (D), and Lemma 2.6.2 can be phrased as follows: 

Theorem 2.6.2 Let {A{k)] he a sequence of integrable matrices. 7 / (Cl ) —(C3) 
are satisfied, then the Lyapunov exponent of {A{k)}, denoted by A, exists and it 
holds for any initial vector XQ 6 R'̂  / 

A ® e = E (g) A{k)®xo - ( ^ A{k)®xo 
k— — r} k~—ri 

fc-1 

(g ) ^ ( i ) (g) Xo : lim - E 
fc—»oo k 

fc-i 
= lim - ( X ) ^ ( * ) ® ^ o I'S. 

fc—too k ^-^ 
t = 0 

Proof: We show that ¥,[7)] is finite. By assumption (C3), a primitive ma­
trix, say, C exists that is a pattern, and we assume, for the sake of simplicity, 
that C e A, which implies A'' = 1. Let c denote the coupling time of C. Because 
the state space is discrete and the sequence is i.i.d., the probability of observing 
C, denoted by p, is larger than 0. If p = 1, then E[r]] = c. In case 0 < p < 1, we 
argue as follows. By construction, the probability of the event {rj = m} is less 
than or equal to the probability of the event that A(k) ^ C, Q > k > —m + c, 
and A{k) = C, for k — —m + c — 1 , . . . , —m. In other words, for m > c, it holds 
that P{T] = m) > (1 - p ) ' " - ^ . This implies 

0 0 

EM<5^m(l-p)"-V 
Tn=c 

00 

= ^ ( m + c ) ( l - p ) > ^ 
m=0 

00 00 

= c p ^ ^ ( l - p ) ™ + p < ^ ^ m ( l - p ) " 
m = 0 m=0 
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_cp'= p''{l -p) 
p p2 

<oo , 

which concludes the proof. D 
We conclude this section with revisiting the cycle formula in Lemma 2.5.2. 

Corollary 2.6.1 Let (CI) —(C3) he satisfied. IfC is a pattern of{A{k)}, then, 
for any finite initial vector xo G V{C), 

m 
where A denotes the Lyapunov exponent of {A{k)}. 

/ / ^ 



Part II 

Perturbation Analysis 



Chapter 3 

A Max-Plus Differential 
Calculus 

In this chapter we consider parameter-dependent max-plus linear systems where 
the parameter, denoted by d, is a parameter of one of the firing time distribu­
tions of the event graph. For example, in a queuing application, 9 may be the 
mean service time at one of the queues. We are interested in sensitivity anal­
ysis and optimization of performance measures of max-plus linear systems and 
we therefore want to find algebraic expressions for gradients of max-plus linear 
systems. Only in special cases the gradients can be calculated explicitly and in 
the general situation unbiased gradient estimators are obtained. 

Perturbation analysis is an approach to gradient estimation that dates back 
to the pioneering paper by Ho et al. [67]. Since then there has been great in­
terest in gradient estimation and various approaches have been developed. The 
following monographs [94, 52, 68, 95, 90, 44] may serve as main references. 

We work within the framework of measure-valued differentiation. One ex­
ample of such measure-valued derivatives are weak derivatives as introduced by 
Pflug, see [90] and for an early reference we refer to [89]. Specifically, we intro­
duce V-derivatives of random matrices (and vectors), where P-differentiability 
refers to a concept of differentiability that is defined via a class V of perform­
ance functions. In order to develop our calculus of differentiation, we embed the 
random matrices into a richer set of objects. This enlarged object space allows 
us to define sample-path V-derivatives of random matrices. For these sample-
path 2?-derivatives we provide a calculus of ^-differentiation that allows us to 
calculate derivatives of sums and products (or expressions containing mixtures 
of sums and products) of random matrices. The calculus resembles the stan­
dard calculus of differentiation. For various types of max-plus linear systems, 
we explicitly calculate the sample-path derivatives. It is worth noting that the 
obtained sample-path derivatives are unbiased gradient estimators by construc­
tion. 

This chapter is organized as follows. Section 3.1 gives a short introduction 
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to the theory of measure-valued differentiation. In Section 3.2, we introduce a 
standard example of the function space V. Section 3.3 introduces 2?-derivatives 
of random matrices and develops our calculus of ^-differentiation. An algebraic 
framework for calculating P-derivatives of max-plus matrices is derived in Sec­
tion 3.4, and our differential calculus is established in Section 3.5. Finally, we 
present unbiased gradient estimators for various types of max-plus linear sys­
tems in Section 3.6. 

The algebraic framework for P-derivatives of max-plus matrices as estab­
lished in Section 3.4 is based on [62]. The theory developed in this chapter 
however extends the results in [62] to unbounded performance measures. 

3.1 Measure-Valued Differentiation 

This section provides a short introduction to the theory of measure-valued dif­
ferentiation. Let {S,ds) be a separable metric space and let M = M{S,S) be 
the set of finite signed measures on the measurable space (5, S), where S denotes 
the Borel field of S. The set of all probability measures on {S, S) is denoted by 
Ml = Mi{S,S). Let •D(5) be a set of mappings from 5 to R and assume that 
the constant function g = 1 is in •D(S'). 

Consider a family {ne • ^ € 0 } of measures on (^..S), w i t h e = (a, 6) C R . 
Denote the set of continuous absolutely integrable mappings with respect to /x̂  
by £^(/xe) and denote by 

the set of mappings that are absolutely integrable with respect to fie for any 
9 e Q. Moreover, let C''{S) denote the set of bounded continuous real-valued 
functions 5 : 5 H-» R. To simplify the notation we will write C'' for C''{S) when 
it is clear which underlying space is meant. Note that for any fie in M and for 
any 9 in 0 , we have C^ C C^{fj,g). 

Definition 3.1.1 We call the mapping ^ : 6 —> Mi V-differentiable at point 
9 with V C C^ifie • 9 e Q) if there exists a finite signed measure fig € M such 
that for any g inV: 

A™o A \j 9{s)fie+A{d8) - / g{s)fie{ds)j = / g{s)n'g{ds) . 

If fie is 2?-differentiable, then fi'g is a finite signed measure. Any finite signed 
measure can be written as difference between two finite positive measures. This 
representation is called Hahn-Jordan decomposition, see Section E.l in the Ap­
pendix. More specifically, a set S'^ e S exists such that, for A e S, 

[liXiA) "= i^'eiAnS+)>0, 
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and 

Set 

ce = WenS) (3.1) 

and 
Ce = Wens). 

Since [fJ-'g]'^ and [iJ.'g]~ are finite measures, 0$ and cg are finite. We may thus 
introduce probability measures / i^ , fj,g on (5, .F) through 

1,+ iA) = -Wg]+{A) (3.2) 
Ce 

and 

M,-(^) = ^ [ A * ; ] - ( ^ ) , (3.3) 

for J4 6 <S. This yields the following representation of ij,'g 

VAeS: ii'eiA) = cgfi+iA) - cgiJ,g{A) . 

The fact that fig stems from differentiating a probability measure implies that 
eg = Cg. Indeed, for fig e Mi, it holds fieiS) = 1 for all 9 and, since we have 
assumed that the constant function </ = 1 is in 2?, this implies 

0 = ^MS) = ^JlMds) = Jll^'gids) = fi'giS). 

Hence, fi'g{S) — 0 for all 0 e 6 , which yields 

cel4i.S) = cgfigiS). 

Since fi^ and fi'^ are probability measures, we obtain cg = cg. Thus, fi'g is 
completely characterized through the triple {cg,fig,fi^), with fi^, fi^ €. Mi. We 
call fi'g in (3.2) the (normalized) positive part and fi'^ in (3.3) the (normalized) 
negative part of /x^, respectively. Note that, by the above construction, a set 
A e S exists such that either fi^{A) = 0 or fi'^{S\A) = 0, in symbols: fi^ Lfi^. 
We now state the formal definition of a I?-derivative of a probability measure. 

Defini t ion 3.1.2 Let V C C^ifie '• 6 £ B). We call a triple {c^0,(ig ,fi^), with 
fig € A^i and c^^ G R, a V-derivative of probability measure fig at 9 if, for all 
g in V, it holds true that 

| m A [J 9is)fie+Aids) - J g{s)fig{ds)j 

= ce (J g{s)fij{ds) - J g{s)fig{ds) 
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Remark 3.1.1 Definition 3.1.1 is easily extended to finite measures in M. 
However, in order to conclude that [fJ''g]'^(S) = [fi'gl'iS) we need the additional 
condition that a number d 6 R exists such that 

\/eee : ti,e{S) = d. 

If fJ-e & M satisfies the above condition, then a V-derivative of ^g can be defined 
as in Definition 3.1.2. 

An instance of a 2?-derivative can always be found through the Hahn-Jordan 
decomposition, see (3.1), (3.2) and (3.3), and this construction is called the stan­
dard construction. However, this is only one of many representations possible. 
To see that a P-derivative is not unique, let {cg, fi'g , fj,'^) be a 2?-derivative of 
fie, and let 7 be a probability measure on {S,S) with V C £^(7) and let & be a 
positive constant. Then 

^0 = ^''^""A-^^Vb^o^l^ThV " ^"'"'''AT^Vh^'^l^ 
is also a I?-derivative of \ie. The 2?-derivative of a probability measure /ie be­
comes unique if we assume that (a) /i^ are again probability measures, and (b) 
/Lt̂ ±yU .̂ Moreover, cg is minimized if/ig'_L/i^. 

Suppose that fig is 'D-differentiable and that [xg has i/-density fg which is 
differentiable in 0. If, for any g ^V, interchanging the order of integration and 
differentiation is justified, we obtain 

^ y 9{s)fg{s)v{ds) = y g{s)~fg{s)v{ds) . 

Let 

be finite, then 

def ief 1 /• 

sis :^/e(«) v{ds^ 

and 

/ ; ( . ) * ! . » ( » , > . ) ) 

/ , - M t f l m a x ( o , - ^ / . ( . ) 

for s e 5, are y-densities, and for any gr G P it holds that 

^ y 9{s)fg{s)v{ds) = cg \ g{s)f2{s)v{ds) - cg I g{s)f^{s)i'{ds) 

(that / / and fg are indeed densities follows from the fact that they are lim­
its of measurable mappings). Consequently, we may obtain fj,'g as the re-scaled 
difference between the probability measures 

t^tiA) = [ f^{s)Hds), fig{A) = [ f-{s)iy{ds), (3.4) 
JA J A 
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for A € S, that is, / ^ is the i^-density of //g" and f^ is the i^-density of fj,'^. Note 
that this decomposition is nothing else than the Hahn-Jordan decomposition: 
differentiability of fg implies that 

-~{ seS : -feis) > 0 

is measurable and the measures defined in (3.4) satisfy, for any A & S, 
cet^tiA) = fi'giA n S+) and ceiJ.g{A) = -fi'giA n [S \ S+)). 

A typical choice for X> is 2? = C^{S), the set of bounded continuous real-
valued functions. Indeed, Pflug developed his theory of weak differentiation for 
this class of performance measures, and C''-derivatives are called weak deriva­
tives in [90]. 

Next, we give an example of a 'D-derivative and illustrate the non-uniqueness 
of the 25-derivative. 

Example 3.1.1 Let S = [0, oo) and let 

x>Q 

be the Lebesgue density of an exponential distribution with rate 6, denoted by 
fie- Take V = C''([0,oo)) and 9 = [a,b], with 0 < a < b < oo, then fig is 
C^ -dijferentiable. To see this, note that 

sup 
oe[a,b\ 

< {l+bx)e-

which has finite Lebesgue integral. Applying the dominated convergence theorem, 
we obtain for any g & C^ 

-^ j gix) fg{x) dx = J g{x)—fg{x)dx. 

Note that 

-Je{x) dx = -— 

ee 

and 

max 

Introducing densities 

2 Jo 

'^fe{x),0J = lio,i/g]ix){l-ex)e-'^ 

-Jgix),o) = l [ i / , ,<^) (a ; ) (^x- l )e -«-

f+{x)''^'l-^o,m{x){l-ex)e-'^ 

and 

fe W = — l[i/e,oo)(a;)(6'a;-l)e-
^9 

Ox 

(3.5) 

(3.6) 
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def 1 

Oe 

with 

we obtain for any g & C'' 

^J g{x)fe{x)dx 

= 4- / 9{^) (S - O^x) e^-^^ dx- i - gix) (e^x - 6) e^'^^ dx 
OeJo dej^/g 

and a C'' derivative of fig is given by {ce , f^{s)ds , f^{s)ds). 
Sometimes the standard construction is not the most efficient one. Let 

h2,6{x)'^= e'^xe-'^'', x>Q, 

denote the Lebesgue density of the Gamma-(2,6)-distribution. It is easily checked 
that 

which implies that [1/9, fe{s)ds, /i2,e(s)ds) is a C''-derivative of ne, that is, 
for any g € C^ is holds that 

-j^ / g{x)f6{x)dx= - / g{x)fe{x)dx - - g{x) h2,e{x) dx . 

Let Xff and Yg be independent samples of the exponential distribution with mean 
\/6. Then the above equation can be phrased as follows 

j^ngiXe)] = \n9{Xe)] - \ng{Xe + Ye)\ , g e C". 

In words, the derivative ofM[g{Xe)] can be estimated by drawing one extra sam­
ple from the exponential distribution. 

In the above example, jxe as well as n'g and /x^ have Lebesgue densities, that 
is, the measure as well as its ©-derivative are dominated by the same measure. 
The following example demonstrates that this is not always the case. 

Example 3.1.2 Lei W[o,e] be the uniform distribution on the interval [0,9] for 
0 < 9 < a, with a < oo. For any g in C^ it holds that 

±jg[x)Uy,,e^{dx) = f^\^-j^ g{x)dx 

1 1 /•* 
= g9i^) ~ 0^ J 9[x) dx 

= ^ ( / 9{x)5e[dx) - I g{x)U[o^e]{dx) 

where 6x denotes the Dirac measure in x. Hence, {\/9,5g,U\Qm) is a C^-
derivative ofU\pfi\. 
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We conclude this series of examples with an example of a distribution that 
fails to be P-differentiable. 

Example 3.1.3 Let 6$ denote the Dirac measure with mass in 9 & Q. For any 
5 : 6 —» R that is differentiable with respect to 6 at a 9o & 6 , we obtain 

d 
/ g{x)50{dx) = — m 

Hence, 6e fails to be V-differentiable for any reasonable set V. However, we may 
construct a set V that artificially generates V-differentiability. To see this, fix 
c,x,y 6 K and let V denote the set of all differentiable mappings g : 0 —> R, 
such that 

g{x) = 1 and g{y) = 0. Then Sg is V-differentiable with V-derivative {c,Sx,5y). 

Indeed, for g € V it holds that 

d 
/ g{x)5g{dx)--

de 
9(0) 

3 

f / g{u)6x{du) - / g{u)5y{du) 

For V = C^, Definition 3.1.1 recovers the definition of wealc differentia­
bility in [90]. Weak differentiability of a probability measure yields statements 
about derivatives of performance functions out of the restrictive class of bounded 
continuous performance functions. The results in [62] elaborate on the theory 
developed in [90] and thus suffer from the restriction to bounded performance 
functions too. The theory developed in this chapter extends the results in [90] 
(and thus in [62]) in such a way that unbounded performance functions can be 
studied as well. The following theorem is our main tool: it establishes a product 
rule for D-differentiability. For weak derivatives, such a product rule is claimed 
in Remark 3.28 of [90] but no proof is provided. For the general setup of V-
differentiation, we will provide an explicit proof for the product rule. Before we 
can state the exact statement, we have to introduce the following definition. A 
set V of real-valued mappings defined on a common domain is called solid if 

(i) for f,h € V there exists a mapping g € V such that max(/ , h) < g, 

(ii) ii f eV, then for any g with \g\ < / is holds that g GV. 

The precise statement of the product rule is given in the following theorem. 

Theorem 3.1.1 Let{S,S) and{Z,Z) be measurable spaces. Let jig G M\{S,S) 
be V{S)-differentiable at 6 and 1/$ € Mi{Z,Z) be V{Z)-differentiable at 6 with 
T>{S) and V{Z) solid. 
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Then, the product measure ne x lyg S Mi{S x Z) is V^S, Z)-differentiable at 
6, with 

n 

V{S,Z) = {geC\iie)njC\ue)\3n: \g{s,z)\ <J2'iiMs)hi{z), 
1=0 

1 < / i G v{S), 1 < /li € V{Z), di e R } , 

and it holds that 
[tie X ve)' = {fi'g X ue) + {fig x i/'g). 

Furthermore, if lie has'D{S)-derivative{c^g,ii'^,fj,g) andve has T>{Z)-derivative 
[c/yg, I'g', I'g ) , respectively, then the product measure fie x i^e is 'D{S,Z)-
differentiable and has V{S, Z)-derivative 

y c^e + Cj/g, 

^/us ~ '-I'e ''Me ~ ^i^e ''Me ^ "̂ 9 ''Me ' '''^e 

Proof: We show the first part of the theorem. Let g € ^^{S, Z) be such that 

n 

|ff(s,2)| < ^difi{s)hi{z). 
i=0 

We have assumed that 'D{S) is solid and condition (i) in the definition of solid-
ness implies the existence of a mapping / e 2?(5') such that / > /t > 1 for 
1 < ii < n. In the same way, solidness of 'D{Z) implies and there exists h e V{Z) 
such that /i > /ij > 1 for 1 < i < n. This yields 

n 

\g{s,z)\<}{s)h{z)Y,dim\f\\hi\\h, 
1=0 

where 
l | , | l def fi{s) def hi{z) 
ll/t | | / = sup—r-r- and \\hi\\h = sup-^, (3.7) 

s J[S) z tl[z) 

for 1 < i < n (for a proof note that \fi{s)\ < \\fi\\f f{s), for any s G S). Hence, 
it suffices for the proof to consider g € 'D{S,Z) such that |p(s,0)| < f{s)h{z) 
for / e V{S) and h 6 V{Z). By calculation, 

— {fl8+A X f « + A - fJ'd X Ve) 

= -^{lJ-0+A - Me) X ue-^iiex -^{ye+A - t-e) (3.8) 

+ ^ ( M A + A - Me) X {ve+A - fe) • 

Let 
-DfiS) ^^ {g e V{S) I 3 c > 0 : \g{s)\ < cfis),Vs € S}, 
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or, equivalently, 
2?^^) = {ge V{S) : \\g\\f < c»}; 

and let 
VH{Z) = ' {g e V{Z) I 3 c > 0 : \g{s)\ < ch{8),\ls 6 S), 

or, equivalently, 
Vh{Z) = {ge V{Z) • \\g\\n < oo}. 

The remainder of the proof uses properties of the relationship between weak 
convergence defined by the sets Df and Dh, respectively, and norm convergence 
with respect to || • | |/ and (| • ||h, respectively. These statements are of rather 
technical nature and proofs can be found in Section E.5 in the Appendix. 

By condition (ii) in the definition of solidness, fie is in particular 2?/-
differentiable, which implies that 

A ^ o / ^^^^ ^(Mfl+A -Me)(t 's) = / ais) tJ-'eids) 

for any g e Vf and, by Theorem E.5.1 in the Appendix, ||/ie+A — A*eil/ tends 
to zero as A tends to zero. For the extension of the definition in (3.7) to signed 
measures, we refer to Section E.5 in the Appendix. In the same vein, i^e is 
D/i-differentiable which implies that 

A^oJ ^^^'' 'A^'''>+^ ~ '^o^(dz) = J g(z)v'e{dz) 

for any g e Vh and ||f6i+A — I'eWh tends to zero as A tends to zero. Applying 
Lemma E.5.1 in the Appendix to the individual terms on the right-hand side of 
(3.8) yields 

A^o A / ^ ( * ' ^ H ( M « + A - Me) X i^e){ds,dz) = / g{s,z){n'g x iye){ds,dz) 

\™o A / ^^^'^H*"* ^ ^'^'>+^ ~ '^e)){ds,dz) = / g{s,z){ij,e x v'e){ds,dz) A 

and 

A™o A / 3i^^z){il^e+A - Mfl) X {i^e+A - ve)){ds,dz) = 0 

which proves the first part of the theorem. 
For the proof of the second part of the theorem, one represents y!g and v'g 

by the corresponding 2?-derivatives. Let (c^^,/u^,/Lt^) be a I?(S')-derivative of 
(Xe and let {cug,^'^ ,vj) be a X>(Z)-derivative of ue. By the first part of the 
theorem: 

{iJLg X Ug)' = fig X l/g + He X l/'g 

= i^feP't - C^eM^) Xl^g + figX {c^.vj - C^^^g) , 
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re-grouping the positive and negative parts yields 

and normalizing the parts in order to obtain probability measures gives 

— V Me xi'e + -f Mfl X i^g 

which completes the proof. D 

Remark 3.1.2 By assumption, any g SV is continuous. However, it is possible 
to slightly deviate from the continuity assumption. If g is hounded by some h &T> 
and if the set of discontinuities, denoted by Dg, satisfies fj,'g{Dg) = 0 = fi'^{Dg), 
then the analysis applies to g as well. 

The statement of Theorem 3.1.1 can be rephrased as follows. Let X^^ g 5 
have distribution ne and let X^^ 6 Z have distribution i^e with X^^ independent 
of X^yg. If ^e is I>(5')-differentiable and VQ is X>(Z)-differentiable, then random 
variables X^^, X~^ and X^^, X~^ exist, such that for all g in 'D{S, Z): 

= E [ C ^ , < ? ( X + , , X ^ J + c,,g{X^„XX) - {c^,g{X-„X,,) + c , , p ( X ^ , , X " ) ) ] 

In order to make the concept of V -differentiability fruitful for applications, 
we have to choose V in such a way that 

• it is rich enough to contain interesting performance functions, 

• the product of D-differentiable measures is again P-differentiable. 

In what follows, we study two examples of V: The space C*" of bounded contin­
uous performance mappings and the space Cp to be introduced presently. 

3.2 The Space Cp 

Let the measurable space (5 ,5) be equipped with an upper bound || • \\s, see 
Definition 1.6.1. For p 6 N, we denote by Cp{S, \\ • \\s) the set of all continuous 
functions 5 : 5 —> R such that 

\g{x)\<ag + bg\\x\Y', xeS, 

for finite constants ag,bg. Note that C''(5', || • \\s) is a soHd space and that 
C\S,\\ •\\s)cCp{S,\\-\\s) {or all p>0. 

The space Cp{S,\\ • \\s) allows us to describe many interesting performance 
characteristics as the following example illustrates. 
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Convention: When it is clear what S is, we will simply write Cp instead of 

Cp{S,\\-\\s). 

Example 3.2.1 For J > \, take S = [O.oo)'^, || • \\s = || • \\@ and let X = 
{X\,..., Xj) e S be defined on a probability space (fi, A, P) such that P^ = /U. 

• Taking g{x) = exp{—rxj) £ Co{S), with r > 0, we obtain the Laplace 
transform of X through 

E[e- '-^^] = j g{x)ii{dx). 

• For g{x) = x^ € Cp, we obtain the higher-order moments of X through 

EfXj ] = j g{x)ii{dx), forp>\. 

• Let V\Xi\ = tti and V\Xj] = Uj for specified i and j , with i ^ j , and 
assume thatai,aj are finite. Setting 

gyX\j • • • 1 XjJ = Xi Xj flj Q/j , 

we obtain from ElglX)] the covariance between the j * ' ' and j*'^ component 
ofX. 

Remark 3.2.1 In the literature, see for example [15], Taylor series expan­
sions for max-plus linear systems are developed for performance functions 
f : [0, oo) —> [0, oo) such that f{x) < c^x'^ for all a; > 0, where (/ € N. This 
class of performance functions is a true subset o/Ci/([0,oo)). For example, take 
f{x) = yfx, then no c^ e K. and î  G N exist such that f{x) < c^ x", whereas 
fix) < 1 + a;2 and thus f e C2([0,oo)). 

In what follows we study Cp-difTerentiability of product measures, that is, 
we take V = Cp. 

Example 3.2.2 We revisit the situation in Example 3.1.1. Let f^{x) be given 
as in (3.5) and (3.6), respectively. Since all higher moments of the exponential 
distributions are finite, it follows that ne is Cp([0, oo), | • \)-differentiable for any 
pen. 

Cp-spaces have the nice property that, under appropriate conditions, the 
product of Cp-differentiable measures is again Cp-diflerentiable and it is this 
property of Cp-spaces that makes them a first choice for V when working with 
2?-derivatives. The main technical property needed for such a product rule of 
Cp-differentiation to hold is established in the following lemma. The statement 
of the lemma is expressed in terms of the influence of binary mappings on Gp-
differentiability. 
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Lemma 3.2.1 Let X,Y,S be non-empty sets equipped with upper bounds \\-\\x, 
II • | |y and II • lis, respectively. 

• Leth : XxY —> S denote a binary operation. Forg e Cp{S), letgh{x,y) = 
g{h{x,y)), for x €: X, y ^Y. If finite constants cx, cy exist such that for 
any x € X,y €Y 

\\hix,y)\\s <cx\\x\\x +CY\\y\\Y, 

then 
gheC{X,Y), 

with 
n 

e{X,Y) = {3 : X X y -> K|3n : \g{x,y)\ <Y,difi{x)hi{y) , 
i=0 

fi e CpiX, II • \\x), hi e Cp{Y, II • | |y) ,di e R } . (3.9) 

• If finite constants CX,CY and an upper bound | | ' | | x x y on X x Y exist, 
such that for any x € X,y eY 

\\{x,y)\\xxY < cx||a;| |x + cy||2/||y , 

then Cp{X,Y) C C{X,Y), with C{X,Y) as defined above. 

Proof: Let g e Cp{S, \\ • \\s)- For r = h{x,y), with x & X and y e K, we obtain 

\g{r)\<a, + b,\\r\\l 

= ag + hg\\h{x,y)\\''s 

<ag + hg{cx\\x\\x + cy I lyl lyf 

=«s+&«Eft)criwir4iMiv 
i=0 ^ ' 

withdi € R , f o r O < i < p + l . By definition, II •115̂ "' G Cp(X) and | | - | | i . e Cp{Y) 
for 0 < i < p. Hence, gh € C{X,Y) which concludes the proof of the first part 
of the lemma. 

The proof of the second part of the lemma follows from the first part with 
S = X xY and h{x, y) = {x, y). D 

An immediate consequence of Lemma 3.2.1 above is a version of Theo­
rem 3.1.1 for Cp-spaces yielding a product rule for Cp-differentiability of mea­
sures. 

Theorem 3.2.1 Let {S, S) and {Z, Z) be measurable spaces equipped with upper 
bounds II • lis and || • \\z, respectively, and let the product space S x Z be equipped 
with upper bound \\ • | | sxZ' If 
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• for any {s,z) € S x Z it holds that 

\\{s,z)\\sxz < Ms + Mz, 

• /Xfl e Mi{S,S) is Cp{S,\\ • \\s)-differentiable and ve € Mi{Z,Z) is 
Cp{Z, II • \\z)-differentiable, 

then jig X fg is Cp{S x Z, || • \\sxz)-differentiable and it holds 

(iXg X Vg)' = fig' X Vg + fig X Ug' . 

Proof: Let h be the identity on 5 x Z. Applying Lemma 3.2.1, it follows that 
Cp{S X Z) C C{S,Z), with C{S,Z) as defined in (3.9). We will now apply 
Theorem 3.1.L Specifically, we take V{S) = Cp[S) and V{Z) = Cp{Z), which 
yields V{S,Z) = C{S,Z), and the proof follows from Theorem 3.LI together 
with the fact that Cp{S) and Cp{Z) are solid spaces and that Cp{S x Z) C 
C{S,Z). D 

Combining Theorem 3.LI with Lemma 3.2.1 yields a powerful result on 
Cp-differentiability of binary mappings. 

Theorem 3.2.2 Let {X,X),{Y,y),{S,S) he measurable spaces equipped with 
upper bounds || • jjx) II • jly '^"'^ II' lls> respectively, and let h : X xY ^> S denote 
a measurable binary operation. If 

• finite constants Cx,cy exist such that for any x & X,y &Y 

\\h{x,y)\\s < c x | | a ; | U + CYWVWY , 

• fig ^ Mi{X,X) is Cp(X, II • \\x)-differentiable and ve e MiiY^y) is 
Cp{Y, II • \\Y)-differentiable, 

then it holds for any g € Cp{S, \\ • \\s) that 

— g[h{x,y))fbgxvg{dx,dy) 
"^ JxxY 

= / g{h{x,y)) {fig' X iyg){dx,dy) + / g{h{x,y)) {fig x vg'){dx,dy) , 
JxxY JxxY 

or, more concisely, 

{{fig X flgt)' = {{fig X flg)'f . 

Proof: Let g £ Cp{S). For x e X and y € Y, set gh{x,y) = g{h{x,y)). By 
Lemma 3.2.1, gn e C{X,Y), with C{X,Y) as defined in (3.9). Moreover, from 
Theorem 3.1.1 applied to the Cp-spaces Cp{X, \\ • \\x) and Cp{Y, \\ • jjy), respec­
tively, we obtain that the product measure fig x vg is C(X, y)-differentiable. 
Since g^ G C{X,Y), we obtain 

•JE gh{x,y){fJ.gX ug){dx,dy) 
"fc* JxxY 

= / 9h{x,y){fi'gxvg){dx,dy) + / gh{x,y){fig x i''g){dx,dy). 
JxxY JxxY 
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Rewriting gh{x,y) as g{h{x,y)), we obtain 

:T^ / gh{x,y){iJ.exve){dx,dy) 
" ^ JXX.Y 

= I 9iHx,y)) W X ve){dx,dy) + / g(h{x,y)) {ne x Ug){dx,dy) , 
JxxY JxxY 

which concludes the proof of the theorem. D 
When we study max-plus hnear systems, we will consider /i = ®, ® and 11 • 11© 

as upper bound. This choice satisfies the condition in Theorem 3.2.2 and the 
theorem thus applies to R^lx- ^^ the following, we will use this richness of the 
max-plus algebra to establish a calculus for Cp-differentiability. 

3.3 P-Derivatives of Random Matrices 

For e = (a, 6) C K, let {Ae 6 R^^x : 6* € 0 ) be a family of random matrices 
defined on a common probability space. 

Definition 3.3.1 We call Ag G K^lx V-differentiable if the distribution of Ag 
is V-differentiahle. Moreover, let (c^g,/i^,//^) he a T>-derivative of the distri­
bution of Ag. Then, the triple {cAg,A'^,A'^), with CAS = c^^, A'^ distributed 
according to /j.'g and A'^ distributed according to /Lt̂ , is called a V-derivative of 
the random matrix Ag, and it holds for any g &T> 

^ng{Ag)]=E[cA,(g{A+)-g{A-,))] . 

The goal of our analysis is to establish a Leibnitz rule for ^-differentiation 
of the type: if A and B are 'D-differentiable, then A ® B and A (^ B are V-
differentiable, for random matrices A,B of appropriate size. Working with a 
general set V has the drawback that the set of performance functions with 
respect to which the ©-sum of two random matrices is differentiable is only im­
plicitly given, cf. Theorem 3.1.1 where a precise statement in terms of measures 
in given. Fortunately, it will turn out that this problem does not arise when we 
work with Cp-spaces defined via the upper bound || • ||©. Specifically, we will be 
able to show that it holds that iiA,B e R^^^ areCp(R^^^, |H|©)-differentiable, 
then ^ ® B is Cp(R;^ai> II ' ||©)-differentiable and a similar result will hold for 
<8)-product of matrices of appropriate size. For this reason, we will present our 
results for Cp-spaces rather than in the most general setting possible. 

Let matrix Ag G Rmax be a measurable mapping of random variables 
Xg^i,..., Xg^rnt with Xg^i 6 Rmax for 1 < i < m, that is, assume that 

Ag = A{Xg,i, . .. yXg^m) • 

We call Xg^i,... ,Xg^rn the input of Ag. The following theorem establishes suf­
ficient conditions for the existence of a Cp-derivative of a matrix with input 
(-^9,1, • • • ,Xg^m)-
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Theorem 3.3.1 Let Ag have input Xe^i,X2, • ••, Xm, with {X2, •. •, Xm) inde­
pendent of 9, and let Xg^i have cumulative distribution function Fg such that 
Fg has Cp(Rn,ax, II • \\^)-derivative 

{CF,, F+ , Fi) . 

IfXff^i is stochastically independent of{X2, •. •, Xm) and if a constant c G (0, 00) 
exists such that 

\\A{Xg,uX2,...,Xm)\\e <c\\{Xe,i,X2,...,Xm)\\e, 

then Ae has Cp{Rl^J^, \\ • \\^)-derivative {CAI, , A'g , A'^ ) with cp^ = CAe «wd 

• A'^ — A{X'g^,X2,...,Xm), where X^^ is distributed according to F^; 

• A'^ = J 4 ( X ^ J , X 2 , . . . ,Xm), where X^-^ is distributed according to F^. 

Proof: The mapping A maps E^ax x (Rmax)™"^ onto Rl^^i- Writing 
A{Xe^i,X2 . . . , Xm) as h(Xe^i, {X2, • • •, Xm,)), it holds by assumption that 

\\h{Xe,x,{X2, . . .,Xm))\\^ < c\\{Xe,i,X2 . . .,Xm)U 

and Corollary 1.6.1 yields 

\\h{Xe,i,{X2,...,Xm))\\B < c\\Xe,i\\s + c | | (X2, . . . , X ^ ) | | e • 

Hence, Theorem 3.2.2 applies. Using the fact that the distribution of 
{X2, • • •, Xm) is independent of 9 completes the proof D 

In a queuing apphcation, the entries of matrix A0{k) are typically sums of 
service times and the condition in the above theorem is satisfied. The following 
example illustrates this for a specific situation. 

Example 3.3.1 Consider the homogeneous model of the queuing network in 
Example 1.5.2. Let the interarrival times aQ{9,k) be exponentially distributed 
with mean 1/9, that is, P{aoi9,k) < x) = Fe{x) = 1 — e"^^. For this model is 
holds that 

Ae{k) = A{ao{9,k + 1),ai{k + l),...,aj{k + 1)) , 

see Equation (1.26). Assume that the interarrival time ao{9,k) is stochas­
tically independent of the service times {ai{k),... ,aj(k)) and that the ser­
vice times are independent of 9. In accordance with Example 3.1.1, we see 
that Fg is Cp([0,oo), II • \\^)-differentiable with Cp([0, oo), | | • \\^)-derivative 
{9~^,Fe,r{2,9)), where r{2,9) denotes the Gamma-(2,9)-distribution. Observe 
that 

\\A{ao{9, k), ai(k),.. .,ajik))\\^ < [J + I) ll(o-o(^, k), a,{k),.. .,cTj{k))\^ . 



134 A Max-Plus Differential Calculus 

pJx J J . J u,yyf>coa unu wo whUiVfij vnc jutLuiuiuy \^p\^iir 

derivative of Ae{k) 
Hence, Theorem 3.3.1 applies and we obtain the following Cp{^^^^^,t 

A+ik) = Ae{k) , 

CAe = 1/^ and 

Ag{k) = A{aQ{e,k + l),ai{e,k + l),...,aj{k + l)), 

where cr^(A; + 1) has distribution r (2 ,9) . 

If it causes no confusion, we will suppress 6 in order to simplify the notation 
and write A in lieu of Ag. 

The following lemma states a first result on the I>-differentiability of prod­
ucts and sums, respectively, of random matrices. 

L e m m a 3.3.1 If A, B & ^^^^ ^''^ stochastically independent and 
CpiKli, II • U)-differentiable, then for all g e Cp(R^l;^, || • | |e) 

^Ke[g{A®B)] 

= Eg[cAg{A+^B) + CBg{A®B+)- (cAg{A-(BB) + CBg{A®B-)^] . 

Furthermore, if A e Rma^'^'' is C'p(K^'^;[, || • \\s,)-differentiable and B e 
Rmax is Cp(K;^ai^'II ' \\®)-differentiable and stochastically independent of 
A, then for all g E Cp( e lxK 

max ' I 

^Ee[g{A®B)] 

= Eg[cAg{A+<S>B) + CBg{A®B+) - ( C A 5 ( A" ® B) + CBff(^® fi-)) ] . 

Proof: By Lemma 1.6.1, the upper bound || • \\^ satisfies the condition 
in Theorem 3.2.2 for the operations ® and ® as well. Switching from random 
matrices to their distributions, applying Theorem 3.2.2 and switching back to 
Cp-derivatives proves the lemma. D 

Lemma 3.3.1 provides the means of calculating the derivative of E[g{A®B)]. 
Unfortunately, it does not answer the question regarding what the 25-derivative 
of ^ ® B looks like nor if it exists at all. This is due to the fact that there exists 
no {c,C'^,C~), such that 

Ee[c[g{C+) - g{C-))] 

= Eg^cAgiA+®B) + CBgiA®B+)- {cAg{A- ® B) + CB g{A® B-)j]^ . 

But to establish the P-differentiability of yl ® B we require such an object 
(c, C"*", C~). Suppose that we could give meaning to the equations 

CAA+®B + CBA®B+ = C+ (3.10) 
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and 

CAA-®B + CBA®B- = C~ (3.11) 

and suppose further that g is hnear; then we would obtain from Lemma 3.3.1 

^Eelg(A 0 B)] = Ee[g{C+) - g{C-)]. 

Hence, the I?-derivative oi A ® B would be CA^B = 1, (V4 ® B) = C"*" and 
[A ® B)~ = C~. As already said, Equations (3.10) and (3.11) have no meaning 
in Rmax ^ • Furthermore, g is by no means linear. 

In the following section we will embed Kmax ^ into a richer object space, 
called M^^'^, where M^^'' will be the set of all finite sequences of triples 
(c. A, B), such that c € R and A,B e R^lx- Thus, the ©-derivative (c, A+, A') 
of a matrix A e R^lx will be an element of M^^' ' . In particular, 

• we define ©-sums and ^-products on M'^^'^ in such a way that the semi­
ring Rĵ ajf is a proper sub-structure of the (later defined) structure M'^^'^ 
over M''^''; 

• all real-valued mappings g on R^lx ^^^ be extended to M^^''\ 

• on M^^^ we can define a binary operation '-f-' and scalar multiplication 
by real numbers in such a way that all real-valued mappings g on K^lx 
are linear on M'^'^. 

Hence, Equations (3.10) and (3.11) have solutions in M^^''. Since the extension 
of g € 2? to M'^'^ is linear in M^^'^, we can then calculate 

^Ee[g{A® B)]=Ee[cAgiA+ ® B) + CBgiA®B+) 

- (cAg{A-®B) + C B g ( ^ ® B - ) ) ] 

:=Eg^g{cAA+®B + CBA®B+) 

-g{cAA- ®B + CBA®B-)^'^ 

= Ee[g{C+) - g{C-)] , 

i.e., (1, C+, C~) is the D-derivative of A^B in M^^' ' . It will turn out that simple 
rules of P-difFerentiation exist in M'^'^. In other words, M^^'' is a suitable space 
for calculating 25-derivatives of complex functions of random matrices. With a 
simple trick, called randomization^ we are even able to project objects in M^^^ 
on random elements in R^lx ' Moreover, this projection leads to an unbiased 
gradient estimation algorithm for random matrices (which will be discussed in 
Section 3.5). 



136 A Max-Plus Differential Calculus 

3.4 An Algebraic Tool for I>-Derivatives of Ran­
dom Matrices 

As was stated in the previous section, we will work in applications with Cp-
derivatives rather than with general 'D-derivatives. However, the construction 
of the algebraic extension of M.(^J^ is independent of the set V with respect to 
which we define the derivatives and we will use the term ©-derivative in this 
section (since this generality comes at no costs). 

In the following we construct M'^'' and develop a calculus which enables us 
to calculate 'D-derivatives of functions of random matrices. We take as M'"^^ 
the set of all finite sequences of triples (c. A, B), with c 6 R and A,B e Kmlx • 
A generic element a € M^^'^ is then given by 

a= {{Ci, Ai, Bi), {C2, A2, B2) • • • , {Cn„, An^, BnJ) , 

where n^ < 00 is called the length of a. If a is of length one, that is, n^ = 1, we 
call it elementary. Observe that the 'D-derivative (c^, A'^, A~) of a matrix A is 
an elementary element oi M'^'^. 

On M'^'^ we introduce the binary operation ' + ' as concatenation of strings. 
For example, let a G M'^'' be given by 

ci = {ai-.l <i< Ua) , 

with Oj elementary, then 

a = 2_j °'i = a i + a2 + • • • + On„ • 
i=l 

More generally, for a,P& M^'^'' application of the ' + ' operator yields 

a + /? = ( Q I , . . . , a„„, /3i , . . . , /?„^) 

=E" ' + E/5^- (3-12) 
i = l j = l 

For Q = (c". A", B") and f3 = {c^,A(', B^^) elementary in M'"''' we set 

a ® ^ = {C'='-C'^,A"(BA^,B"®B^), 

where x-y denotes conventional multiplication in R, and for a = {c",A°',B°') e 
M^X'^, p = {cl^,A'^,B'^) e M ^ x ^ we define 

Q ® /? = (c" • c^, A" ® A^, B" ® B^) . 

These definitions are extended to general a, f3 as follows. The ®-sum is given 
by 

j=i j=i j=i 

no, "3 
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for a,P e M'^'^ , that is, a® (3 is the concatenation of all elementary ®-sums, 
which implies na®f} — na -np. For the ®-product we set 

n/3 np np 

a®l3 = ^ai®Pj + Y^a2®Pj + ••• + '^a„^®Pj 

1 = 1 j=l 

for a e M'^-' and /? £ M-^^^, that is, a ® (5 is the concatenation of all 
elementary ®-products, which implies Ua^p = Ua • np. In particular, for a € 

M'^'^ and X £ M"^ = M''^^ the matrix-vector product a ® x is defined. 
Set £'''•' = ( ! , £ ( / , J),£:(7, J ) ) , then S^^'' is the neutral element of ® 

in M^^"^. The element f̂ **-' is unique in the sense that for all a G M^^'^: 
Ua^gixj — Ua- Furthermore, set E'''^'' = {1,E{J, J),E{J,J)), then E'^^'' is 
the neutral element of (gi in M'''^'^ and it is unique in the sense that for all 
a e M''^'': na0£Jxj = ria-

We define scalar multiplication as follows. For elementary a = (c. A, B) G 
M-^^'^ we set r • a = (r • c,A,B) and for a = ( a i , . . . ,««„) £ M''^'' we set 

r • a = y_)^ • '^i • (3.13) 
i = l 

We embed K^^^ '"^to M'^'^ via a homomorphism r given by 

^ - 1 | f r ( ^ ) = {I, A, A), 

for yl e ^l^J,. It is easily checked that {A ® S)'^ = ^^ ® B^ and {A ® B)^ = 
A-" ®B''. 

We now define the r-image of a function g : R^^^ ~* '^- For a = 
( ( c i , y l i , B i ) , . . . , ( B„„)) eM^'^'^ we set 

g-{a) = XI lc,^.Ci(ff(^i) - g{Bi)) . (3.14) 
i = l 

The mapping g^i-) is called T-projection w.r.t. g onto R, or {T,g)-projection for 
short. For ease of notation, we suppress the superscript r when this causes no 
confusion and write g{-) instead of p'^(-). 

Remark 3.4.1 For A G Rmax ^ , the r-projection with respect to any g : 
Î max ~* ^ yields g'^{T{A)) = 0. However, we can recover g via the r-projection 
with respect to g through a linear transformation. More precisely, take ir^^'^ = 
{l,E{J,J),£[J,J)) eM-"'-', thenix'"''^ ®T{A) = {l,A,£{J,J)) and we obtain 

VyleR;J,L^: g^ [TT'^'®T{A)) ^ g{A) , 

where we assume without loss of generality that g{S{J, J)) = 0. 
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The definition of addition and scalar multiplication are tailored to make the 
extension of any real-valued function on R^lx to M^^'^ linear. This is shown in 
the following lemma. 

Lemma 3.4.1 For a,(3 ^ M'^'^ and Cc,,cp eR it holds true that 

yg e ^<li , g^cc-a + C0-P) = c„ g-'ia) + c^ g^P). 

Proof: For a = ( ( c f , ^ f , B f ) : 1 < i < n„) , (3 = {{c^,Af,Bf) : 1 < i < 
n^) and CcC^j € R we obtain 

g'^ico.a + C0p) 

= g^c„{ic'^,A'^,B^),...,{C^,A^^,B^J) 

• + c ^ ( ( c f , < B f ) , . . . , ( c ^ ^ , ^ ^ ^ , i ? ^ ^ ) ) ) 

^'=^gmccK,A'^,B^),...,c^ic-^,AZ^,BZ)) 

g (((c<,Cj ,Ai,Bi),..., (CaC^^, A„^, B^J), 

{cpclAlB^,),...,{c0ci^,Ai^,Bi^))) 

Y^c^c? (g{Af) - g{Br)) +^.^0^ ( ^ ( ^ f ) - 9{B^)) 

= c , £ c f [g[A<}) - g{Bf)) +00^.^ [g{A^) - g{Bf)) 
i=l i=l 

(3.14) _ , . ^ , ^ . 
= Cag (a) + C0g^{l3) . 

D 
The operator ' + ' does the trick to make any g : ̂ l^J^ —* R linear on M'^''. 

Unfortunately, the structure M''^'^ = {M'^'^-',®,®,-[-,E'^^'',£-'^-') has very 
poor algebraic properties. For example, the operation ® fails to be commutative 
in M'^''. However, in what follows we will show that most of these properties 
can be recovered in a 'weak' sense. 

On M^^"^, the equation a = /? means that a is element-wise equal to /3. We 
call this the strong equality on M^^'^. We say that a, /? G M^^'^ are equal in the 
weak V-sense if and only if 

VgeV : E[ff-(a)] = E[g^P)] , 

in symbols: a =T> /?, where 2? is a non-empty set of mappings from M^^"' onto 
R (to simplify the notation, we will write a = /3 when it is clear which set V is 
meant). Obviously, strong equality implies weak D-equality. On the other hand 
we are only interested in results of the type \lg eV : 'E\g'^{...)] = E[5'^(...)], 
that is, in all proofs that will follow it is sufficient to work with X'-equality on 
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j^i^J^ When there can be no confusion about the space T>, we use the term 
'weak equahty' rather than '7?-equahty.' 

We now say that the binary operator / is weakly commutative on M^'^'' if 
Q / / 3 S Pfa for all a,/J G M^'^'^, and define weak distributivity, weak associativ­
ity a.s.f. in the same way. 

Theorem 3.4.1 (Rules o f W e a k Computat ion) On M^^'^, the binary op­
erations ® and '+' are weakly associative, weakly commutative and ® is weakly 
distributive with respect to '+'. Furthermore, on M^^^, ® is weakly distributive 
with respect to '+ '. 

Proof: Observe that, for 7 = (c i , . . . , c„^ ) e M'^'^, 3(7) is insensitive 
with respect to the order of the entries in 7, i.e., for any permutation TT on 
{!,..., n-y} it holds true 

g''[[ci,... c„^)) = g''{{c^(i),... c^(„.,))) • (3.15) 

We show weak commutativity of ®: for a = ( a i , . . . , o„^),P = (&i 1 • • •, bn^) G 
M'^'^, a ® P contains all elementary ©-sums Oj ® hj for 1 < i < n^ and 
1 < j < «'/3- Hence, a ® /3 and /? ® a only differ in the order of their entries. 
In accordance with equation (3.15), g{-) is insensitive with respect to the order 
of the entries which implies g{a ® /3) = p(/3 ® a). Weak commutativity of ' + ' 
follows the same line of argument as well as the proof of weak associativity of 
ffi, ®, ' + ' and we therefore omit the proofs. 

Next we show left-distributivity of ® with respect to ' + ': for a — 
( a i , . . . , a „ „ ) , / 3 = (6 i , . . . ,b„^) and 7 = (c i , . . . , c„^ ) G M^><'̂ , a ® (/3 + 7) 
contains all elementary ®-sums â  ® 6j, for 1 < i < n„ , 1 < j < ri/j, and Oj ffi Cfc, 
for 1 < i < riQ,, and 1 <k <n^. These are exactly the entries of (a®/?) + (a® 7) 
and weak left-distributivity follows from (3.15). Weak right-distributivity as well 
as weak left-, respectively right-, distributivity of ® with respect to '-f' follow 
the same line of argument. D 

Remark 3.4.2 On M^'^'', ® fails to be weakly left or right distributive with 
respect to ®. To see this, consider a,f3,ye M^'^'' with UQ > 1 which gives 

'̂ a®C/3®7) = natlpn-f < naU/snan^ = "(a®/3)®(a(gi7) • 

Hence, in general, a®(/9®7) ^ (a®/?)®(Q®7) and weak left-distributivity fails. 
For weak right-distributivity we argue in the same way. Consequently, M^^'' is 
not a semiring in the weak sense. 

So far we have introduced a new structure M'^^'^ = 
{M-''^'',®,®,-\-,S-''^'',E-''^-') and established its (weak) algebraic proper­
ties. We now ask: what is the relationship between the structures K^^ and 

Recall that we embedded K^lx i'lto M'^'^ via the mapping r . We now call 
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the set of standard elements of M^^-' and the elements of M^^-^ \ (Rmlx)'^ the 
nonstandard elements. 

Theorem 3.4.2 The structure 

constitutes an idempotent semiring in the weak sense. 

Proof: We prove commutativity of ® on (Rmax)"^- Fo^ A,B e R^ax '^^ 
have 

A'-QB-' = {l,A,A)®il,B,B) 

= {1, A®B, AeB) 

= (l, B®A,BeA) 

where the last but one equality follows from commutativity of ® on Kj^a/' -̂ ^̂  
other properties are checked in the same manner and the proofs are therefore 
omitted. D 

In accordance with Theorem 3.4.2, any formula over RmS^ is valid over 
M^'^^^ if we add V to all constants. For example, from 

Vyl,B,C e Ri^^i : (.4 ® 5 ) ® C = (^ ® C) ® (B ® C) 

we can conclude 

\fA,B,Ce {Ril^y : {A® B) ® C = {A » C) ® [B ® C), 

that is, all formulae valid over K;^^^ are also valid if interpreted over M ' ' ^ ' ' 
(even if they contain variables g out of the specified set V). This is known in 
algebraic model theory as Leibnitz principle. 

Nonstandard elements, such as A'^ + B"^ ior A, B e Rmax'^^'', cannot be 
directly interpreted as random matrices in Rma:^- However, we can project them 
with the help of the (r, 3)-projection onto R. We conclude our study of A4^^'' 
by giving a purely stochastic way of interpreting the '+'-operator in M^^''. 

Lemma 3.4.2 Let a be uniformly distributed over { 0 , . . . , A;} and independent 
of everything else. If A{i) e M^^'^ {0 < i < k), then 

Y,A{i) = {k + l)A{a). 
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Proof: Let 5 be a measurable mapping g from fIxJ on R. Applying 
Lemma 3.4.1 yields 

^ME^W =E Es'(^w) 
i=0 

n 

= (fc + l)EE[p^(^W)]P(a = z) 
i=0 

=E[{k + l)g^iA{a))] 

To simplify the notation we introduce the following convention. 

Convention: From now on we identify the elements of ( pIXj 

example, for A,B & pIXj 
) and] ) / X J . For 

, the formula 'A + B' has to be read 'A^ + B'^'. 

3.5 Rules for Cp-Differentiation of Random Ma­
trices 

This section provides rules for Cp-differentiation of ©-sums and (gi-products of 
random matrices. Firstly, we will introduce the general 'D-derivative and then 
establish results for the special case V — Cp{ ixJ 

*max ' I 
If .4fl e : has •P-derivative {CAS, A'g , Ag ) at 9, we set 

Ag — (c^g ,Ag,Ag). 

It is easily checked that this implies 

d 
EelgiAe)] = E,b(A^)] 

de 

for g € V, which motivates the following definition (again we will suppress for 
ease of notation the subscript 6 whenever this causes no confusion). 

Definition 3.5.1 For A e R^^jJ we call A' = icA,A+,A-) G M^^'^ a V-
derivative of A if for all g e V 

^Ee[g{A)]=Ee[giA')]. 

If the left-hand side equals zero for all g, we set A' = (0, A, A). 

^-differentiation maps A e R^ax on a (nonstandard) element A' e M^^^'. 
However, the extension of the g e V io M^^'^, see (3.14), projects A' on R 
in such a way that we recover the original definition of the 25-derivative of a 
random matrix, see Definition 3.3.1. The main benefit of this approach is that we 
may consider A' and A as objects in M'^'^ and elaborate on the 'rules of weak 
computation in M^^''' put forward in Theorem 3.4.1 to perform computations. 
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Remark 3.5.1 The V-derivative A' of a matrix A is by no means the sample 
path derivative of A. For this reason we carefully avoid writing dA/dO for the 
V-derivative. However, A' is a random variable such that, for all g € V, g{A') 
yields an unbiased estimator for dEe[g(A)]/dO, i.e., we may think of A' as an 
ersatz derivative in the sense of Bremaud, see [27j, 

Example 3.5.1 Let 6 e [0,1] and let Xe € {Di,D2}, with -Di,I>2 e 'R'^J,, 
be governed by the Bemoulli-{6)-distribution such that P{Xe = Di) = 6 = 
1 — P{Xe — D-i). Calculation yields 

^ngiXe)] = ^ {g{D,)e + 9{D2){1 - 9)) 

=g{Di) - g{D2) . (3.16) 

Hence, (l,-Di,Z)2) is a V-derivative of Xg, where V is any set of mappings from 
{Di,D2} onto R. The derivative at the boundary points 0 and 1 is obtained as 
one-sided limit and [l,Di,D2) is thus a V-derivative of Xe on the entire interval 
[0,1]. 

In what follows, we work, as before, with V = Cp. We revisit Lemma 3.3.1. 
For A,B € R^^;J with Cp-derivative {CA,A'^,A~) and {CB,B'^,B~), respec­
tively, we obtain from Definition 3.5.1 

A' = {CA,A+,A-) 

and 
B' = {CB,B+,B-). 

Direct calculation yields 

and 

CA{g{A+®B) - g{A-Q)B)) = g^A'®B^) 

CB[9{A®B+) - g{A(BB-)) = 9 ^ ( ^ ^ e B ' ) , 

where we place the superscript r to indicate that the objects on the right-hand 
side of the above equations live on M^'^'', whereas the objects on the left-hand 
side live on Rmlx- Lemma 3.3.1 applies and making use of the linearity of g over 
M'^'', see Lemma 3.4.1, we obtain 

^Ee{g{A®B)]=Ee{9^A'®Bn+9''iA'®B')] 

^Eelg-'iA'eB-' -^- A'-^B')], (3.17) 

or, elaborating on the weak equality on Cp(R^'^^i II ' II©) and suppressing the 
superscript r , 

{A®BY = A'®B + A®B'. (3.18) 

In the same way we conclude 

(A^B)' = A'^B + AiSiB'. 

We summarize our analysis in 
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Coro l l a ry 3.5.1 (Lemma 3.3.1 revisited) If A,B e R^lx '̂ '"̂  stochastically 
independent and Cp-differentiable, then 

{A®By = A'®B + A®B'. 

Furthermore, if A e Kmax *'̂ '̂  ^ ^ ^im.x ^'''^ stochastically independent and 
Cp-differentiable, then 

{A®B)' = A' ®B + A®B'. 

Next we state a simple but useful consequence of the results obtained so far 
which justifies the intuition that the Cp-derivative of a random matrix which 
does not depend on 6 is 'zero.' 

Coro l l a ry 3.5.2 Let A,B& I^mlx ^^ stochastically independent and have Cp-
derivatives A' and B', respectively. If B does not depend on 0, then 

{A®BY = A'®B , 

and if A does not depend on 6, we obtain {A ® B)' = A® B'. 
Furthermore, let A £ R^J^ and B £ ^i^x ^^ stochastically independent and 

Cp-differentiable. If B does not depend on 9, then 

{A®B)' = A' ®B , 

and if A does not depend on 6, we obtain {A ® B)' = A® B'. 

Proof: Note that, for B independent of 9, we have 

B' = ( 0 , 5 , B) 

which implies (see the definition of the r-projection in (3.14) ) 

g''{A' ®B') = 0 = g''{A-'®B') 

and the proof follows from (3.17). The proof of the second part of the corollary 
follows the same line of argument and is therefore omitted. D 

Another result that will prove helpful is that the Cp-derivative of a sum 
equals the sum of the Cp-derivatives of its components. The precise statement 
is given in the next lemma. 

L e m m a 3.5.1 If A,B € Rmax ''^^ stochastically independent and Cp-
differentiable, then 

(A + JS)' = A'-^B'. 

Proof: For the proof we elaborate on the fact that g € Cp becomes linear 
over M'^^'-I see Lemma 3.4.1. In the following we mark the use of this argument 
by (a). For any g e Cp we obtain 

^^Eelg{A + B)] ^t^ ±KelgiA) + g{B)] 
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= ^^^[^(^)1 + ^^^[^(^)J 

= Ee\g^A')] + ¥.glg^iB')] 

t\g[g^A'+ B')] . 

n 
The next theorem states the basic rules of Cp-differentiation. Due to our 

calculus we are able to give a purely algebraic proof. Let A{i) e K^ax (0 < i < 
k). For technical convenience, we set 

k 

0^( i ) =£(I,J) 
i-j 

for j > k, and for I = J, we set 

k 

(g)yl(i) = EiJ,J) 
i=j 

for j > k. 

Theorem 3.5.1 Let A{i) € T^lnLi. [0 < i < k) be mutually independent and 
Cp-differentiable, then 

0^( i ) ) = ^ 0 A{i) (BAUY® 0^ ( i ) , 

t=0 / j=0 i=j+l i=0 

and, for J = I, 

k \ ' k k j-l 

(g) A{i) = X3 (g) A{i) ® AiJY ® (g) A{i) . 
i=0 ) j=0 i-j+1 i=0 

Proof: We prove only the first part of the theorem since the proof of the 
second part follows the same line of argument. 

We give a proof by induction. For k = 2, the proof follows from Lemma 3.5.1. 
Suppose that the statement of the theorem holds true for k, then it follows from 
the rules of weak computation in M^'^^, see Theorem 3.4.1, that 

fc+i V / *" 
0^(i)UL4(fc + i ) e0^W 
i=0 / \ i=0 

fc 

=A{k + 1)' e 0 A{i) + (̂fe + 1) ® ( 0 A{i) 
j=0 \i=0 

k k k j—l 

^Aik + 1)' © 0 Aii) + ^ 0 Aii) ® AUY ® 0 A{i) 
t=0 j=0 i=j + l i=0 
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fc+i fc+i j - i 

= E 0 A{i)(BA{jyiB^A{i). 
j=Oi=j+l i=0 

D 
We illustrate the statement in the above theorem with an example. 

E x a m p l e 3.5.2 Consider the situation in Example 3.5.1. Let A{k) {k = 1,2) 
be stochastically independent and Bernoulli-(9)-distributed over {Di,D2), with 
P{A{k) = Di) = 9 = l - P{A{k) = D2), for 9 £ [0,1]. For the Cp-derivative of 
A{k) we obtain 

A{ky = {l,Di,D2). 

Theorem 3.5.1 now implies 

{A{1) ® A{2))' = Ail)' ® ^(2) + A{1) ® A{2y , 

or, more explicitly, 

iA{l)®A{2)y={l,DuD2)®{l,A{2),A{2)) + (1 ,^(1) , A(l)) ® (1, Pi ,£)2) 

=il,Di®A{2),D2®A{2)) + {l,A{l)®DuA{l)®D2) 

= ((1, A{1) ® Di, A{1) ® D2), (1, Di ® A{2), D2 ® A{2))) . 

Applying the {T,g)-project%on yields 

^ E e [5(^(1) ® ^ ( 2 ) ) ] = E , [g- {{A{1) ® A(2)y)] 

=-Ee[g{A{l) ® Di) + g(Di ® ^(2)) 

-g{A{l)®D2) - g{D2 0A{2))\ . 

The above formula can be phrased by saying that the derivative ofEe[g{A{l) ® 
J 4 ( 2 ) ) ] can be obtained from the difference between two experiments. For the 
first experiment, we consider all possible combinations of replacing the nominal 
matrix A(k) by Di, the positive part of the Cp-derivative of A{k). For the sec­
ond experiment, we consider all possible combinations of replacing the nominal 
matrix A(k) by D2, the negative part of the Cp-derivative of A{k). 

Notice that A{k) converges in total variation to Di as 9 tends to 0. Hence, 
taking the derivative of A{1) ® A{2) at zero yields 

and 

(Ail) ® A{2)y={{l, D,®Di,Di® D2), (1, Di ® Di , D2 ® Di)) 

Mm —Ee [g (A(l) ® A{2)) \=g{Di ® L»i) + g{D^ ® D2) 

-g{Di®Di) - g{D2®Di) 

=g{Di®D2) - g{D2®Di). 
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Differentiation of ©-sums or (8)-products increases the complexity of the 
Cp-derivative. However, we may introduce a stochastic concept called random­
ization that reduces the complexity. The basic idea (as already presented in 
Lemma 3.4.2) is to replace the summation with an expectation with respect to 
an independently, uniformly distributed random variable, say a. 

Let A{k) e Kmax' •^ith A; € N, be a sequence of Cp-differentiable random 
matrices. To simplify the notation we write for fc 6 N and j < k 

0 A(i)\j) = © A{i) ® AUy e 0 A{i), (3.19) 
i=0 / i=j+l i=0 

and, for A{k) 6 Kmajf> we define the expression ( 0 i _ o ^ ( i ) ) (j) in the same 
way. 

Randomization indeed simplifies the presentation of our results as the state­
ment in Theorem 3.5.1 can be rephrased as follows. 

Corollary 3.5.3 / / A{i) e Rmlx {0 <: i < k) are mutually independent and 
Cp-differentiable and if a is uniformly distributed over { 0 , . . . , fc} independent 
of everything else, then 

0 ^ ( i ) ) = {k + \)[^Ai{)\{a) 
i=0 / \ i = 0 / 

and, for I = J, 

k \ / k 

( g ) ^ ( i ) ^ (fc + 1) ( g ) ^ ( i ) ) ( a ) . 
i=0 / \ i = 0 

Proof: Apply Lemma 3.4.2 to Theorem 3.5.1. 

3.6 Gradient Estimation for Max-Plus Linear 
Stochastic Systems 

We consider the max-plus recurrence relation 

x{k-\-1) = A{k) 0 x(k) e B{k) , for A; > 0 . 

Using basic algebraic calculus, the above recurrence relation leads to the follow­
ing closed-form expression 

x{k + 1) = (g ) A{i} ® a;o © 0 ( ^ A{j) ® B{i), A; > 0 . (3.20) 
i=0 i=0 j=i+l 
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This gives 

Efl ( fc k k > 

(g)^(i)®a;o®0 (g) A[j)®B(i) 
2=0 i=0 j = i + l J In what follows, we calculate the Cp-derivative of the above expression, where we 

will distinguish between homogeneous and inhomogeneous recurrence relations. 
Recall that recurrence relation (3.20) is called homogeneous if a;(A; + l) = A(k)® 
x{k), for fc > 0, i.e., B{k) = ( s , . . . ,e) for all k. For example, the closed tandem 
network of Example 1.5.1 is modeled by a homogeneous recurrence relation. On 
the other hand, recurrence relation (3.20) is called inhomogeneous if B{k) 7̂  
( e , . . . ,e) for some k e N. For example, the max-plus representation (1.27) on 
page 26 of the open tandem system in Example 1.5.2 is of inhomogeneous type. 

3.6.1 Homogeneous Recurrence Relations 

Since e is absorbing for ®, (3.20) can be simplified for any homogeneous recur­
rence relation to 

fc 

x{k + 1) = (g) A{i) ®xo, fc > 0 . 
i=0 

Let A{i) {0 < i < fc) be mutually independent and Cp-differentiable with Cp-
derivative (cyi(j),^"'"(i),^~(i)). Corollary 3.5.2 implies 

a;'(fc + l ) = i<^A(i)®xoj = ( ( ^ A ( i ) j (gixQ. 

Let (7 be uniformly distributed over { 0 , . . . , fc} independent of everything else. 
In accordance with Corollary 3.5.3 we obtain 

a;'(fc + 1) = (fc + 1) [ (g) A{i) \a) ® Xo . (3.21) 

By calculation, 

—Ee [g{xik + l))|a;(0) = a;o] = Eg [g^x'{k + l))|a;(0) = XQ 

(3.21) 
Ee 9^{{k + l)i(S)A{j)\{a)®xo 
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^'^'^ E« 

''^''Ee 

5M(fc + l) <S> A{j)®A'{a)®<^A{j)®XQ 

{ I k ( 7 - 1 > 

a\ 0 A{j)®A^{a)®^ A{i) ® xo 
\j=a+l j=0 I 

( k a-1 ^ 

(g ) A{j) (8) A- (a) ® (g) Aij) ® Xo 
j=a+l j=0 / 

The above expression has a surprisingly simple interpretation. To see this, we 
introduce two processes a;t = {a;t(i) : 0 < z < A; + 1} and a;J = {a;T"(i) : 0 < 
i < /c + 1}, with 0 < j < k, defined as follows. 
Algorithm 3.6.1 Choose a uniformly distributed over {0 , . . . k} independently 
of everything else; and construct x+ as follows. Initialize a;+ (0) to XQ . For all 
i < a set 

xt{i + l) = A{i)^x+{i), (3.22) 
whereas for i = a set x+{a + l) = A+{a)®xi(a). (3.23) 

Continue with (3.22) until i = n. In words: for all transitions, except the u*'' 
transition, the dynamic of x'^ is identical to that of the original sequence {x{i) : 
0 < i < k + 1} • Construct x~ in exactly the same way except for (3.23) which 
has to be replaced by 

x-{a + l) = A-{a)®x-{a). 

From the construction follows that 

E,[ {k + l)c^(,) g{x+ik + l)) |x+(0) = xo] 

Eg {k + l)cAia)9 ^A{j) ® A+{CT) ® (g)A(j) ® Xo 
\j=cr+l j=0 J 

and 

Ee[{k + l)cAia) g{x-{k + l))\x-{Q) = xo] 

= Eg {k + l)cA(^)g (g)yl(j) ® A- (a) ® (g)A(j) ® xo 
\j=a+l j=0 I 

Hence, 

-Ee[p(a;(fc + l))|a;(0) = xo] (3.24) 

= Eg \(k + \)cA(a) {ai^tik + 1)) - g{x-{k + 1))) | 4 ( 0 ) = x'iO) = xo] , 
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for all g e Cp(Kmax>ll ' He)- I " other words, Algorithm 3.6.1 together with 
(3.24) provides an unbiased estimator for derivatives of finite max-plus matrix 
products. 

Expressions containing Cp-derivatives can be easily transformed into the 
initial max-plus setting. Thus, sensitivity analysis and optimization can easily 
be added to any max-plus based simulation of the system performance. 

3.6.2 Inhomogeneous Recurrence Relations 

Consider the max-plus recurrence relation given in (1.27) on page 26, describing 
the sample dynamic of the queuing system in Example 1.5.2. In order to obtain 
the Cp-derivative of x{k + 1) we could either transform (1.27) into a closed-form 
expression like (3.20) and calculate the derivative directly (which will lead to 
tiresome calculations) or we could transform (1.27) into a homogeneous equa­
tion. In what follows we explain the latter approach. To this end, we define the 
( J + 1) X ( J -f- l)-dimensional matrix 

A{k) = {^^^'^ B{k)®T[k + l)\ 

and set 

with 

x{k) 
x{k) 

e 

Xo 
x{0) = 

With the above definitions, recurrence relation (1.27) reads 

x{k + \) = A{k) ® x{k) , k>0. (3.25) 

Cp-differentiability of A{k) and {B{k) <S> T{k + 1)) impHes that of A{k) (for a 
proof follow the line of argument in the proof of Theorem 3.3.1 and use the fact 
that A{k) and {B{k) (g) r(A; -|-1)) have common input ao{k - I -1) , . . . , aj{k + 1)). 
In particular, 

^A+{k) (5(A;)®r(fc + l ) )+ ' 
A+(k) = 

\e.. .e e 
and 

^i-(fc) {B{k)®r{k + l)y A-{k) , 

Following the same line of argument as in Section 3.6.1 we obtain the following 
algorithm. 

Algorithm 3.6.2 Initialize a;+(0) = XQ = x~{0); choose a uniformly distrib­
uted over {0,... ,k} independent of everything else; and set for i ^ a 

x+^-(i + 1) = i ( i ) ® a ; y - ( i ) ® B{i) ® T(i + 1) 
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whereas for i = a 

x+(ff + 1) = A+{a) ® xt{a) ® {B(a) ® r(c7 + 1))+ 

and 
x-{a + 1) = A-{a) ® x-{a) ® {B{a) ® T{a + l ) ) " . 

The above algorithm yields an unbiased gradient estimator for inhomogene-
ous max-plus recurrence relations. More specifically, for g G Cp(R;^ax> II' He) set 
g{x, e) = g{x), then it holds that 

—Eg[g{xik + l))\xiO) = xo] 

= Eg [{k + l)c^(<,) (5(2;+ (fc + 1)) - ~g(x- (fc + 1))) |a.+ (0) = a;; (0) = a;o] . 

In Example 1.5.4 we have explained how waiting times can be represented 
via inhomogeneous max-plus recurrence relations. We conclude our presentation 
with an application of our results to Cp-difFerentiation of waiting times. 

Example 3.6.1 Consider the situation in Example 1.5.4 again. For the sake of 
simplicity, assume that 6 is a parameter of the interarrival time distribution so 
that the interarrival time ao{k) has a Cp-derivative a'^ik) = {c, OQ (k), aQ [k)). 
The matrix A{k) and the vector B{k) are independent of 6. Furthermore, 
C{ao{k)) is Cp-differentiable with C'{ao{k)) = (c, C((T^(A;)) , C(CT(7(A:))). Our 
calculus of Cp-differentiation then implies 

(^A{k) ® C{ao{k + l ) ) ) ' s^ ( fc ) ® C'{ao{k + 1)) . 

Let Wj'{i) and W~{i) (0 < i < A; + 1) be two sequences defined as follows. Ini­
tialize W^{0) = W^(0) = W~{0); chose a uniformly distributed over {0,... ,k] 
independent of everything else; and set for i ^ a 

W+'-{i + 1) = A{t) ® C((7o(i + 1)) <8) W+'-{i) e B{i), 

whereas for i = a 

W+{i + 1) = A{i) ® C{a+{i + 1)) ® W+{i) e B{i) 

and 
W-{i + 1) = A{i) ® Ciooii + 1)) (8) W-{i) ® B{i). 

Then for all g 6 C'p(K;̂ ax> II ' II©) ** holds true that 

±Ee[g{W{k + l))]= cik+l)Eg[g{W+ik+l)) - g{W-{k + l))\ . 



Chapter 4 

Higher-Order D-Derivatives 

In this chapter, we extend the concept of 23-difFerentiabiUty to that of higher-
order X'-differentiabihty. The key contribution of this chapter will be that we 
establish a Leibnitz rule of higher-order ^-differentiation and that we give an 
explicit formula for higher-order 2?-derivatives. The general setup is as in the 
previous chapter. 

This chapter is organized as follows. In Section 4.1, we introduce the concept 
of higher-order P-differentiation. The basic result for higher-order differentia­
tion in Cp-spaces is established in Section 4.2. Higher-order ^-differentiation 
on M'^^ is discussed in Section 4.3. Then, we take T) = Cp and prove in Sec­
tion 4.4 a Leibnitz rule of higher-order Cp-differentiation. Finally, we introduce 
in Section 4.5 the concept of 'D-analyticity and show that the ®-sum and the 
(S)-product on Rmax preserve Cp-analyticity. 

4.1 Higher-Order P-Derivatives 

The definition of higher-order D-derivatives is a straightforward generalization 
of Definition 3.1.1. 

Definition 4.1.1 Consider the mapping ^ : 6 —> Mi{S,S). Let V C 

C^iHe : 9 £ Q) and set jig = jig. We call jio n times V-differentiable at 9 

if a finite signed measure jig exists such that for any g ^V: 

Js Js 

d" 

'IS 

The definition of an n"" order derivative readily follows from the above 
definition. 

Definition 4.1.2 We call a triple {cg , jig ' , fig '~ '), with jig ' ,/Ug"'~ £ 

A^i(5,<S) and Cg G R, an n" ' order V-derivative of fxe at 9 if ^le is n times 
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V-differentiable and if for any g £ V: 

^ p ( s ) ^ ( " \ d s ) = 4") (^l^g{s)t,i"'+'\ds) - l^g{s) f,i"'-'\ds)j . (4.1) 

/ / the left-hand side of the above equation equals zero for all g e V, we say that 
the n*'' order V-derivative of fie is not significant, whereas it is called significant 
otherwise. 

We denote by s{iJ,e) the order of the highest significant V-derivative. Specif­
ically, we set s{ixe) = oo if fie is oo times V-differentiable and all higher or­
der V-derivatives are significant. In case fig fails to be V-differentiable, we set 
s{fte) = - ! • 

For 0 € &, let fie € Aii{S,S) be absolutely continuous with respect to 
fi S Ml and denote the /i-density of fie by fe. Assume that fe is n times 
differentiable as a function in 9 and suppose that interchanging the order of n 
fold differentiation and integration is justified for any g £ V, in formula: 

V5 6 2? : ^ ^ 9{s) fie{ds) = ^ g{s) ^fe{s) fi{ds) . (4.2) 

Set 
1 /• W" 

fi{ds 
(n) 1 / 

and assume that 4"^ < oo. We may then define yu-densities 

(„,+l) 1 M " \ („,_i) 1 /̂  d" , n 

6 9 

Equation (4.2) then reads 

~l^g{s)fie{ds) = 4") (^l^g{s)fi"'^'Hs)fi{ds)- l^g{s)fi"'-'Hs)fiids) 
d0' 

j4 .3) 

Prom the densities /^ ' and fg' we obtain measures fig' and fig' , 
respectively, on iS,J^) through 

fi^r'' (A) = / /i"'+^^(5) fiids) and fi'-J^'-'^A) = / ft'-'\s) fi{ds) 
J A J A 

(4.4) 
for A & T. For n = 1, we recover the definition of 23-differentiability as stated 
in (4.1). Like for first-order D-derivatives, the above representation of fig is 
the Hahn-Jordan decomposition, where 

.̂V = f^^^l^^^(^)^°}-
In the following we provide examples of infinitely 2?-differentiable distribu­

tions. 
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E x a m p l e 4.1.1 Let iie{x) = 1 — e"^^ he the exponential distribution on S = 
[0, oo), with 6 = [9i, dr] for 0 < 9i < 6r < oo, see Example 3.1.1. 

We show that fig is oo times Cp-differentiable, for any p G N. The Lebesgue 
density of jie, denoted by fe, is bounded by 

sup fe{x) = Or e-*' ^ =^ K^Ax), a; e [0, oo) . 

For n>l, the n*'' derivative of fg{x) is given by 

which implies, for any x 6 [0, oo), 

sup 
see 

iz;r/»(*) < {OrX + n) a;"-i e"*' ^ =* K]{x), (4.5) 

for n > 1. v4i/ moments of the exponential distribution exist and we obtain, for 
all n and all p. 

)dx < oo . 
Is ' 
f \xrK]{x)i 

Js 

Prom the dominated convergence theorem it then follows 

d" f d^ f 
— J^gis)f,s{ds) = — J^gis)fe{s)ds 

Writing d^'fe/dO'' as 

^feis) = max ( ! ; / , ( . ) , o) - max ( - | ; / , ( . ) , o ) , 

where 

max (— Ms) o\ = /^["/».<-)(^) (^^ " ^) ^""^ " ^'^«"' 
\d9'>--"'^ '' J \l[o,n/e)ix){n-ex)e-'>'' otherwise, 

and 

i n a x f - - J - / , ( . ) , o ' ) = lho,n/B){x){n-ex)e-o^ n even, 
V d('" J [l(„/9,oo)(a;)(6'a;-71)6""^ otherwise, 

we obtain the n*'' Cp-derivative of fie through 

/x^"'+^'(ds) = - ^ m a x f — / e ( s ) , O J d s , 
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and 

c, 
(n) 

Hence, jjLg is oo times Cp-differentiable, for any p € N, and all higher-order 
Cp-derivatives are significant, that is, s{^^e) = oo. The above Cp-derivative is 
notably the Hahn-Jordan decomposition of JIQ . Later in the text we will provide 
an alternative representation elaborating on the Gamma-(n,6)-distribution. 

Example 4.1.2 Consider the Bernoulli-(6)-distribution fig on X = 
{Di,D2} C S with tie{Di) = 9 = 1 - iie{D2). Following Example 3.5.1, 
we obtain 

as a first-order V-derivative of fj,g, where 6x denotes the Dirac measure in x 
and T) is any set of mappings from X to R. Furthermore, all higher-order V-
derivatives of fie are not significant. Hence, fig is cx) times V-differentiable with 
s{fig) = 1. 

For the exponential distribution with rate 9 all higher-order Cp-derivatives 
exist and are significant, whereas for the Bernoulli-(^)-distribution all higher-
order Cp-derivatives exist and but only the first Cp-derivative is significant. We 
conclude this series of examples with the uniform distribution on [0,9]: here only 
the first C''-derivative exists. 

Example 4.1.3 We revisit Example 3.1.2. There exists no (reasonable) setV, 
such that the Dirac measure in 9 is V-differentiable, see Example 3.1.3. In par­
ticular, the Dirac measure fails to be C^-differentiable. 

In Example 3.1.2 we have shown that the uniform distribution on [Q,0\, de­
noted byU\Q^g\, is C^-differentiable and we have calculated UL gy In particular, 
UL gi is a measure with a discrete and a continuous component, where the di­
screte component has its mass at 9 and therefore any representation of UL gi 
in terms of a scaled difference between two probability measures does. In other 
words, any C^-derivative of fig involves the Dirac measure in 9. Twice C^-
differentiability o/W[o,9] « equivalent to C^-differentiability ofULm and thus 
involves C''-differentiability of the Dirac measure in 9. Since the Dirac measure 
in 9 fails to be C^-differentiable, we conclude that the second-order C''-derivative 
of U[o,e] does not exist and likewise any higher-order C''-derivative of U^ggy 
Hence, W[o,e] is once Cp-differentiable and s(W[o,e]) = 1-

In what follows, we will establish a Leibnitz rule for higher order 2?-
differentiability. Before we state our lemma on P-differentiability of the product 
of two D-differentiable measures, we introduce the following multi indices. For 
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n € N, mi,1X12 £ ^1 with mi < m,2, and fik S A^i('S',<S), with mi < fc < m2, we 
set 

C[mi,m2;n] = < {Imr,---Jm2) Zfc G { 0 , . . . , n } , /fc < s(/Ufc) and ^ //t = n V , 

fc=mi 

and, for I e C[m,i,m2;n], we introduce the set 

S («mi,---,im2) «fc G {0,+1,-1}, i fc = 0 iff/fc = 0 and J J 4 = + 1 I 

For I e ^[Z] we introduce the auxiliary multi index i~ as follows. Let k* be the 
highest position of a non-zero element in i, that is, ifc = 0 for all k > k* and 
ifc« € {—1, +1} . We now set 

that is, the multi index i~ is generated out of i by changing the sign of the 
highest non-zero element. In the following theorem we denote the cardinality of 
a given set H by card(if) . 

T h e o r e m 4.1.1 Let {S,S) and {Z,Z) be measurable spaces. If He € Mi{S,S) 
is n times 'D{S)-differentiable and ve 6 Mi{Z,Z) n times 'D{Z)-differentiable 
for solid spaces ^{S) and T>{Z). Then fie x t'e is n times T>{S, Z)-differentiable, 
where 

m 

V{S,Z)= {geC'iiiexvg-.eeepm: \g{s,z)\ <J2difi(s)hi{z) , 
i=0 

fieViS),hieV{Z),dieR], 

and it holds 

it^e X i.,)(") = Yl - M ^ ^ X .y^) 
l={lo,h)eC[0,l;n] 

loUil 

Moreover, let He have n*'' order V-derivative {cij,g,fie iMe ' ) '^''^'^ '^* '^s 
have n*'' order V-derivative {CvgtVg' ,i>g'~ ) , then an n*'' order V(S,Z)-
derivative of ixg x ve is given by 

[c^;:]x.e' if^o X <..)("-+i), {He X ^ , ) ( " ' - i ) ) , 

with 

E 
l={h,ll)eClO,l;n] 

4r-4 ; ' ' -card(X[/ ] ) 
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I Co) (h) 
/,, y ,, \(n,+ l) _ Y ^ n . C,j,g • Cus sr^ „(io,io) y , (il,n) 

(=((o,h)e£(0,l;n] " ' SeXi^e (to,n)6X[i] 

and 

'=(io,ii)€£[0,l;nj °' ^' "̂ MeXfe (io,Ji)eX[i] 

, (0,0) (0,0) , (0) , (0) 
where fJ'g = f^6, i^e — i^e and clij = 1 = clg . 

Proof: We prove the first part of the theorem by induction with respect to 
n. Theorem 3.1.1 imphes that the induction hypothesis holds for n = 1. Suppose 
now that the statement of the theorem holds forn > 1. Direct calculation yields, 
for any g € 7^(8, Z): 

- j 9{n)nsy- ve{du) 

\(io>'l)e'C[0,l;n-l] y 

+ 

(;o,li)€£[0,l;n-ll 

We assumed that the n"" P(5)-derivative of fie and the I?(Z)-derivative of vg, 
respectively, exist and evoking Theorem 3.1.1 again yields 

•'•.[0,\\n-\\ ° ' •'• ^ 

= E 7^/p(«)(M^'°^x^(''))(d«). (4.6) 
(/o,(l)e£[0,l;nl °' ^ ' -̂  

Since only the first s{^g) derivatives of fig and the first s{ve) derivatives of ve 
are significant, we only have to take into account indices I = {lo,h) such that 
0̂ < s(A«fl) and h < s{vg). 

In order to prove the second part of the theorem, we consider the positive 
and negative parts of the higher-order derivatives of Hg and I'g separately, see 
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(4.1). The measure on the right-hand side of (4.6) then reads 

rearranging the positive and negative parts yields, 

Note that, for 1 E { 0 , 1 )  and i E {+I ,  0 ,  -11, and vfli) are probability 
measures. That (pO x ~ 0 ) ( ~ , * ' )  are indeed probability measures can be seen as 
follows: 

This concludes the proof of the theorem. 0 
We now turn to nth order V-derivatives of random variables. 

Definition 4.1.3 Let Xo have distribution pe. W e  call a random variable Xo 
n times V-differentiable if p0 is  n times V-differentiable. Let po have nth order 

(n,+l) V-derivative (cpn, p0 , , L L ~ ' - ' ) ) .  W e  call the triple ( c g ,  xin'+'), XP'-')) an 

nth order V-derivative of Xe if xjn '+l )  is  distributed according to pp'+l) and 

xc'-l) according to pp'-l), respectively, that is, if for any g E V :  

where c$: = ~(lng). If the left-hand side of the above equation equals zero for all 
g E V ,  we take (0 ,  XO, Xo) as an nth order derivative and call the nth order 
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D-derivative not  significant, whereas it i s  called significant otherwise. W e  set 
4x9) = 4 ~ s ) .  

We illustrate the above definition with the following example. 

Example 4.1.4 Let X 0  E R be exponentially distributed with mean  1 / 0  and 
denote the Lebesgue density of X s  by fs .  I n  Example 4.1.1, we have already 
calculated 

dn - f e ( x )  = ( - ~ ) " x " - ~ ( @ x  - n) e-'" 
dBn 

A straightforward way for obtaining a Cp-derivative of X o  is  to  split dfe/dO into  
its positive and negative part. Re-scaling these functions leads t o  densities of 
X: and X i ,  respectively, and the re-scaling factor will be equal t o  c x ,  . 

However, as already explained i n  Example 3.1.1 for  the first-order C b -  
derivative, a more convenient representation of the Cp-derivative is  obtainable 
from the Gamma-(n,O)-distribution. T o  see this, recall that 

is  the Lebesgue density of the Gamma-(n,Q)-distribution. Direct calculation 
yields: 

Hence, 

for n even 
fe(n,+l) 

(2) = h n + l , ~ ( x )  3 
fs(n,-l) ( X I  = hn ,e (x )  

and for n odd 

Let xin'*') have Lebesgue density f jn '*l ) ,  then a n  instance of a n  nth order 

Cp-derivative of X 0  is  given by (n!/On, X?"~) ,  xin'-')). 
Samples from the Gamma-(n ,  8)-distribution can be obtained by summing n 

i.i.d. copies of exponentially distributed random variables with mean  I / @ .  This  
leads to  the following scheme for sampling a n  nth order C,-derivative of X o .  
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Let { X e ( k ) )  be an i.i.d. sequence of exponentially distributed random variables 
with mean 1/8,  then, for n even, the nth order Cp-derivative of Xo  is given by 

and, for n odd, the nth order Cp-derivative of Xe reads 

Put another way, for any g E C p ,  it holds that 

Note that the above representation allows for a recursive estimation of higher- 
order derivatives: the (n + derivative of IE[g(Xe)] can be estimated from the 
same data as the nth derivative and the additional drawing of one sample from 
an exponential distribution. Taking g as the identity, Equation (4.7) yields the 
following well known result: 

Example 4.1.5 Let Xe  E { D l ,  D 2 )  be Bernoulli-(6')-distributed, so that 
P ( X o  = D l )  = B = 1 - P ( X o  = D 2 ) ,  for 6 E [O,l] .  From Example 4.2.2 it  
follows that (1,  D l ,  D2)  is a ~ ( ~ ~ ) ~ 2 ) - d e r i v a t i v e  of X e .  Since all other deriva- 
tives are non-significant, we obtain 

(&,  xjn?+l), xjn>-l) , = {  (1, D l ,  D2) for n = 1, 

(O,Xe,Xe)  fern> 1, 

for 0 E [O,1], where we take sided derivatives at the boundary points 0 and 1. 

4.2 Higher-Order Differentiation in Cp-Spaces 

As in Chapter 3, we will confine ourselves to C,  as space of performance func- 
tions in order to derive sufficient conditions for a Leibnitz rule to hold. This 
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will be done in the following theorem which establishes our Leibnitz rule for 
higher order Cp-differentiability measures, namely that the product of two n 
times Cp-differentiable measures is again n times Cp-differentiable. This result 
will serve as the main technical tool for developing a calculus of higher order 
(?,-differentiation for matrices and vectors over the max-plus semiring. 

Theorem 4.2.1 Let (S ,  S )  and (2, Z) be measurable spaces equipped with upper 
bounds I I and 1 )  . I ) z ,  respectively, and let the product space S x Z be equipped 
with an upper bound 1 1  . ]Isxz .  If 

for any s E S ,  z E Z ,  it holds that 

pe E M 1 ( S ,  S )  is n times Cp(S,  1 1  . 11s)-differentiable and ve E M l ( Z ,  Z )  
is n times Cp(Z,  ) I  . 11~)-differentiable, 

then pe x ue is n times Cp(S x Z,II . IIsxz)-differentiable and it holds 

Specifically, an nth order Cp(S  x Z,I( . I(sxz)-derivative of pe x ve is given by 

and 

where $'O) = pe, v r p O )  = vg and cg) = cct) = 1.  
Furthermore, let ( R ,  R) be a measurable space equipped with upper bound 

( 1 .  ( I R  and let h : S x Z -t R be a measurable mapping such that finite constants 
cs and cz exist which satisfy 

Ilh(s,~)lln I cs llslls + cz l l~l lz  , s E s , z  E 2 .  

If pg E M1 (S ,  S )  is n times Cp(S ,  I I . 11s)-differentiable and ve E M 1  (2, Z )  is 
n times Cp(Z,  1 1  . 11~)-differentiable, then (pe x V O ) ~  is n times Cp(R,  I (  . /IR)- 
differentiable and the nth order Cp(R,  ) I  . (1~)-derivative of (ps x v ~ ) ~  is given 
b y  
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Proof: Take D(S) = Cp(Sl I I . I I s )  and V(Z)  = Cp(Z, I I l z )  and note that 
D(S) and D(Z) are solid. Then Theorem 4.1.1 implies that pe x ve is n times 
differentiable with respect to the set 

which coincides with the set C(S, 2) defined in Lemma 3.2.1. From the same 
lemma it follows that Cp(S x 2, I I . I I S x  z )  C C(S, Z) ,  and we thus proved the 
first part of the theorem. 

We turn to the proof of the second part of the theorem. In the proof of 
the first part of the theorem we have shown that pe x ve is actually n times 
C(S, Z)-differentiable. By Lemma 3.2.1, gh (., .) = g(h(., .)) E C(S, Z), for any 
g E Cp(R, 1 )  . )IR), and, using this fact, we calculate 

which proves the second part of the theorem. 
The following lemma extends the above theorem to  n fold products of prob- 

ability measures. 

Lemma 4.2.1 Let  (S, S )  be a measurable space equipped w i th  upper  bound I 1 .  I l s  
and  let, for s o m e  m E N, t he  product space Sm+' be equipped w i th  upper  bound 
I I  . Ils-+l. I f  

f o r  a n y  k < m it holds t ha t  

pe E MI  (S, S) i s  n t i m e s  Cp(S, 1 )  . I Is)-differentiable, 

t h e n  ve = $+' (where pT+l denotes  t he  (m + 1 )  fold independent  product of 
pe) i s  n t i m e s  Cp(Sm+', I I . I ISm+l)-differentiable and it holds 
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Specifically, an instance of the nth order Cp(Sm+',  1 1 .  IIS,+l)-derivative of ue (= 
p T S 1 )  is given by 

with 
m 

,(n) = C n! 
4 l o ! .  . . l,! IT c:,") . card ( l [ l ] )  , 

l=(lo,.. .  ,l,)~L[O,m;n] k=O 

and 

where j$'O) = pe and c g )  = 1. 
Furthermore, let ( R ,  R) be a measurable space equipped with an  upper bound 

1 )  . ) ) R  and let h : sk -+ R ,  for 1 < k 5 m -t 1, be a measurable mapping such 
that for each k ,  with 2 5 k 5 m+ 1, finite constants q ( k )  and c z ( k )  exist which 
satisfy 

and for k = 1 a finite constant c exist which satisfies: 

I f  pe E M l ( S , S )  is n times C p ( S ,  1 1  . \Is)-differentiable, then ( ~ 9 ) ~  is  n times 
C p ( R ,  1 1  . 11~)-differentiable and the nth order C,(R,  1 1  . IIR)-derivative of u i  is 
given by 

Proof: T h e  proof follows from Theorem 4.2.1 by  finite induction. 

4.3 Higher-Order V-Differentiation on M I X  

In this section we introduce the  basic concepts o f  higher-order V-differentiation 
in t he  extended space J ,  defined in Section 3.4. W e  begin with t he  formal - 
definition o f  the  nth order V-derivative o f  a random matrix in IRZ:,,' as an object 
in MIX J .  



4.3 Higher-Order D-Differentiation on M I X J  163 

Definition 4.3.1 We call A = Ae E R z a i  n times 2)-differentiable if the dis- 
tribution of A is n times 2)-differentiable. We call 

nth order 2)-derivative of A if for any g E 2) it holds that 

If the left-hand side equals zero for all g, we set A(") = (0 ,  A ,  A )  and we call the 
nth 2)-derivative of A not significant, whereas it is called significant otherwise. 
For a first order 2)-derivative of A we write either A' or A('). 

We illustrate the above definition with examples. 

Example 4.3.1 Consider the Bernoulli case in  Example 4.1.5. Only the first 
1 ~ ( ~ 1 > ~ 2 ) - d e r i v a t i v e  is significant. More precisely, we obtain A ( ~ )  = (1 ,  D l ,  D2) 
for n = 1 and A(") = (0 ,  A ,  A )  for n > 1 as ~ ( ~ 1 > ~ 2 ) - d e r i v a t i v e  of A .  Let 
g E ~ ( ~ 1 1 ~ 2 ) ~  taking the (.r,g)-projection of A(") (see (3.14) for the definition 
of this projection) yields 

for 8 E [0, 11, where we take sided derivatives at the boundary points 0 and 1. 

In applications, a random matrix may depend on 8 only through one of the 
input variables. Recall that X I , .  . . , X ,  E R,,, is called the input of A E RZ,' 
when the elements of A are measurable mappings of ( X I ,  . . . , X,). As for the 
first-order Cp-derivative we now show that higher order Cp-differentiation of a 
matrix A is completely determined by the higher order Cp-differentiability of 
the input of A. 

Corollary 4.3.1 Let A0 E Rf,X,i have input X z ,  . . . , X,, with Xe , l ,  X i  E 
R,,,, for 2 5 i 5 m, and let Xe,i have nth order CP(Rm,,, 1 1  . I[@)-derivative 

If 

Xs,i is stochastically independent of ( X 2 , .  . . , X m ) ,  

( X 2 , .  . . , X,) does not depend on 8, and 

0 a constant c E (0,  oo) exists, such that 
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then Ae  has nth order C p ( I R z i ,  I I . I [@)-derivative 

with 
(",+I) '"' - '"' ap+" = A ( x 8 , 1  , x2, . . . , X m )  ' xe ,~  - ' A S  1 

and 

Proof: Using Theorem 4.2.1, the proof follows from the same line of argument 
as the proof of Theorem 3.3.1 followed from Theorem 3.2.2 together with Cor- 
ollary 1.6.1. 0 

Example 4.3.2 W e  revisit the situation in Example 3.3.1 (an open tandem 
queuing system the interarrival t imes of which depend on  8 )  . I n  accordance 
with Example 4.1.1, ao(8 ,  k )  i s  oo t imes C,(IK,,, I I . I I @ )  -differentiable with nth 
C p  -derivative 

T h e  condition o n  IIA(uo(8, k ) ,  u l ( k ) ,  . . . , a j ( k ) ) l l @  in Corollary 4.3.1 is  satisfied. 
The  positive part of the nth order C p ( R ~ ~ ~ X  J+l ,  1 I . I I@)-derivative of A ( k )  is  
obtained from A ( k )  by replacing all occurrences of ao(e, k + l )  by crp"l'(8, k + l ) ;  
and the negative part is  obtained from replacing all occurrences of q ( 0 ,  lc + 1 )  by 
ap'-l)(O, k + 1 ) .  More formally, we obtain a n  nth order Cp-derivative of A ( k )  
through 

for k 2 0.  
Following the representation of higher-order Cp-derivatives of the exponen- 

tial distribution i n  Example 4.1.4, we obtain the higher-order Cp-derivatives 
as follows. Let { X e ( i ) )  be a sequence of 2.i.d. exponentially distributed random 
variables with mean  1 / 8 .  Samples of higher-order Cp-derivatives can be obtained 
through the following scheme 

for n 2 0 ,  where we elaborate o n  the convention A(O>+l) = A ,  and, for n 2 1, 
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4.4 Rules of C,-Differentiation 

In this section we establish the Leibnitz rule for higher-order Cp-differentiation. 
Specifically, the C,-derivative of the (m + 1) fold product of n times Cp- 
differentiable probability measures can be found by Lemma 4.2.1 and the follow- 
ing lemma provides an interpretation of this result in terms of random matrices. 

Lemma 4.4.1 (Leibnitz rule) Let {A(k)) be an 2.i.d. sequence of n times 
Cp-differentiable matrices over R g i ,  then 

where ~('lO)(k) = A(k) and = 1. A similar formula can be obtained for 
the nth Cp-derivative of A @ B.  

Proof: Let S = R z i  and set h 

for Ak E IW;;~, for 0 5 k 5 m. In accordance with Lemma 1.6.1, for any m 2 1 

and Lemma 4.2.1 applies to h. 

Switching from probability measures to the appropriate random matrices 
yields an interpretation of nth order derivative in terms of random variables. 
Canceling out the normalizing factor concludes the proof of the lemma. More 
specifically, let po denote the distribution of A(k) and let ~ ( ' k , ~ k ) ( k )  be distrib- 

uted according to pfk' ik) and let A(lk-i;)(k) be distributed according to  pfk'i;), 
for 1 E L[O, m; n] and i E Z[1]. 

Lemma 4.2.1 applies to the (m + 1) fold independent product of pol denoted 



166 Higher-Order D-Derivatives 

by p;;2+1, and we obtain for g E Cp(W$,", 1 1  . IIe) 

The factor c?+, cancels out and according to Definition 4.1.3 it holds that 
a 

c?;)., = c!:'. This gives 

and switching from g to gT, the canonical extension of g to MJX J ,  yields 

we now elaborate on the fact that for any mapping g E Cp(Rc,", 1 1  . I[@) the 
corresponding mapping gT becomes linear on M~~ J ,  and we arrive at  

which concludes the proof of the lemma. 
With the help of the Leibnitz rule we can explicitly calculate higher-order 

C,-derivatives. In particular, applying the (7,g)-projection to higher-order Cp- 
derivatives yields unbiased estimators for higher-order Cp-derivatives, see Sec- 
tion 3.6. 
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Example 4.4.1 Let { A e ( k ) )  be a sequence of 2.i.d. Bernoulli-(@)-distributed 
matrices o n  R g i .  Only the first-order Cp-derivative of A e ( k )  is  significant and 
a n  nth order Cp-derivative of the product of A e ( k )  over 0 5 k 5 m reads 

W h e n  we consider the derivatives at zero, see Example 4.1.5, we obtain A o ( k )  = 
D2 and, for example, the first-order derivative of g(@F=O A o ( k )  L xo)  is  given 
by 

whereas the second-order derivative reads 

We conclude this section by establishing an upper bound for the nth order 
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CP-derivative. To simplify the notation, we set 

Lemma 4.4.2 Let {A(k)) be a n  2.i.d. sequence of n t imes C,-differentiable 
square matrices in RG;. For any g E CP i t  holds with probability one that 

where 

I n  particular, 

I n  addition t o  that, let A(0) have state space A and set 

and 

If so = e and Il.Alle < ca, then 

and 



4.4 Rules of Cn-DifFerentiation 169 

Proof: We only establish the upper bound for the case n > 0. The case n = 0 
follows readily from this line of argument. Prom the Leibnitz rule of higher-order 
Cp-differentiation, see Lemma 4.4.1, we obtain an explicit representation of the 

order Cp-derivative of (S)fcLo ^ ( ^ ) ' Using the fact that g is linear on A '̂̂ * '̂̂ , ^th 

we obtain 

(n) N 

)A{k)\ ®xo 
fc=0 

=«M E 
iec[o,n 

= E 
;e£[0,m;n] 

ioni\...u 

i€X[l] \k=0 fc=0 fc=0 

n! 

,! _ /^! 

= E 

E 5' n^A(o)'0^^'"''"'(^)®^°'^^*''"'*'^(^)®^° 
i€X[;l \fc=0 k=0 

T7.I 

fc=0 

lo\h\...lm\ ^ i-J-'^MO) 
leC[0,m;n\ " ^ "^ i6X[;] fc=0 

En 

fc=0 

^ j (g)^( / . , i . ) ( fc)^a.J - ff (g)^(''-^'^)(fc)®a;o 
fe=0 

where, for the last equality, we take the (T,p)-projection, see (3.14). Taking 
absolute values and using the fact that g € Cp yields 

(n) 

g- I 1 [^A{k) I ®a;o 
/c=0 

^ E n! 
lolh\...U. ^ -lA -4(0) 

;€£[0,Tn;n| i e l [ / ] fc=0 

En 

X 2ao + feg | ^ C i | c , i f e ) ( f c ) , g | a ; Q 

fc=0 

+ &0 |A('»"*^)(fc)®a;o 
fc=0 

Applying Lemma 1.6.1 yields 

(g)^(''='^*)(fc)(gia;o 
fc=0 

/ m \ P 
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and 

)A'^^'"'>'\k)®xo 
fc=o fc=0 

This yields 

ffM (g)^(fc) ®xo 
fc=0 

(n) 

^ E En 
leClO,m]n] " ^ ™ ieX[l] fc=0 

fc=0 

|a:o||© 

/ m 

\fc=o 

which completes the proof of the first part of the lemma. 
We now turn to the proof of the second part of the lemma. Note that XQ = e 

implies that ||a;o||® = 0. Without loss of generality, we assume that the state 
space of Cp-derivatives of J4(0) is (a subset) of A (this can always be guaranteed 
by representing the Cp-derivative via the Hahn-Jordan decomposition). This 
implies, for any i e {—1, 0,1} and w € { 0 , 1 , . . . , n } , 

max(||^('"'^)(fc)||e , p(™'-^)(A;)||e) < IMII© , k>0, 

and we obtain 

^||^('-''')(A;)||e + Ell^*''"'''^WII® <2(m + l)''(||^||e)'' 
f̂c=o / \fc=o 

For any I e £[0, m; n], at most n elements of I are different from zero. For Ik > 0, 

Cj^lL < Cyi(o). Hence, for any I e jC[0,m;n] 

n 
fc=0 

-AiO) < ( C A ( 0 ) ) " . 

Furthermore, for any I € C[0,m;n], I{1] has at most 2""^ elements, see Sec­
tion G.5 in the Appendix. This completes the proof of the second part of the 
lemma. D 

4.5 D-Analyticity 

We begin this section by formally defining V-analyticity of measures. 
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Definition 4.5.1 We call ne 6 Mi{S,S) V-analytic on 0 , or, V-analytic for 
short, if 

• all higher-order V-derivatives of fie exist on Q, and 

• for all 9o e Q an open neighborhood Ue„ C Q of OQ exists such that for 
any g EV and any 6 e Ugg: 

E i ( ^ - ^oT I 9{s) l^i:\ds) = / gis) ,,e{ds) . 

In the following we establish sufficient conditions for Cp-analyticity of some 
interesting distributions. 

Example 4.5.1 Let ng be the exponential distribution and denote the Lebesgue 
density of fig by fe{x) — 9 exp(—^x), for ^ e © = (0, oo). Then fe{x) is analytic 
on (0,oo). In particular, the domain of convergence of the Taylor series for fe{x) 
developed at any OQ & & is (0, oo). For 9o £ (0, oo), set Ugg (5) = {5,29o — 5) for 
9o > S > 0, then, for all x G [0, oo); 

E 
n=0 

fe{x){9-9or 
1_ _rf 

n! d6l" 
oo 

< Y^i9ox"- + nx"-^)e-''o'' —\9-9or 
n=0 

<e-''o^9o + {9o~S))e' 

= (2^0 - <5)e-^^ 

n!' 

{eo-S)x 

n=0 

where the second inequality follows from the fact that \9 — do\ < ^o — î - This 
implies, for any g £ Cp, 

oo , 

/ g{x)ng{dx) 

= i : > - ^ o ) " | ; | /p(.)M.)A(..) 

E;^(^-^o)";^ 
n=0 

d9" 

/

°° 1 j n 

= / 9{x) fe{x)X(dx) 

= / g{x)tie{dx) . 

fe{x)\[dx) 
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Hence, no is Cp-analytic on (0, oo), for any p 6 N, and the Taylor series for /Ug 
at 6o has at least domain of convergence Uea{S), for 9o > 6 > 0. 

Example 4.5.2 Let fie be the Bernoulli-{9)-distribution on {Di, 02}- Thence 
is 00 times M.^^^'^^' -differentiable and since only the first order V- derivative 
is significant, fig is V-analytic on [0,1]. Notice that taking one-sided derivatives 
at the boundary points, (xg can be expanded into a Taylor series at, say, 6 = 0. 

The following theorem characterizes the set of performance functions with 
respect to which the product of two analytic measures is analytic. 

Theorem 4.5.1 Let (S,S) and {Z,Z) be measurable spaces. If /ig is V{S)-
analytic and vg is 'D{Z)-analytic for solid spaces X'(5) and 'D{Z), then ng x ug 
is T>{S, Z)-analytic, with 

n 

V{S,Z) = [g€ C\iig xi^g-.ee e ) | 3 n : \g{s,z)\ <Y,difi{s)hi{z), 

fieV{S),hieViZ),dieR}. 

In particular, if, for 60 6 6 , the Taylor series for fig has domain of convergence 
Uff and the Taylor series for vg has domain of convergence Ug^, then the domain 
of convergence of the Taylor series for the product measure ^g x vg is at least 

Proof: The Leibnitz rule of higher-order P-differentiation (see Theo­
rem 4.1.1) implies that all higher order P ( 5 , 2')-derivatives of jxg x vg exist. 
More precisely, let the Taylor series for fig at 6Q have domain of convergence 
Ug and let the Taylor series for vg at Oa have domain of convergence Ug . Then 
all higher order V{S, Z)-derivatives of ^,g x vg exist on Ug„ =Ug nUg . 

For 9 e Ugg, with ^0 £ ©, we calculate 

°° 1 fi"^ r 

00 - "^ / \ /• 

m=0 Ti=0 ^ / •'bxZ, 

00 00 - - « 

= E E ;^(^ - ^o)"^(^ - 0̂)'= / g{u) (/.<:) X .i'J) {du). 
n=Ofc=0 • ' JSxZ 
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Set 

/ 9{S:Z)lJ.g!'ids) = hg{z) 
Js 

for z e Z, and observe that g G P ( 5 , Z) implies hg{-) e ^{Z). Applying Fubini's 
theorem (see Section E.l in the Appendix), yields 

oo oo ^ ^ ^ 

E E ^̂ (̂  - ^o)"^(^ - 0̂)'= / 9{u) {^i:^ X 4'J) (du) 
n=Ok=0 • ' JSxZ 

= E i ( ^ - ^ o ) " E r f ( ^ - ^ o ) ' = / (fg{s,z)f,i:\ds))i.i':\dz) 
n = o " - fc=o''- JzyS ^ /^ 

=hg(z), hgev(z) 

and, by 7?(Z)-analyticity of i/g, 

= E A ( ^ - ^ o r / ( f g{s,z)i^'^;^Hds)),.e{dz) 

= E ^^(^ - ^ o ) " / ^ (^l^g{s,z)Mdz)^ M^:'(rf«) • 

Using the fact that 

gi;z)iyeidz) 6 DCS) , X IZ 

the proof follows from the P(S')-analyticity of iJ,g. D 
For Cp-spaces, we are able to characterize binary mappings that preserve 

Cp-analyticity. 

Theorem 4.5.2 Let (5 ,5) and {Z,Z) be measurable spaces equipped with upper 
bounds II • lis and || • | |z , respectively, and let the product space S x Z be equipped 
with an upper bound \\ • | | sxz . / / 

• for any s € S, z & Z, it holds 

\\is,z)\\sxz < Ms + JI^JU, 

• jUfl e A^i (5 ,5) isCp{S,\\-\\s)-analytic andve £ Mi{Z,Z) MCp(Z, jj-jjz)-
analytic, 

then fi0 X ug is Cp{S x Z, jj • \\sxz)-analytic. In particular, if, for OQ G 9 , the 
Taylor series for ne has domain of convergence Ug and the Taylor series for vg 
has domain of convergence Ug , then the domain of convergence of the Taylor 
series for the product measure fig x ug is Ug^ fl Ug^. 

Furthermore, let {R, TV) be a measurable space equipped with upper bound 
\\-\\R and let h : S X Z -^ R be a measurable mapping, such that finite constants 
cs and cz exist and for any s ^ S,z € Z: 

\\h{s,z)\\R < as Ms + czMz-
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If He eMiiS,S) isCp{S,\\-\\s)-analytic and ve €Mi{Z,Z) is Cp{Z,\\ • \\z)-
analytic, then {fxe x I'e)'^ is Cp{R, \\ • WH)-analytic. 

Proof: The proof of the theorem follows from the same line of argument as the 
proof of Theorem 4.2.1 and is therefore omitted. • 

4.6 P-Analyticity on M^^-^ 

2?-analyticity of a random matrix over the max-plus semiring is defined as fol­
lows. 

Definition 4.6.1 We call Ae 6 R^ax T^-analytic on 0 if the distribution of Ao 
is V-analytic on 6 , that is, if 

• all higher-order V-derivatives of Ag exist on 0 , and 

• for all OQ G 0 , an open neighborhood Usg C 0 of 6o exists such that for 
any g € V and all 6 e Ue„: 

oo ^ 

n=0 

©-analyticity of a random matrix Ag implies analyticity of the expected 
value of g{Ag) as function of 6 for any g G T> as the following lemma shows. 

Lemma 4.6.1 If Ag e R^ax ** V-analytic on 0 , £^[5(7!)] is analytic on 0 for 
all g &V. Furthermore, if, for 6Q 6 0 , the domain of convergence of the Taylor 
series for Ag is Ug^, then the domain of convergence of the Taylor series for 
Eglg{A)] is also Ug„. 

Proof: Let Ag have distribution fig. X'-analyticity of Ag implies V-
analyticity of fj,g. Hence, for any g £T> \i holds 

°° 1 °° 1 r/" 

Y, ^{e - eo)"E,„b-(^("))]=^ -{e - eoT—EgMA)] 

= / g{s)f^e{ds) 

=^e[g{A)], 

for any 6 G Ug^. D 
We now establish sufficient conditions for 'D-analyticity of some interesting 

classes of random variables. 
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Example 4.6.1 Let Ag € R'-*̂ ^ be exponentially distributed with Lebesgue den­
sity fe{x) = 6 exp{—6x), for x > 0, and let 6 = (0,oo). Prom Example 4-5.1 
it follows that Ae is Cp-analytic on (0,oo). The Taylor series for E0[g(A)] at 
9Q has at least domain of convergence Ug^{5) = {5,20^ — 5), for all 9Q 6 (0,oo), 
with 0 < 5 <9o-

Example 4.6.2 Let Ae be Bernoulli-{0)-distributed on {Di,D2) C K;^^^- ^V 
Example 4-5-2, Ae is R'-'^^'^^^-analytic on [0,1] and the Taylor series for 
Ee\g{A)] at 6 € [0,1] has the domain of convergence is [0,1]. 

For applications, we work with Cp-analyticity. The following corollary es­
tablishes an immediate consequence of the definition of Cp-analyticity that is 
useful in many practical situations for deciding whether a matrix over the max-
plus semiring is analytic. Recall that X j , . . . , Xm 6 Kmax is called the input of 
A e Kmax >f the elements of A are measurable mappings of (Xi,..., Xm)-

Corollary 4.6.1 Let Ae e IR^ax ^^''^^ input Xe,i,X2 .. .,Xm, with Xe,i,Xi e 
Rmax, for2 <i <m, and let Xg^i be Cp(]Rmax, || • Ws,)-analytic. If 

• Xe,i is stochastically independent of {X2, • • •, Xm), 

• {X2,..., Xm) does not depend on 9 and the elements Xi, 2 < i < m, have 
finite p*^ moment, 

• a finite positive constant c exists, such that 

l | ^ ( - ' ^ e , l , - ^ 2 , - - - , - ' ' ^ m ) | | © < c\\{Xg^i, X2, . . . , Xm)\\® , 

then Ae is Cp(Rmlx) IHI®)-<^wi'2/**c and the domain of convergence of the Taylor 
series for Ag and Xg^i coincide. 

Proof: To abbreviate the notation, set 

hg{x) =E[giAiXg,i,X2,...,Xm))\Xg,i = x]. 

The mapping h{-) is independent of 9 and lies in Cp(Rmax, II • ||©)' To see this, 
note that for g € Cp{Ri^J^, jj • jj®) it holds 

I hgix) \<E[ag + bg (| |^(X«,1,X2, • • • , Z „ ) | | © )" | Xg ,1 = x] 

<E[ag + bg cP{\\{x,X2,... , X „ ) | | e r | Xg^ = x] 

<ag + bg (?E L + f2\Xi\\ Xe, 

We have assumed that X2,... ,Xm have finite p*'' moment and that they are 
stochastically independent of Xe,i. Hence, the expression on the right-hand 
side of the above inequality seen as a function in x lies in Cp(Rmax) II • II©)-



176 Higher-Order ©-Derivatives 

-^pV^^max) I 3)-analyticity of X^^i is equivalent to that of the distribution on 
Xg^i, denoted by ne- Direct calculation yields: 

°° 1 d" 

n = 0 
d6'" 

1 ^' 

n = 0 

M9{A)] 

E[giA{Xe,uX2,...,X^))] 

n = 0 

= / hg{x)ng{(lx) 

= Eg[g{A)], 

which concludes the proof. D 

Remark 4.6.1 Note that Corollary 4-6-1 requires the first p moments of the 
input variables X2,. •• ,Xm, to be finite. This is in contrast to Theorem 3.3.1 
and Corollary 4-3.1, where no condition on the moments of the input varia­
bles is imposed. To see why a stronger condition is required in the setup of 
Corollary 4-6.1, let jig denote the distribution of Xgj and let v denote the dis­
tribution of {X2, •.. ,Xm.)- Following the line of proof for Theorem 3.3.1 and 
Corollary 4-3-1, respectively, we would calculate as follows: 

0 0 ^ 
d" 

M9{A)\ 

°° 1 d" f 
= E;^(^-^o)"^ g{A{x,v))iig{dx)v{dy) 

n = 0 ' 8=60 •! 

= E ; ; i ( ^ - ^ o ) " / g{A{x,y))^i^;'^{dx)y{dy) . 
n = 0 "•• •' 

However, for the proof of the corollary we then still have to show that 

J2 ; ^ ( ^ - ^ o ) " y 9{A{x,y))ti'^\dx)i.{dy) = J g{A{x,y)) i,g„(dx)i.{dy) 
n=0 

which can be guaranteed if 

I g{A{-,y))u{dy) e Cp{ 5) 

and if ng is Cp(Rmaxj II • W®)-analytic at 60. It is exactly for this purpose that 
the moment condition on the input is required. 
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Example 4.6.3 We revisit the situation in Example 4'3.2 (an open tandem 
queuing system whose interarrival times depend on 0 introduced in Exam­
ple 1.5.2). In accordance with Example 4-6.1, ao(0,k) is Cp(Rniax>|| • II©)-
analytic. The condition on \\A{ao{9,k),ai{k),... ,aj{k))\\^ in Corollary 4-6.1 
is satisfied, hence, A{k) is Cp(R;^'^x^''"^^, || • \\^)-analytic. 

The following corollary summarizes our analysis by showing that Cp-
analyticity is preserved under finite (^-multiplication or ©-addition. 

Corollary 4.6.2 (Product rule of Cp-analyticity over Kmax) If A,B £ 
Rjjjax ^'"'^ stochastically independent and Cp{^^^, \\ • \\^)-analytic on Q, then 
A® B and A® B are Cp-analytic on Q. 

In particular, if, for OQ e 8 , the Taylor series for A at OQ has domain of 
convergence U^ and the Taylor series for B at OQ has domain of convergence 
U^^, then the domain of convergence of the Taylor series for A ® B at OQ, 
respectively A0 B, is U^ fl U^. 

Proof: By Lemma 1.6.1, we may apply Theorem 4.5.2 where we take || • | |^ 
as upper bound and the ®-product and the ©-sum of matrices, respectively, as 
mapping h. D 

An immediate consequence of Corollary 4.6.2 is that if A{k) 6 Rmax '^ ^'^ 
i.i.d. sequence of Cp-analytic random matrices on 0 , then 

x{k + 1) = A{k) (S> x{k) , k>0, 

where a;(0) = xg, is Cp-analytic on Q for any k. Furthermore, Lemma 4.6.1 
implies that Es[g{x{k + 1)] is analytic on 0 for any g € Cp and A; 6 N. In 
addition to that if, for OQ 6 0 , A{0) has domain of convergence Ug^^, then 
x{k + 1) has domain of convergence U^. 



Chapter 5 

Taylor Series Expansions 

This chapter addresses analyticity of performance measures, say J(^) , such as 
completion times, waiting times or the throughput (that is, the inverse Lya-
punov exponent), of max-plus Unear systems. Specifically, this chapter studies 
Taylor series expansions for J{6) with respect to 0. First results on analyticity of 
stochastic networks were given by Zazanis [104] who studied analyticity of per­
formance measures of stochastic networks fed by a Poisson arrival stream with 
respect to the intensity of the arrival stream. Baccelli and Schmidt [17] con­
sidered the case in which the network is max-plus linear. Their approach was 
further developed in [15] and [16]. For applications of their results to waiting 
times, see [71] and [97]. The results mentioned above are restricted to the case 
of open networks, where 9 is the intensity of the arrival stream. Taylor series 
expansions for closed networks are addressed in [7] and [8]. Strictly speaking, 
the aforementioned papers study Maclaurin series, that is, they only consider 
Taylor series at zero. 

In this chapter we establish sufficient conditions for analyticity of max-plus 
linear stochastic systems. In particular, 

1. for open systems, we do not require the arrival stream to be of Poisson 
type; 

2. our analysis applies to open and closed systems as well; 

3. the parameter with respect to which the Taylor series is developed, may 
be a parameter of the distribution of any input variable of the max-plus 
system; 

4. at any point of analyticity we establish lower bounds for the domain of con­
vergence of the Taylor series, which is in contrast to the study of Maclaurin 
series predominant in the literature. 

In some special cases the obtained derivatives can be calculated analytically 
and in the general case the formulae obtained have a simple interpretation as 
unbiased estimation algorithm. 
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Our approach is closely related to Markov chain analysis. Cao obtained in 
[30] a Maclaurin series for steady-state performance functions of finite-state 
Markov chains. This result has been extend to general state space Markov chains 
in [64]. Although the types of systems considered in the aforementioned papers 
are different from the ones treated here, the approach is closely related to ours. 

The chapter is organized as follows. Section 5.1 studies Taylor series expan­
sions for finite horizon performance indices. Section 5.2 deals with Taylor series 
expansions for random horizon performance indices. Section 5.3 is devoted to 
Taylor series expansions for the Lyapunov exponent. Finally, we address Taylor 
series expansions for stationary waiting times in Section 5.4. Throughout this 
chapter we will equip Rmax with upper bound ]] • ]]e and we simply write Cp 
instead of Cp(R;J,^,M|-lie). 

5.1 Finite Horizon Experiments 

In this section we establish conditions under which deterministic horizon 
performance indices of max-plus linear systems can be written as Taylor series. 
A precise description of the problem is the following: 

The Deterministic Horizon Problem: We study sequences x{k) = xs{k), 
fc e N, following 

x{k + l)=A(k)®x(k)®B(k), k>0. 

with a;(0) = xo, A{k) = Asik) e Rmax, B{k) = Be{k) G R ^ x and 6* e 6 C K. 
For a given performance function g : R^ax —» R) we seek sufficient conditions 
for the analyticity of 

%e[9{x{k + l))\x{Q) = xo]. (5.1) 

These conditions will depend on the type of performance function and the 
particular way in which the matrix A{k), respectively the vector S(fc), depends 
on 6'. 

The section is organized as follows. Section 5.1.1 states the general result 
on Taylor series expansions for finite max-plus performance indices. In Sec­
tion 5.1.2, we address analyticity of transient waiting times in non-autonomous 
systems (that is, open queuing networks). Finally, in Section 5.1.3, we present 
a scheme for approximating performance characteristics of max-plus linear sys­
tems, called variability expansion. 

5.1.1 The General Result 

Corollary 4.6.2 provides the means to solve the deterministic horizon problem. 
The precise statement reads as follows. 
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Corollary 5.1.1 //^(A;) € R;^^^ and B{k) € Rj^^x (0 < k) are two Ltd. se­
quences of random matrices and vectors, respectively, which are Cp-analytic on 
© and mutually independent, then 

x(k + 1) = A{k) ® x(k) e B{k) , A; > 0 , 

with x{0) = xo, is Cp-analytic on @ for all k. Moreover, E,0[g{x{k + 1))] is 
analytic on G for all g £ Cp. 

If, for 9o £ 9 ; the Taylor series for A{0) at OQ has domain of convergence 
[/^ and the Taylor series for B{<S) at OQ ho,s domain of convergence U^^, then 
the Taylor series for x(k + 1) at 6Q has domain of convergence U^ fl U^. 

Proof: Analyticity of x{k + 1) follows from Corollary 4.6.2 via induction 
with respect to k; and analyticity of Ee[ff(a;(fc+1))] is an immediate consequence 
of Lemma 4.6.1.n 

Corollary 5.1.1 is illustrated with the following example. 

Example 5.1.1 We revisit the situation in Example 4-6.3. Letp G N. By Cor­
ollary 4-6.1, the transition matrix A{k) is Cp-analytic on (0, oo). We now make 
the additional assumption that the service times and the interarrival times are 
mutually independent and that interarrival times as well as the service times at 
the servers are identical distributed. The sequence {A(k)} is thus i.i.d. There­
fore, x{k + 1), with x{k-\-1) = A{k) ®x{k), for k >0, is Cp-analytic on (0,oo) 
and, for g € Cp, the Taylor series for Eg[g{x{k + 1))] at OQ € (0, oo) has at least 
domain of convergence UsgiS) = (5,29o — S), for 6o > 5 > 0. 

Note that we cannot apply our theory when we consider recurrence relation 
(1.27) on page 26 in Example 1.5.2, since B{k) ® r(A; + 1) and A{k) fail to be 
stochastically independent. However, we can conveniently work with the homo­
geneous variant of the model and avoid this problem. 

Recall that for any Cp-difFerentiable matrix A the largest order of a signifi­
cant Cp-derivative of A is denoted by s{A). 

Theorem 5.1.1 Let A{k) be an i.i.d. sequence of matrices in K;̂ a>f ^^^^ '^'"'^ 
(/i + 1) times Gp-differentiable on a neighborhood Uea C 6 ofOo&Q. Then, for 
any g e Cp: 

eo+A g [l^A[k)®XQ 
\fc=o 

n=0 

(n) 

\k=0 
+ rft+i(0o,A) 
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for 6*0 + A 6 Ueo, where rh+i{9o, ^) = Oforh>{m + 1) s(^(0)) . Provided that 
xo = e, it holds for h < (m + 1) s{A{0)) that 

|rft+i(^o,A)| <Rh+i{eo,A) 

def 1 '•'o^'' 

h\ 

/•So+A 

,m,{A{k)){h + \,p)\dt . 

Proof: The product (S)'k=o-^i^) '^ {h + 1) times Cp-difFerentiable, see 
Lemma 4.4.1. Hence, 

Eflo +A 9[<^A{k)®xo 
fc=0 

can be written as Taylor polynomial of degree h the remainder term of which is 
given through 

fio+A jh+1 

(^0 + A - t ) ' ' ^ ^ Efl p((g)^(/c)®a;o 
fc=0 

dt. 

see equation (G.2) in Section G.4 in the Appendix. In accordance with 
Lemma 4.4.2, the {h + 1)*' Cp-derivative of the above product is bounded by 
Bg^m,{A(k)}(h + l ,p) and inserting this bound into the above expression for the 
remainder term concludes the proof of the theorem. D 

Example 5.1.2 In the Bernoulli case, A{k) is Cp-analytic on [0,1], for k € N 
and any p e N. Provided that {A{k)} constitutes an i.i.d. sequence, 

Ee 9 [^A{k)®xo 
fc=0 

is analytic on [0,1] for all g E Cp and all XQ e K"^. The domain of convergence 
of the Taylor series is [0,1]. When we consider the Taylor series at zero, the 
first terms of the series are given in Example 4-4-1-

Consider the system in Example 1.5.5. Let a = 1, a' = 2, then HI^ill® = 
||Z?2||© = max(o-, cr') = 2 and the second part of Lemma 4-4-^ yields 

^h+i 

de''+i 
Eg 
t 

g{^A{k)®xA 
. \fc=0 / J leC[0,Tn;h+l] 

where we have used the fact that (i) only the first order Cp-derivative of A{k) 
is significant, (ii) c (̂fc) = 1, and (Hi) ||.A||^ = 2. As shown in Section G.5 in 
the Appendix, it holds that 

Y, {h+\)\ = {m + lf+^ 
/6£[0,m;/ i+l] 
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and the remainder term of the Taylor polynomial of degree h is for h < m + 1 
given by 

- / {9o + A-t)''{m+l)''+'2''+^ag + bg (m + 1)P2P) dt, 

= 2 ' - + ^ ^ y ^ ' | ) ^ ' (a , + bg{m + m n A^+i 

and the remainder term equals zero for h > m+ 1. 

5.1.2 Analyticity of Waiting Times 

In this section we consider open max-plus linear systems like the one in Exam­
ple 1.5.3; we use the notation introduced in Section 1.5.2. More precisely, we 
consider max-plus linear models for the beginning of service times in queuing 
networks. These models typically have the form 

x{k + l) = A{k)i»x{k)®B{k)®T{k + l), k>0, (5.2) 

with a;(0) = XQ € R'^, {A{k)} a sequence of i.i.d. matrices in R^ax i i^W} ^ 
sequence of i.i.d. vectors in M.^^^ and 

k 

i = l 

where T(k) denotes the k*'^ arrival epoch (recall that ao{k) denotes the A:*'* 
interarrival time). Provided that the system is initially empty, the time the fe*'' 
customer arriving at the network spends in the system until beginning of her/his 
service at station j is given by 

Wj{k) = Xj{k) - T{k), k>l. 

Recall, that if x{k) in (5.2) models the vector of /c*'' departure times at the sta­
tions, then Wj{k) defined above represents the time spend by the fc*'' customer 
arriving at the system until her/his departure from station j . 

For our analysis it is more convenient to include the source into the state-
vector, that is, we consider 

x{k + I) = A{k) ®x{k) , fc>0, (5.3) 

where {A{k)} is an appropriately defined sequence of i.i.d. matrices in Kmtx**'̂ ^^ 
and a;(0) = e, see Section 1.4.3. From this we recover {W{k))j through 

Wj{k) = Xj{k) - xo{k), l<j<J. (5.4) 

Note that, for x € R"', ||a;||0 = max^ \xj\. To unify notation, we write || • \\^ 
instead of | • | when J = 1. For g e Cp([0,00)"^, || • ||®), we define the mapping 
gw •• [0,00) -* R by 

gwixo,-'-,xj) = g{xi-xo,...,xj -xo) • 
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Note that if 5 6 Cp([0,oo)'^, || • ||©), then ^vv G C'plfO, oo)'^+M| • | | e ) . This stems 
from the fact that, for {XQ, ... ,xj) £ [0,00)"*"^: 

||5',y(a;o, • • •,xj)\\^=\\g{xi -xo,..-,xj - xo)\\^ 

<ag + bg \^\\{xi -xo,.--,xj-xo)\\e) 

<«s + bg {\\ixo,...,xj)\\s,j . 

The main assumption we need for the following is: 

( W ) The matrix A{k) in (5.3) is a.s. regular and any finite element is non-
negative. The initial state is XQ = e. 

Condition (W) implies x{k) G [0,oo)''+^, for fc > 0. Hence, for any g G 
Cp([0,oo)'', II • lie) it holds that 

g{W{k)) = gw{x{k)) and pw e Cp([0,oo)^+M| • | | e ) . (5.5) 

By Corollary 4.6.1 together with Corollary 5.1.1, we obtain the following result 
for waiting times. 

Lemma 5.1.1 Let x{k) and W{k) he defined as in (5.3) and (5.4), respec­
tively, and assume that condition (W) is satisfied. Let A{k) = ^e(/c) have input 
Xe^i{k), X2{k)..., Xm{k), with Xg^i{k),Xi{k) € Rmax, for 2 < i < m, and let 
Xe,i{k) be Cp(Rmax, II • \\(B)-o.nalytic. If 

• {{Xe^i{k), X2{k),..., Xm{k))} is an i.i.d. sequence, 

• ^^^(A;) is stochastically independent of {X2{k),... ,Xm{k)), 

• (Xiik),... ,Xm{k)) does not depend on 9 and the entries Xi{k), 2 < i < 
m, have finite p*'' moment, 

• a finite constant c exists such that for any x G M^ax 

| |A (a ; i , . . . , x „ ) | | e < c | | (a : i , . . . ,a:™)||© , 

then W{k) is Cp([0,oo)'^, || • \\^)-analytic. In particular, if, for OQ G 9 , the 
Taylor series for Xe,i{k) has domain of convergence Ueg, then the domain of 
convergence of the Taylor series for W{k) is Uof^ as well. 

We illustrate Lemma 5.1.1 with the following example. 

Example 5.1.3 Consider the open queuing system in Example 1.5.2 and sup­
pose that for some j G { 0 , . . . , J } service time a-j{9, k) depends on 9, whereas all 
other service times and (in case j = 0 the interarrival times) are independent 
of 9 and have finite p*'^ moment. Furthermore, assume that {ffj^k)} is i.i.d. for 
any j and that the sequences are mutually independent. We consider the ho­
mogeneous model for departure times from the queues as given in (1.25). The 
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matrix Ae{k) given in (1.24) has input aj{6,k-\-l) andai(k + l), forO <i< J, 
with i ^ j . Hence, 

Ag{k) = ^((To(fc + l ) v , c r j _ l ( A ; + l ) , 

a^lyO, k + 1), (Tj+i(A; + 1 ) , . . . , aj{k + 1 ) ) . 

Ltt aj{6,k) be exponentially distributed with mean 1/6. In accordance 
with Example 4.6.1, aj{9,k) is Cp(Rmax,|| • ||©)-araa^y^2c. The condition on 
\\A{aQ{k),... ,aj-i{k),crj{9, k),aj+i{k),... ,crjik))\\is in Lemma 5.1.1 is satis­
fied. W{k) is thus Cp([0,oo)'^, || • \\^)-analytic and, for any g 6 Cp([0,c«)'^, || • 
II0), the Taylor series for Ee[g{W{k))] at OQ has at least domain of convergence 
{S, 29Q — 5), for any OQ € (0, 00) with 0 < 5 < do> see Example 4.6.1. 

If 3 = 0, then the arrival process is Poisson with rate 6 and we obtain a 
Taylor series expansion with respect to the rate of the Poisson process. Under 
additional assumptions on the sequences {A{k) : fc > 0} Baccelli et al. show in 
[15] that an analytic continuation ofEe[Wj{k)] to the complex plane exists which 
is analytic in zero. Moreover, provided that the service times are deterministic, 
they explicitly calculate the remainder term of this series expansion. 

Remark 5.1.1 Lemma 5.1.1 applies to functions g that evaluate several waiting 
times simultaneously. For example, taking gw i^O: ••• t^j) = gixi — xo,Xj—xo), 
for i ^ j , leads to the evaluation of the correlation between Wi{k) and Wj{k). 

Lemma 5.1.1 applies to general renewal processes and thereby extends the 
result in [15], where analyticity of Ee[iyj(A;)] is shown under the assumption 
that the arrival process is a Poisson process with intensity 9. 

In the remainder of this section, we give an exphcit representation of the 
Taylor series for W{m), for m > 0. Let the conditions in Lemma 5.1.1 be in 
force; in particular, Xg^i{k) is the only input variable that depends on 9. In 
order to simpUfy the notation we write A{k) = Ae{k) — A{k,Xe^i{k)). We 
assume that {A{k)} constitutes an i.i.d. sequence. For / e £[0,m — l ;n] and 
i 6 T[l] let a;''"''(A;) follow the recurrence relation 

x^^-'\k + l) = A{k,X^[f''\k))®x^'''\k), 0<k<m, 

with a;*''*'(0) = e, and, for 1 < j < J, define the waiting times by 

W^'''\k) = xf''\k) - x^^''\k) , 1 < fc < m , 

c.f. equation (5.4). In words, for generating a;('''̂ (A; + 1) replace all occurrences 

oiXg,i{k) in A{k) by X^Jf'^k). 

Let Xg^i{k) be Cp-analytic and denote the domain of convergence of the 
Taylor series for Xg^i{k) at 9o by Uoo. Hence, for any g S Cp and any 9 6 Uso 
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we obtain: 

n=0/e£[0,m-l;n] " ^ "^ ^ 

7 7 1 — 1 

i€X[l] k=0 

For example, taking X0^i{k) to be exponentially distributed with mean 1/6, we 
obtain in accordance with Example 4.1.4: 

4 i = ^ , l={lo,---,lm-i)eC[0,m-l;n]. 

Inserting the above equality into the Taylor series for Ee[g(W{m))] yields 

iexii] 

It is worth noting that the complexity of the resulting Taylor series is inde­
pendent of g. This stems from the fact that the weak approach works essentially 
uniformly for a class of performance functions and results are independent of 
any particular choice of performance function. This improves the result in [5], 
where expansions for second order moments were given that have considerably 
higher complexity than the expansions for first moments. 

5.1.3 Variability Expansion 

In this section we discuss an approach to performance evaluation of finite hori­
zon performance indicators of stochastic max-plus linear systems, introduced 
in [63], called variability expansion. For applications of this technique to model 
predictive control of max-plus systems see [99, 100]. The basic setup for variabil­
ity expansion is as follows. Let {A{k)} be an i.i.d. sequence of square matrices 
over the max-plus algebra and consider the max-plus recurrence relation 

x{k + 1) = A{k) » x{k), k>0, (5.6) 

with x(0) = XQ. Our goal is to evaluate E[g{x{m))] for fixed m and given per­
formance indicator g e Cp. To this end, we introduce a parameter 0 and replace 
with probability 1 — 6 the random matrix A{k) in the above recurrence rela­
tion by its mean. Parameter 6 allows controlling the level of randomness in the 
system: letting 6 go from 0 to 1 increases the level of stochasticity in the sys­
tem. For example, ^ = 0 represents a completely deterministic system, whereas 
6 = 1 represents the (fully) stochastic system (that is, the original one). De­
note by {xs{k)} the ^-version of {x{k)}, for 6 € [0,1]. For 6 = 1, it holds 
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that Ei[g{x{m))] = 'K[g{x{m))\. In order to evaluate 'Ei[g{x{m))], we consider 
the Taylor series for 'E0\g{x{m))] at 5 = 0. For the sake of sake implicity, we 
illustrate our approach with the waiting time in the G / G / 1 queue. 

Consider a G / G / 1 queue with i.i.d. interarrival times {ffo(/c)} and i.i.d. ser­
vice times {cri(fc)}. Denote by (TQ the mean interarrival time and by cri the mean 

service time, and assume that p = cri/uo < !• The system is initially empty 
and the waiting time of the fc*'' customer, denoted by W{k), follows: 

W{k + 1) = 0-1 (fc) ® {-ao{k + 1)) ® W{k) ® 0 

= max((Ti(A;)-c7o(A: + l) +W(fc) , 0) , fc>0, 

with W[Q) = 0 and 0-1(0) = 0, see Example 1.5.4. We write the above equation 
as a homogeneous equation, Hke (5.6). To this end, we set, for fc > 1: 

^^,^^(^a,ik)-aoik + l) 0^ 

Remark 5.1.2 There are numerous ways of arriving at a homogeneous repre­
sentation for W(k). For example, let x{k) model the fc*'' beginning of service at 
the station, then 

x{k + 1) = ai{k) (8) x{k) ® r(A: + 1) , A; > 0 , 

with x{0) = 0 and ai{0) = 0, where T{k) denotes the arrival epoch of the A;"' 
customer. Including the source into the state-vector, we arrive at the equation 

a;o(fc+l)\ /(To(A; + l) s \ ^ fxo{k) 
xi{k + 1)) \aQ{k + 1) ai{k)J ^ \xi{k) 

where xi{k) is the time of the k*^ beginning of service at the station andxo{k) the 
time of the fc*'' arrival of a customer. As in the previous section, the waiting time 
of the fc*'' customer equals xi{k) — Xo{k) and it holds that W{k) = xi{k) — Xo{k), 
fc > 1, see (5.4) on page 183. 

Let w(0) = (0,0) and set 

w{k + I) = A{k) ® w{k), fc>0, 

then w{k) = iW{k),Q). In words, the first component of w{k) is the actual 
waiting time of the fc*'' customer. Set gw{w{k)) = g{W[k)), then 

g{W{k)) = gw{w{k)) = g w i ^ A{j) ® w(0) j , fc > 1 . 

The deterministic variant of the system is obtained by replacing the random 
entries of ^(fc) by their means, that is, by considering the transition matrix 

A _ / « î - 0-0 0 

^ ~ ' e 0 
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In order to construct a version of {Vl̂ (A;)} that combines deterministic transitions 
according to A with random ones according to {A{k)}, proceed as follows. Let 
A{k) have distribution fi and recall that the Dirac measure in x is denoted 
by Sx- Let De{k) £ R^*^ ,̂ for fc G N, be an i.i.d. sequence with distribution 
0/i + (1 — 0)<5A- In words, with probability 9, De{k) behaves like A{k), whereas, 
with probability (1 ~ 0), Dg{k) is equal to A. For 9 e [0,1], set 

W0{k + 1) = Dg{k) iSi we{k), k>0, 

with wg{0) = (0,0). We call the transition from we{k) to •wg{k + l) deterministic 
a De{k) — A and stochastic otherwise. We write Ee[pH/(w(m))] to indicate that 
the ^-version is considered. For fixed m > 0, the performance characteristic of 
the transient waiting time of the ^-version is thus given by Mglgwiwim))], where 
Hgwiwim))] = Ei[gwiw{m))] and 

Eo[gw{w(m))] = ^vy (A™ ® w(0)) . 

Let p > 0 be such that, for any g € Cp and k < m, ¥,[g{A{k))] and g{A) are 
finite. Then, for any k < m, 

E[g{Deik))] = 9E\g{A{k))] - {1 - 9) g{A), 

which implies Cp-analyticity of Dg{k) on [0,1]. In particular, for any k < m, 
D'g{k) = (l,^(fc), A) and all higher order Cp-derivatives of Dg(k) are not sig­
nificant, in symbols: s(Dg{k)) = 1. 

Applying Corollary 5.1.1 with B{k) = (g, • • • ,e) yields that <S>T=o De{k) is 
Cp-analytical. Recall that we have assumed that g e Cp. Following the train of 
thought put forward in the previous section, this implies gw £ Cp, see (5.5). 
Hence, for any 9 6 [0,1], the Taylor series for Ee[gwi'u>{m))] at 9 has domain of 
convergence [0,1]. The n*'' derivative at a boundary point has to be understood 
as a sided limit; specifically, set 

d" d" 
' i l ^d^ '^* '^^^^^ ' "^^ ' "" ^Eo[ffw(w(rn))] 

and 
d" d" 

^^fide^^'^^Swiwim))] = ~Ei[gw{w{m))], 

then E[5(Ty(m))] = Ei[gw{w{m))], the 'true' expected performance character­
istic of the m*'' waiting time, is given by 

E\g{W{m))] = f^ ^,-^M9w{w{m))] + Rn+r{m) 
„ n! dO'' 

n=0 

where, for /i < m. 

-~U<^-' Rh+i{m) = -rr / (1 - t) \h d''+ 

d9h+-^ 
Ee[gw{w[m))]dt 
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and Rh+i{m) = 0 otherwise, see Theorem 5.1.1. 
Let n < m. For 0 < /i < /2 < • • • < n̂ < m - 1, let 77(^1,..., Z„) G { 0 , 1 } " 

denote the vector with entry 1 at position /fc, 1 < A; < n, and zero otherwise. This 
leads to the following expression for the n*'' order derivative of Ee[gw{w(rn)) ] 

d" 
-^Ee[gw{w{m))] 
de 

m~n m—n+l m~l 

9w <^Dg{k)) ®w)(0) E ^ 
iei[t)(h,...,U)l fc=o 

E ^ 
iexMi /n)l 

_1 S(vih,-,ln),i-) \ 

9w { { (S) Deik)] ®«;(0) 
fc=o / / 

and 

Then 

whereas the n*'' derivative is zero for n > m. 
Letting 0 tend to zero, those Dg (k) for which h = 0 converge in total varia­

tion to A. In the following, explicit representations of the first three derivatives 
of Ee[gvi'(w(m))] at 0 = 0 are given. 

For 0 < j < m, set 

Vg(m;j) = E [gw (A""-^'^ ® A{j) ® A^ ® u)(0))] 

Vg{m) = ffw(A'"®w;(0)). 

-Eolgw{w{m))] = J^ ( ^ . K i ) - ^ « M ) • (5.7) 

In the same vein, set, for 0 < j i < J2 < rn, 

Vg{m;ji,J2) = E [gw (A"-^ '^- i ® AU2) ® A^'^-^''-^ ® ^ ( j i ) ® A^' ® «;(0))] , 

then 

d^ 

m—2 m—1 

= 2 E E {V9im;ji,J2) + Vg{m) - Vg{m;ji) - Vg{m;h)) . 

For the third element set, for 0 < j i < J2 < js < m, 

Vg{m;JuJ2j3) = E[5M/(A"-^^- i®^( i3) ® A«->^- i 

®A{J2) ® A^2-J>-i ® ^ ( i i ) (g> A^i ® w(0))] 
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and the third-order derivative is obtained from 

-^Eolgwiwim))] 

m~3 m—2 m—l 

= ^J2 Yl XI [Vg{m;ji,J2,J3) + Vg{m;ji) + Vg{m;J2) + Vg{m;J3) 
. . . . - . . _|_j 

•Vg{m;ji,J2) - Vg{m;J2,J3) - Vg{m;ji,J3) - Vg{myj . 

jl=0 J2=jl + l J3=J2 + l 

The derivatives can be verbally described as follows. The factor is n! when the 
n*'' order derivative is evaluated. The outer summation ranges over all possible 
combinations of marking n out of m transitions. The inner sum ranges over all 
possible combinations of letting the n marked transitions be either stochastic 
or not. The sign of an element in the inner sum is given by —1 to the power of 
the number of deterministic substitutions among the n marked transitions. 

The resulting Taylor series approximation of degree ft = 3 is given by 

E[g{W{m))]»-Ko[9w{w{m))] 

1 (f 1 d^ 

Proceeding as above, we can define factors Vg{m;ji,... ,jk), for 1 < 
k < m. The n"* order derivative of Eo[pvK(w(m))] is then given through 
yg{fn;ji,... ,jk), for 1 < A; < n. Let 

m—k m—fc+1 m—l 

Vg{m,k) = Y^ Y^ ••• Y Vg{fn;ji,---,jk) , 
jl=0J2=jl + l jfc=jfc-l + l 

for k < m, and Vg{m,0) = Vg{m). The term Vg{m,l) yields the total effect of 
making I out of m transitions stochastic. For the n*'' derivative oiE[gw{'u>{m))] 
we mark in total n transitions out of which I are stochastic. Hence, there are 

m — ( 
n — I 

possibilities of reaching at (m — /) deterministic transitions provided that there 
/ stochastic ones, and we obtain 

-Eolgw{w{m))] 

1=0 ^ ^ 



5.1 Finite Horizon Experiments 191 

Inserting the above expression into the Taylor series and rearranging terms gives 

h n 

n = 0 1 = 0 ^ ^ 

1=0 n=l ^ ^ 

h 

= '^C{h,m,l)Vg{m,l), h<m, 

with 

1 '' 
C{h, m, I) = J-—— JT (j - m) , 

where we set the product to one for / = h. For a proof that 

cih,m,l) = J:h:'^i-lr-' 
n=l ^ ' 

see, for example, formula (18) on page 57 in [76]. 

5.1.3.1 Computat ion of the Taylor Series Expansion 

The coefficients of the Taylor series enjoy a recursive structure which can be ex­
ploited when calculating the series. In the following we will discuss this in more 
detail where the key observation is that a stochastic transition only contributes 
to the overall derivative if the waiting time introduced by that stochastic tran­
sition doesn't die out before the following stochastic transition occurs. 

For 0 < ii < 12 < • • • < Jfi, < w, let WK(m;ii,i2,... ,ih) denote the m"* 
waiting time in the system with deterministic transitions except for transitions 
«i) *2i •' • •:^h- Let W(-) be the projection onto the first component of the vector 
w(A;) and introduce the variables 

W\m\ i\ = W(A™-*-i ® A(i) (g> A' ® w(0)) , 0 < i < m , 

W\m; i i , ia] = W(A"-*^- i ® / I fe) ® K'^-'^'^ ® A{%{) ® A*' ® w;(0)) , 

for 0 < «i < J2 < w and 

W [̂m; ix, 12, is] = W{A"'-''-'^ ® Aii^) ® A'^- '^-^ ® ^(ia) 

^ A * 2 - ' i - i ® Aiii) ® A'' ® w(0)) , 

for 0 < ii < i2 < «3 < m. In addition to that, set 

W[m] = W ( A ™ ® w ( 0 ) ) . 
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Consider the G / G / 1 queue with mean interarrival time CTQ and mean ser­
vice time (Ti, and set c = <TI — CTQ- Then, c is the so-called drift of the ran­
dom walk {VK(fc)} and because we have assumed that the system is stable, i.e., 

p = (Ti/(7o < 1, the drift is negative. This can be phrased by saying that a de­
terministic transition decreases the amount of work present at the server by c. 
Denote the density of the interarrival times by /"^ and the density of the service 
times by f^ and assume that / '* and f^ have support (0, oo). 

We now turn to the computation of the derivative of E[g{W{m))] with re­
spect to 6, see (5.7). First, notice that 

Vgim) = giWiA^'^wim-

For m > 0, it is easily checked that 

Vg{m;i) = g{0)P{W[m;i] = 0) + E[lwim;i]>o9{W[m;i])] 
/•OO /»00 

= / / g{s-a + (m-i-l)c)f{ds)f^{da) 
•/O J a—(m-'i—l)c 

+giO)P{W[m;i] = 0), 

where 
a—(m—i—l)c /•oo pa~[^m,—t— i)c 

P{W[m;i] = 0) = / / f{ds)f^{da) 
Jo Jo 

and lwim;i]>o denotes the indicator mapping for the event {Vr[m;i] > 0}, that 
is, iw[m;i]>o = 1 if W^[m;i] > 0 and otherwise zero. 

We now turn to the second order derivative. For 0 < I'l < 12 < m, W[i2\ ii\ > 
0 describes the event that a stochastic transition at ii generated a workload at 
the server that (possibly) hasn't been completely worked away until transition 
12. With the help of this event we can compute as follows 

Vg{m;ii,i2)=E[g{W[m;ii,i2])] 

= E [ lw[»2 ; i i ]>o lH ' [m; t i , i2 ]>0 g{W[m; n , 12]) ] 

+1E [ 1 w[i2;ti]=olw[m;ii ,i2]>o 9{W[m; Ji, 12]) ] 

+1E [ lw[t2;ii]>olw[m;H,i2)=o 9{W[m; 11,12]) ] 

+ E [ l lV[ i2 ; i i ]=oW[m; i i , i 2 l=Of l ' (W ' [m; n , 12]) ] . 

On the event {W^[«2;*i] = 0} the effect of the first stochastic transition dies out 
before transition 12- By independence, 

E[ lw[i2;ii]=oW[m;ii,i2l>o 9{W[m; ii, 12]) ] 

= E [ lw[i2;ii]=o W[m;i2]>o g{W[m; 12]) ] 

= P{W[i2;ii] = 0)E[W[„,,,]>og(W^[m;i2])] 

and 

E [ W[i2;ii)=oW[m;ii,i2]=Off(W^[»Ti;Jl,i2])] 

= g{0)P{W[i2;ii] = 0) P{W{m;i2] = O) . 
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Moreover, it is easily checked that 

^['^Wli2;ii]>0'^W[m,;iui2]=0 9{W[m;ii,i2])] 

= g{0) P{W[i2;ii] > 0 A WK[m; iz] = O) . 

We obtain Vg{m;ii,ii) as follows: 

Vg{m; 11,12) =^[^w[m;nM>a ^w[i2M>o 9{W[m\ i i , 12]) ] 

+ E[lw[m;i.l>0S(W^Ki2])] P{W[i2\h] = O) 

+ ff(0) {p{W[i2\ii\ = 0) P{W[m-i2\ = 0) 

+ P{W[i2;ii] >0AVK[m;n, i2] = O)) , 

where noticeably some of the expressions in the product on the right-hand 
side in the above formula have already been calculated in the process of com­
puting the first order derivative. Specifically, in order to compute the sec­
ond order derivative only m{m -|- l ) /2 terms have to be computed, namely 
E[ lw[m;ii,i2l>o W[t2;iil>o 9{W[m; h, 12]) ] for 0 < n < 12 < m. These terms can 
be computed as follows: 

/•OO />00 pOO /•OO 

= / g{si+S2-ai~a2 + {m-ii-2)c) 
Jo Jo Jai+a2-{m-ii-2)cJo 

xfis2)fisi)f^{a2)f^{ai) ds2 dsi da2 da, 
/'OO /»oo /•ai+a2 —(TI —ii —2)c 

+ / / / 
/•OO 

g{si + 52 — ai — a2 + (m - 2i - 2)c) 
+a2~si~{m — ii—2)c 

xf{s2)f{si)f'^{a2)f'^{ai) ds2 dsi daa da, . 

I 

Setting g = 1 and adjusting the boundaries of the integrals, we can compute from 
the above equations the probability of the event {W^[i2; ii] > 0 A W[i3; 11,(2] = 
0}, as well. 

For the third order derivative the computations become more cumbersome. 
To abbreviate the notation, we set 

hi{si,S2,S3,ai,a2,a3) 

= g{si + S2 + S3 - ai - a2 ~ as + (m ~ i - 3)c) 

x / ^ ( s 3 ) / ^ ( 5 2 ) / ^ ( s i ) / ^ ( a 3 ) / ^ ( a 2 ) / ^ ( a i ) 
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and we obtain 

E [ W [ i 2 ; i i ] > o l w [ t 3 ; i i , i 2 ! > o l H ' [ m ; t i , t 2 , < 3 l > 0 ^ ( W ^ [ " i ; « l ) * 2 , « 3 ] ) ] 

/•OO /-OO /-CX) pOO 

Jo Jo Jo Jai+a2+a3-{m-ii~3)c 

Jo 
/•OO 

/ hi^(si, S2, S3, «ii 02, as) ĉ â ds2 dsi das da^ dai 
Jo 

/•OO /-OO />oo / 'a i - t -a2 —1?3—5 

+ / / / / 

r 
/•OO 

/ îi (si, S2) 53, ai, a2, as) dss (is2 (isi daa da2 dai 
Jo 

1 + 0 2 + 0 3 —(Tn~i i—3)c—si 

00 / • a i + a 2 —(13—ii —2)c /•OO /^oo /"OO / • o i + a 2 —^13 

+ / / / / 

/ • 
•/ a i 

( J 2 - n - i ) c 

a i + a 2 + a 3 —(TTI—ii —3)c—si 

a i + a 2 —(<3 —ii—2)c—SI 

+ 0 2 + 0 3 —si — S2 — (>n—ii—3)c 

x/iij (si,S2, S3, Oi, 02,03) rfs3 c!s2 dsi das daj dai 

/•CO ^ 0 0 ^00 ^ 0 1 + 0 2 + 0 3 —(7n—ti—3)c 

+ • • , , 
i + a 2 - ( i 3 - n - 2 ) c 

/>oo />oo /»oo />a] 

Jo •'0 Jo Jai^ 

r 
POO 

/ ^ii (s i J S2, <53) ^i5 ^2> ^3) <̂ S3 (is2 dsi dus da2 dai 
Jo 

1 + 0 2 + 0 3 - ( m - H - 3 ) c - s i 

0 

00 /-OO /•OO / • a i + a 2 + 0 3 —(TTI—ii —3)c /•OO /-OO /•OO / • O l + a 2 + 03 —t 

+ / / / / 
JO -/O -/O - ' a i + a 2 - ( t 3 - i i 

I 
f 

2)c 

0 1 + 0 2 + 0 3 —(m—H—3)c—SI 

+ 0 2 + a 3 ~ { T n — i j — 3 ) c — s i —S2 

Xftij (si, S2, ss, «i, 02, fla) ds^ ds2 dsi das da2 dai 
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Following the line of argument used for the second derivative, the third order 
derivative can now be expressed as a conabination of the above variables together 
with the variables already computed while calculating the first and second order 
derivatives. The precise formula is: 

Vg{m; ii, 12, i3)=E \^ Iwii2;ii]>o'^w[ir,ii,i2]>o'^w[m;h,i2,i3]>o 9{W[m; i i , 12, is]) J 

+ E^lw[ir,i2]>oiw[m;i2,i3]>o9{W[m;i2,i3])] P{W[i2;ii] = O) 

+ E [lw[m;i3l>o 9{W[m; 13])] 

x(^P{W[i2;ii] > 0 AW[i3;H,h] =^ 0) 

+P{W[i2;ii] = 0)P{W[i3;i2] = O)) 

+ p(0)P(iy[m;n,J2,«3l = 0 ) , 

where 

P{W[m;h,i2M = 0) = P{W[i2;ii] = O) P{W[h; 12] > 0 A W[m;hM = O) 

+P{W\i2;h] > Q hW[iz;ii,i2] > Q AW[m\iz,i2] = O) 

+P{W[i2-M = 0) P{W[H;i2\ = 0) P{W[m;h] = O) 

+P{W[i2;h] >QhW[h\h,i2\ = 0) P{W[m;i3] = O) . 

5.1.3.2 Numerical Examples 

Consider g = id, that is, g{W{m)) = W{m), m > 0. Note that p < 1 implies 
that Vg{m) = griy(A™ ® w(0)) = 0. Direct computation of E[W(TO)] involves 
performing an m fold integration over a complex polytope. In contrast to this, 
the proposed variability expansion allows to build an approximation of E[iy(m)] 
out of terms that involve h fold integration with h < m (below we have taken 
h = 2,3). This reduces the complexity of evaluating E[iy(TO)] considerably. To 
illustrate the performance of the variability expansion, we applied our approxi­
mation scheme to the transient waiting time in a stable (that is, p < 1) M/M/1 
queue and D / M / 1 queue, respectively. 

The M / M / 1 Queue 
Figure 5.1 illustrates the relative error of the Taylor polynomial of degree h = 

2 for various traffic loads. For /i = 2, we are performing two stochastic transitions 
and a naive approximation of E[W^(m)] is given through Vid{2;0,1) = E[W(2)] 
and the numerical results are depicted in Figure 5.2. The exact values used to 
construct the figures in this section are provided in Section H in the Appendix. 

To illustrate the influence of h, we also evaluated the Taylor polynomial of 
degree /i = 3. See Figure 5.3 for numerical results. Here, the naive approximation 
is given by Vid{3;0,1,2) = E[VK(3)] and the corresponding results are depicted 
in Figure 5.4. 
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Figure 5.1: Relative error for the M/M/1 queue for /i = 2. 
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Figure 5.3: Relative error for the M/M/1 queue for /i = 3. 
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It turns out that for p < 0.5 the Taylor polynomial of degree 3 provides 
a good approximation for the transient waiting time. However, the quality of 
the approximation decreases with increasing time horizon. For p > 0.5, the 
approximation works well only for relatively small time horizons {m < 10). It 
is worth noting that in heavy traffic {p = 0.9) the quality of the approximation 
decreases when the third order derivative is taken into account. The erratic 
behavior of the approximation for large values of p is best illustrated by the 
kink at p = 0.7 for m = 20 and m = 50. However, for m = 5, the approximation 
still works well. In addition, the results illustrate that variability expansion 
outperforms the naive approach. To summarize, the quality of the approximation 
decreases with growing traffic intensity when the time horizon increases. 

Comparing the figures, one notes that the outcome of the Taylor series ap­
proximation can be independent of the time horizon m. For example, at p = 0.1, 
the values of the Taylor polynomial do not vary in m. This stems from the fact 
that for such a small p the dependence of the m*'' waiting time on waiting times 
W{m — k), k > 5, is negligible. Hence, allowing transitions m — fc, A; > 5, to be 
stochastic doesn't contribute to the outcome of E[WK(?7i)], which is reflected by 
the true values as well. 

In heavy traffic, the quality of the approximation decreases for growing h. 
This stems from the fact that convergence of the Taylor series is forced by the 
fact that the n*'' derivative of Ee[iy(m)] jumps to zero at n = m. As discussed 
in Section G.4 in the Appendix, in such a situation, the quality of the approxi­
mation provided by the Taylor polynomial may worsen through increasing h as 
long as h < m. 

The numerical values were computed with the help of a computer algebra 
program. The calculations were performed on a Laptop with Intel Pentium III 
processor and the computation times are listed in Table 5.1. 

Table 5.1: CPU time (in seconds) for computing Taylor polynomials of degree 
h for time horizon m in a M/M/1 queue. 

m 
5 
10 
20 
50 

h=2 
1.8 
1.8 
1.9 
2.2 

h=3 
3.9 
4.4 
6.1 
36.7 

Note that the computational effort is independent of the traffic rate and only 
influenced by the time horizon. The table illustrates that the computational ef­
fort for computing the first two elements of the Taylor polynomial grows very 
slowly in m, whereas the computational effort for computing the first three ele­
ments of the Taylor series increases rapidly in m. This indicates that computing 
higher-degree Taylor polynomials will suffer from high computational costs. 
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The D / M / 1 Queue 

Figure 5.5 plots the relative error of the Taylor polynomial of degree ft = 2 
for various traffic loads. For the naive approximation, the values Vid{2; 0,1) are 
used to predict the waiting times and Figure 5.6 presents the numerical values. 
The exact values used to construct the figures are provided in Section H in the 
Appendix. 
Figure 5.7 plots the relative error of the Taylor polynomial of degree ft = 3 
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Figure 5.5: Relative error for the D/M/1 queue for ft = 2. 

for various traffic loads. The naive approximation is given by Vid{3;0,1,2) and 
Figure 5.8 depicts the numerical results. 
Figure 5.5 up to Figure 5.8 show the same behavior of variability expansion as 

already observed for the M/M/1 queue. Like for the M/M/1 queue, the quality 
of the approximation decreases with growing traffic intensity when the time 
horizon increases. It is worth noting that variability expansion outperforms the 
naive approach. 

The numerical values were computed with the help of a computer algebra 
program. The calculations were performed on a Laptop with Intel Pentium 
III processor and the computation times are listed in Table 5.2. Due to the 
fact that the interarrival times are deterministic, calculating the elements of the 
variability expansions for the D / M / 1 queue requires less computation time than 
for the M/M/1 queue, see Table 5.1. 
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Naive Approximation for h=2 in a D/M/1 queue 

Figure 5.6: Relative error for the naive approximation of the D/M/1 queue for 
h = 2. 
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Naive Approximation for h=3 in a D/M/1 queue 

Figure 5.8: Relative error for the naive approximation of the D / M / 1 queue for 
h = 3. 

Table 5.2: CPU time (in seconds) for computing Taylor polynomials of degree 
h for time horizon m in a D / M / 1 queue. 

m 
5 
10 
20 
50 

h=2 
0.8 
0.9 
1.4 
1.9 

h=3 
1.8 
2.0 
4.7 

47.3 

5.2 Random Horizon Experiments 

Analytic expansions of n-fold products in the max-plus semiring were given in 
the previous section. This section extends these results to random horizon prod­
ucts, that is, we consider the case when n is random. For a motivation, revisit 
the multi-server system with server breakdowns in Example 1.5.5. Suppose that 
we are interested in the point in time when the server breaks down twice in a 
row. The time of the fc*'' beginning of service at the multi server station is given 
by X3{k). The event that the second of two consecutive breakdowns occurs at 
the k*^ transition is given by {A{k — 1) = Z?i = A{k)} and the time at which 
this event occurs is given by 0:3 (fc). Set 

HD^M = T(D„Do(^) = inf{fc > 1 : Mk) = D, = A{k - 1)} . 



202 Taylor Series Expansions 

Then Ee[x3(T(^D^^Di))] yields the expected time of the occurrence of the second 
breakdown in row. Our goal is to compute Eg[x3{T^£)i,Di))] via a Taylor series. 

The general setup is as follows. Let {Aff{k)} have (discrete) state space A. 
For di e A, I < i < M, set a = ( a i , . . . , UM) and denote by 

Ta{9) = inf{A; > M - 1: Ae{k - M + 1) = ai,... 

..., Aeik - I) = dM-i,Ae{k) = UM} (5.8) 

the time at which the sequence o occurs for the first time in {A${k) : A; > 0}. 
This section addresses the following problem. 

The Random Horizon Problem: Let 6* G O be a real-valued parameter, 
0 being an interval. We shall take S to be a variational parameter of an 
i.i.d. sequence {Ae{k)} of square matrices in Rmaĵ  with discrete state space 
A and study sequences {xe{k)} following 

xe{k + l)=Aeik) IS) xe{k) , k>0, 

with xe{0) = XQ for all 0. Let Ta,(0) be defined as in (5.8). For a given per­
formance function g : K^ax —* R compute the Taylor series for the expected 
performance of the random horizon experiment, given by 

Mgi^im))] • (5.9) 

5.2.1 The 'Halted' Max-Plus System 

In Section 4.5, sufficient conditions for the analyticity of Ee[^'^-^Q A{k) ® XQ] 
were given, for fixed m € N. Unfortunately, the situation we are faced with 
here is more complicated, since Tg. is random and depends on 0. To deal with 
the situation, we borrow an idea from the theory of Markov chains. There, the 
expectation over a random number of transitions of a Markov chain is ana­
lyzed by introducing an absorbing state. More precisely, a new Markov kernel 
is defined such that, once the chain reaches a specified criterion (like entering a 
certain set), the chain is forced to jump to the absorbing state and to remain 
there forever. Following a similar train of thought, we introduce in this section 
an operator, denoted by [•]„, that yields a 'halted' version of A(k), denoted by 
[y4(fc)]a, where [^(fc)]o will be constructed in such a way that it equals A(k) as 
long as the sequence a has not occurred in the sequence ^ ( 0 ) , ^ ( 1 ) , . . . ,A{k). 
Once a has occurred, the operator [•]„ sets A{k) to E, the identity matrix. In 
other words, [•]„ 'halts' the evolution of the system dynamics as soon as the 
sequence a occurs and we denote the halted version of {A{k)} by {[y4(A:)]o}. 

In the following we explain our approach with the multi-server example, with 
a = (Z?i, Di). Suppose that we observe the sequence: 

{Aik):k>0) = {DuD2,Di,D2,D2,D2,Di,Di,Di,D2,...). (5.10) 
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Hence, T^DI,DI) = 7 and the nominal observation is based on the cycle 

{A{0),A{1),...,A{T^D,,D^))) = iDuD2,Di,D2,D2,D2,Di,Di). 

We call 
{Di,D2,Di,D2,D2,D2,Di,Di) 

the initial segment and 

the tailoi {A{k)}: 

DuD2,Di,D2,D2,D2,Di,Du DuD2,... . 

inital segement of {A(fc)} tail of {̂ (fc)} 

The halted version of {A{k)}, denoted by {[^(A;)](£)J ,DJ)}, is obtained from 
{A{k)} through replacing the tail segment by the sequence E,E,..., in formula: 

PuD2,Di,D2,D2,D2,Di,Di, E,E,... 

inital segement of {lA(k)]^Di,Di)} tail of {[^(fc)](Di,Di)} 

which implies that 

/ m \ /min(m,T(Dj,Di)) \ 

P (8)[^W](i3i,z)i)®a;o = 5 (g ) v4(A;)®xo , 
\fc=0 / \ fc=0 / 

for any g and any initial value XQ. Moreover, letting m tend to oo in the above 
equation yields: 

g[(^[A{k)](DuD^)®xo\ = gi (g ) A{k)^xo\ . (5.11) 

This reflects the fact that [^(fc)](Di,Di) behaves just Hke A{k) until {Di,Di) 
occurs. Provided that T(^DI,DI) < oo a.s., the limit in (5.11) holds a.s. without 
g, resp. g'^, being continuous. Once (D i ,D i ) occurs, [A{k)](^Di,Di) is set to E, 
the neutral elements of ® matrix product. 

By equation (5.11), differentiating 

oo 

^lA{k)]^D,,D,) 
k=0 

is equivalent to differentiating 

(g) Aik). 
k=0 
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Of course we would like to apply the differentiation techniques developed in 
Chapter 3 and 4 to {[J4(/C)](£)J £)j)}. Unfortunately, we cannot apply our theory 
straightforwardly because [^(fe)](Di,Di) fails to be an i.i.d. sequence. Indeed, 
the distribution of [ .4(^)](DI ,DI) depends on whether the string (Di,Di) has 
occurred prior to k or not. 

The trick that allows us to apply our theory of 'D-differentiation to 
{[J4(A;)](£)J^£)J)} is to show that the order in which the differential operator and 
the operator [•](DI,DI) are applied can be interchanged. If we knew that we are 
allowed to interchange differentiation and application of the [•](DI,DI) operator, 
we could boldly compute as follows: 

^min(m,T(Dj,Di)) \ / rn. 

(g) (̂fc) U (g)[A(A;)](o„D.) 
I fc=0 / \fc=0 

(8)^(fc) 
fc=0 (DuDi) 

3=0 

i-1 

(g) A{k)®{A{j))'®(g)Aik) 
k=j+l fc=0 (DuDi) 

Notice that for the motivating example of the multi server model we have 
A{ky = {l,Di,D2). For example, let m = 9 and take j = 6. Then the above 
formula transforms the realization of {A{k)} given in (5.10) as follows: 

(A(0) , . . . , ^ (5) , / l+(6) ,y l (7) ,^ (8) ,^ (9) ) 

= {Di,D2,Di,D2,D2,D2,Di,DuDi,D2) 

and 

( ^ ( 0 ) , . . . , Ai5), A-(6), A{7), A{8), ^(9)) 

= {Di,D2,Di,D2,D2,D2,D2,Di,Di,D2), 

where the bold faced elements of the realization are those effected by the deriv­
ative. Applying the [•](JDI,DI) operator yields 

P ( 0 ) , . . . , A(5), ^+(6) , .1(7), A{8),A{9))]^DuD^) 

= {Di,D2,Di,D2,D2,D2,Di,Di,E,E) 

and 

[ ( ^ ( 0 ) , . . . , ^ (5) , ^ - ( 6 ) , ^(7) , ^ (8) , A{9))]^OuD^) 

= iDuD2,DuD2,D2,D2,D2,DuDi,E). 

Notice that the lengths of the cycles differ from the nominal ones. 
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Now, consider j = 9 and notice that for this value of j it holds that j > 

T(DuDi)- Then, 

( ^ ( 0 ) , . . . , ^ ( 8 ) , ^ + ( 9 ) ) 

= {D,,D2,Di,D2,D2,D2,DuDi,Di,Di) 

and 

{A{0),...,A{8),A-i9)) 

= {D,,D2,Di,D2,D2,D2,Di,DuDi,D:i), 

which implies 

[ (A(0) , . . . , ^ (8) , A+i9))]^n,M = [(^(0), • • •, ̂ (8 ) , ^ - ( 9 ) ) ] p „ D , ) 
= iDi,D2,Di,D2,D2,D2,Di,Di,E,E). 

If the positive part and the negative part of a derivative are equal, then the 
derivative doesn't contribute to the overall derivative, which stems from the 
fact that for any mapping g 6 R^^^ >-* R it holds that 

5 ^ ( [ ^ ' ( 9 ) ® ^ ( 8 ) ® - . - ® A ( 0 ) ] p „ D o ) 

= g{[A+{9) ® ^(8) ® • • • ® Am^D.M) 

- gi[A-(9) ® A(8) ® • • • ® A(0)]^D„D^)) 
= 0 . (5.12) 

In words, for j > T(^DI,DI): the derivatives of A{k) do not contribute to the 
overall derivative. Hence, 

(8)>i(fc) 
fc=0 

min(m,T(Di,Di)) 

- E 
( D i , D i ) 3=Q 

m j~l 

(g) Aik)®Aijy®<^A{k) 
k=j + l fc=0 (DuDi) 

In the following we show that interchanging the differentiation operator and 
the [-ja operator is indeed justified. Let ^ j , 0 < i < m, be probability measures 
on a discrete state space A C Kma>f> ^^'^ l^t E € A. Let a = ( f i i , . . . J ^ M ) be 
a sequence of elements out of .4. For fixed m > 0, denote by Amij) the set of 
sequences ( ao , . . . , am) € A^'^^ such that the first occurrence of a is completed 
at the entry with label j , for 0 < j < m. More formally, for M — 1 < j < m, set 

A m ( j ) ^ = ' | ( a o , a i , . . . , a m ) e A"''^^ : 

j = min{fc > M - 1 : au-M+i = ai,...,ak-i = OM-i,afc = aM}j • 

The set Am(rn) is defined as follows: 

771 — 1 

A„(m) ='4'"\ U A77̂ 0•). 
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Moreover, we set A^iJ) = 0 for any other combination of m and any j . We 
denote the (independent) product measure of the /Uj's by ni^o/^*- ^^ order to 
construct the halted version, we introduce the measure-theoretic version of the 
operator [•]a as follows: for 0 < j < m and a 6 Amij), we set 

.i=0 . i=0 

{ao,.-.,am)=[Y[fJ.i]{ao,...,aj)x \ J | 5B \ {aj+i,... ,am) 
\i=3 + l J 

(5.13) 
i=0 

where 5E denotes the Dirac measure in E and we disregard Hi^ i+i ^E for j = m. 

T h e o r e m 5.2.1 Let A C Kmai> ^'^'^ E e A, and let (li, for 0 < i < m, be a 
sequence of n times Cp{A)-differentiable probability measures on A, for p G N. 
Then, the product measure HI^oMi ** " times Cp{A"^'^^)-differentiable and it 
holds that 

n î 
( n ) 

i = 0 

(n)' 

Proof: For any g G Cp{A"'+^), 

m 

y ^ 9{ao,---,am) 
(ao , . . . ,o„)e .4 ' "+ i 1 = 0 

(OO, • • • ,0,m) 

^ X I ff(ao,---,am) 
J = 0 (ao a „ ) 6 A m ( j ) 

n ^ i {ao,...,aj) X n "̂ ^ ( 

which implies 

d" 
- — ^ 5(ao, . . . ,ar , 
de {ao,---,am)eA" 

n î (OQ,. . . ,am) 

Y^Tifi Y. giao...,am) de 
J = 0 (oo a ™ ) e A „ 0 ) 
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j=0 (ao,--;am}eA"^ 

( a o ...,am.)g{ao ••• 

n l^i I ('̂ O' • • • 1 ftj) X n ^^ (%+li • • • > flm) 
i=0 / yt=j+l / 

The sets Am{j) are measurable subsets of ^™+^ and independent of ^. No­
tice that for g G Cp{A"'+^) it follows that lA„0)ff e Cp(^'"+^). Adapting 
Lemma 4.2.1 to the situation of the independent product of non-identical prob­
ability measures is straightforward. The above derivatives is thus equal to 

X I Yl lA„0)(ao •••,am)5(ao 
j=0 (ao,...,Om)6.A'" 

E E 
J=0{ao a„)eA„0') 

and invoking (5.13) 

i=0 

giao,--

J 

i=0 

(n) 

(oo,. • ) O'm) 

am) 

(n) 

(ao , . . . ,aj) X • ,am) 

E p(oo, . . . ,Om) 
(oo,...,a„)e.4'"+i i=0 

(n) 

(ao , . . . ,0m) 

which concludes the proof of the theorem. D 

For I e C[0,m;n] and i € I[l], let (^('-''(A;) : 0 < A; < m) be distributed 

according to rifcLoMfc"'**' and let {A^^''">{k) : 0 < k < m) he distributed 

according to IlfcLoMfc'"**' • Furthermore, for I € C[0,m;n] and i e J[/], let 

([^('•')(fc)]a : 0 < fc < m) be distributed according to [n r=o Mfc'"*''']. and 

{lA'•'^'~\k)]a : 0 < fc < m) be distributed according to \UT=o Mfc''*'^1. • Assume 

that (^('•*)(fe) : 0 < A; < m), (^('•^"'(A;) : 0 < A; < m), ([^('•*)(A;)]a : 0 < A; < m) 

and ([^(''^ \k)]a. : 0 < k < m) are constructed on a common probability space. 

For I 6 C[0,m;n\ and i € X[l] let T^'*' denote the position of the first 

occurrence of a in (^'^'''^(A;) : 0 < A; < m) and let r^ '' denote the position of 

the first occurrence of a in (A' ' ' ' (̂A;) : 0 < A; < m). The [•]„ operator translates 

to random sequences as follows. Applying [•]„ to (J4'' ' '^(A;) : 0 < A; < m), resp. to 
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(^('•''(fc) : 0 < A; < m), yields 

lAi^'^Hk)U = ^^'''''^'^ ^ ^ ' ^ ^ ' ' ' ' 
E ioik>A'''\ 

(5.14) 

(5.15) 

and 

.('.«) c^"^ f o r l < f c < m a x ( T f ' \ r f * ' ' ) , 
1>l(fc)]a 

The statement in Theorem 5.2.1 can now be phrased as follows: 

1 for fc > max(rg ' , T^ '' ) . 

d" r / ™ 

L \fc=o 

/6£([0,m;n] i£l(i) 

X ( S 

ioni\...imi 

/ m 

.fc=0 
771 / m 

Lfc=o \fc=o 

- E 
Lfc=0 \fc=0 

We summarize the above analysis in the following theorem. 

Theorem 5.2.2 Let {A{k) : 0 < k < m) be an i.i.d. sequence of n times Cp-
differentiable matrices in R^ax > ^̂ ^̂ n it holds that 

/ m \ (") 

\fc=o 
0>l(fc) 

- E E 
fc=0 

n! 

( « ) • 

;6£[0,m;nJ ielO) " ™ \fc=0 
n4^(i)i..(8)[^^"'wi^'(8)[^^''"nfc)]0 • 

fc=0 fc=0 

Remark 5.2.1 If A € K;̂ ;̂̂  M n times Cp-differentiable and XQ e R^ax ** 
independent of 6, then {A ® xo)*"' = A^"^ 0 a;o anrf 

( g ) [ ^ ( f c ) ] a ® ^ 0 = 0 [ ^ ( f c ) ] a 
fc=0 

\ (n) 

lajo 

\fc=o / 

The intuitive explanation for the above formula is that, since XQ does not depend 
on 6, all (higher-order) Cp-derivatives of XQ are 'zero.' 
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(n) 
We now turn to pathwise derivatives of random horizon products. Let T^ 

denote the index of the (n + 1)** occurrence of a in {A{k)}, with r^ = r j . 
Let / G £[0,m;n] and i G 2[l]. Suppose that / has only one element different 
from zero and that this perturbation falls into the tail {^(''*)(A;) : 0 < A; < m}. 
As we have already explained for first order derivatives, see (5.12), applying 
the operator [-Ja has the effect that this perturbation doesn't contribute to the 
overall derivative, in formula: 

0 = g (g)^^''''(fc) 
,fc=0 

^A^^'''\k) 

.k=0 

For higher-order derivatives a similar rule applies: If I has least one element 
different from zero that falls into the tail of {J4^''*'(A;) : 0 < A; < m}, then this 
perturbation doesn't contribute to the overall derivative. This is a direct conse­
quence of Theorem 5.2.1 which allows to interchange the order of differentiation 
and application of the operator [•]„. The following example will illustrate this. 

Example 5.2.1 Consider our motivating example of the multi-server model 
again. Here, it holds that A{ky = ( l ,D i ,D2) and all higher-order deriva­
tives of A{k) are not significant. For example, let m = 9, j = 6 and take 
a = {Di,Di). Consider I = (0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,1 ,0) , then I {I) = {Ji,J2}, 
with ii = ( 0 , 0 , + l , 0 , 0 , 0 , 0 , 0 , + l , 0 ) , i'[ = (0 ,0 ,4-1 ,0 ,0 ,0 ,0 ,0 , -1 ,0) , i2 = 
( 0 , 0 , - 1 , 0 , 0 , 0 , 0 , 0 , - 1 , 0 ) and i2 = (0,0,-1,0,0,0,0,0,-1-1,0)}. Let the rea­
lization of (A(k) : k > 0) be given as in (5.10). Recall that T(^DI,DI) = 7. 
Hence, I places one perturbation before T(DI,DI) o,nd the second perturbation 
after T(Di,Di)- Then, 

{A^'''^\k):Q<m) = {Di,D2,Di,D2,D2,D2,Di,Di,Di,D2) 

inital segement of {A{k)} 

and 

(^('•*r)(fc) : 0 < m) = {DuD2,Di,D2,D2,D2,Di,Di,D2,D2), 

inital segement of {A{k)} 

where the bold faced elements of the realization are those effected by I. Applying 
the operator [•]a for a = {Di,Di) yields 

[(^('•^')(fc) : 0 < m)]^D^,Dr)-={Di,D2,Di,D2,D2,D2,DuDuE,E) 

=[ (^ ( ' ' *n ( f c ) :0<m)] (D„oo-

Hence, 

)^(''*')(fe) 
.fc=0 •'{DuDi)/ 

(g)^<'''^'(fe) 
,fc=0 (DuDi)/ 
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It is easily checked that it also holds that 

0 = 9 (g)^(''*^)(fc) 
,fc=0 ( D i . O i ) / 

I ^( / , i . - ) ( / ; . ) 

fc=0 (Di,Di)/ 

The above examples illustrates that any vector I that places at least one pertur­
bation into the tail of {A{k) : k > 0) does not contribute to the derivative. 

The building principle for higher-order derivatives, as illustrated in Ex­
ample 5.2.1, has the following implication. Any I € C[0,m;n] has at most 
n entries different from zero. Hence, in order to obtain an initial segment of 
{J4(''*'(A;) : 0 < A; < m} that is of maximal length, I has to be such that it places 
a perturbation on the first n occurrences of a in {A{k)}. In other words, the 
initial segment of {j4'''''(fe) : 0 < fc < m} is at most of length T^ . In formula: 

lim E E^ 
leC[0,m;n]ieX{l) 

(^A^'-'Hk) 
lk=0 

E y ^ lim g 
l€£[04"-'>;nlie2:(0 

Following the same line of argument. 

(g)^'''*>(fc) 
.fc=0 

lim g |yl(''*'(fc) 
,fc=0 

9 ^A^'''\k) 
fc=0 

Indeed, the initial segment of (^''''^(fc) : A; > 0) cannot be longer than T^^ , i.e., 
the point in time when sequence a occurs for the {n+iy*- time in {A{k) : A; > 0}. 
For {1,1") we argue the same way. The n*'' order Cp-derivative thus satisfies 

lim g'' <S)Mk) 
fc=0 

( " ) • 

9' i (^[A{k)]a] 

with 

l(8)[^(fc)la] 

- E 

(n) 

(5.16) 

E InUil . . .1 (n-i)! 

,(") ,(n) .(") 
„('.') 

11 VWla 
I fc=0 fc=0 

^[A^'''\k)]a.^[A^''''\k)], 
fc=0 



5.2 Random Horizon Experiments 211 

As the following lemma shows, the expression defined in (5.16) yields an 
unbiased estimator for the n*'' order derivative oiEe[g{^lt^QA{k)<SiXo)] (which 
justifies the notation). In Lemma 4.4.2 we have shown that J3g,m,{A(fc)}("iP) is 
an upper bound for 

, (n)N 

for any g € Cp, and since ||.E||^ = 0 this implies that 

(n)N 

9' 

/ m 

® a;o 

\fc=o 
< Bg^rn,{A{k)}{n,p) (5.17) 

as well. Moreover, note that, for any 9 6 Cp, 

/ m 

9" [<^[A{k)]a®xo 
\fc=0 

(n)N / m 

^[A{k)V 
\fc=o 

(n) 

® cco 

.(0) 
see Remark 5.2.1. 

When we replace m by T^' , we have to take into account the fact that the 
horizon of the product depends on the order of the derivative. To this end, we 
set 

•Ss,r5,{/l(fc)}(n,P) 

def 

(€£[0,Ti"-i';n: 

. ( " - 1 ) 

V - V TT Ĉ '-'̂  

, ( n ) 

X 2a, + 6 J ^ | | [ ^ ( ' ' * ' ( f e ) ] a | | + I K H e 
1 I ' • m 

ifc=0 

^(") 

+ bJE||[^*' ' '" 'Wla| | +INII® (5.18) 
ifc=0 

and, in particular, 

Bg,rUA(k)}{Q,p) =^ ag^hg [Y,\\A{k)\\^ + llxoll® 
fc=0 

Following the line of argument in the proof of Lemma 4.4.2, we deduce from 
(5.17) that for any 9 e Cp-. 

9^ i(^A{k)®xo 
fc=o 

(n)N 

^ Bg^ra,{A(k)}in,p) , n>0, (5.19) 
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where, for n = 0, we set in accordance with (4.8): 

fc=0 

gi(^A{k)®xo) = g\{<^A{k)®xo) 

\ (0)N 

fc=0 

We obtain the following result. 

Lemma 5.2.1 For n > 1, let A{k) {k > 0) be mutually stochastically indepen­
dent and (n+1) times Cp-differentiable matrices inR'^^. If, forO <m< n+l, 

SUpEe Bg,.ra,{A(fc)}(m,p) < OO 
flee L J 

then 

g[l^A{k)®xo 
fc=0 

Ee 
• / / r a \ ( » ) ^ 

g^ \i(S>[Mk)]aj ®xo 

where the expression on the right-hand side is defined in (5.16). 

Proof: We prove the lemma by induction. For i = 0 ,1 , 2, it holds for any 
For g € Cp and m e N that 

ffM f 0 [ ^ ( A ; ) ] a ) ®xo 

(i) 

^ Bg,Ta,{A(k)}ii,P) • 

In particular, it holds that 

<^[A{k)]a®Xo 
fc=0 

^ •B9,rs,{/l(fc)}(0,p) 

(5.20) 

(5.21) 

By definition, 

J^ixa^g j <^[Aik)]a ® xo ) = g ((g)[^(fc)]a < 
'"~^°° \fc=0 fc=0 

tXo 

with probability one. We have assumed that Eg[Bg^Ta,{A(k)}{0,p)] < oo. This 
together with inequality (5.21) justifies applying the dominated convergence 
theorem, which yields 

lim Efl 
/ m 

\fc=0 

/ m 
g{(S^lA{k)]a®xo 

••Ee 

/ OO 

( 8 ) [ ^ W ] a ®Xo 
\fc=0 

g\(^[A{k)]a®xo 
k=0 
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Theorem 5.2.2 (the Leibnitz rule for the [•]„ operator) implies that, for any m 
and i = 1,2, 

d9^ 

/ m 

\fc=0 

= Ee 5 " | ( ( 8 ) W f c ) l a ®Xo 
.fc=0 / J 

Hence, following the line of argument in the proof of Lemma 4.4.2, we obtain 
for any m and i € {1,2}: 

sup -j^V,0 
Bee do'-

9[^[Mk)]a®xo 
fc=0 

< supEfl[Sg,^.,{^(fc)}(i,p)] , 
6>ee 

where we make use of (5.20). We have assumed that 
^^PBe&^s[Bg^To.,{A{k)}{hP)] < 00 for i = 1,2. The proof of the statement 
of the theorem for n = 1 thus follows from Theorem G.3.1 in the Appendix. 

The proof of the lemma now follows by finite induction. D 
The key condition for unbiasedness in the above lemma is that 

supgg@Ee[i?g,7.-.[^(fc)}(n,p)] is finite and we provide an explicit upper bound 
for supgg0 Ee[Bg,T--,{yi(fc))(n,p) ] in the next lemma. For the definitions of \\A\\is 
and c^(o), see Lemma 4.4.2. 

Lemma 5.2.2 Let {A{k)} be an i.i.d. sequence ofn times Cp-differentiable ma­
trices in Rĵ ajf ™**̂  state space A. Let Pa{0) denote the probability that sequence 
a occurs in {A{k)} and let a be of length M, Provided that | |^| |® is finite and 
that Xo = e, it holds that 

E4-B,,ra,M(/fc)}(n,p)] < 2"(c^(o))" (a^ + bgiMh)"a{pa{e),M,n,p)) , 

where 

a ( p . ( . ) , M , n , p ) = | ^ ^ ^ ^ ^ , ^ „ , , ^ ^ ^ ^ ^ ^ _ _ ^ ^ / o . M ^ ) e ( 0 , l ) , p = l 

Proof: For I e £[0,ri"~^';n], let 

/ A l " ' rf ' r("> \ \ 

ieX[l] \ \k=0 fc=0 *;=0 / / 

Following the line of argument in the proof of Lemma 4.4.2, we show that, for 



214 Taylor Series Expansions 

any g e Cp-. 

< 2" - i (c^(o))" 

,(") 

2a, + bJ'£\\lA^'''Hk)]a 

< 2 " ( c ^ ( 0 ) r ( a , + 6 , ( r < " ) ) ' ( 

\fc=0 

11-41̂ )') 

It remains to be shown that 

E n! 

iec[o, ("-!)., 
l0\h\...l (n-l)!^(9. ' '^r)5^0 

< a(pa(6 ' ) ,M,n,p) . 

Let Pa{k) denote the number of transitions in {A{m) : m > k + 1} until 
a has occurred for the first time. The key observation for the proof is that 
I G £[0, Tg ~ ,n] only contributes if IQ < Ta and if the following condition 
holds: 

«fc-i < / f c < ' f c - i + ^ a ( ' f c - i ) , l<k<n, (5.22) 

with Z_i = 0 . In words, a perturbation I), at transition A; may not occur after 
the sequence a has occurred; see Example 5.2.1 for details. Let C{n) denote the 
set of vectors / € £[0, T^""" ;n] that satisfy condition (5.22), that is, the set of 
perturbation vectors / that possibly contribute to the n"* derivative, then 

Ee 

(6 / ; [O,T|"""' ' 

< n ! 

;e£[0,T|""''';n] 

If Pa(6') = 1, then ra = M - 1 and Pa{k) = M for any k and r^"^ < (n + 1)M. 
This yields 

E l;e-C(n)(-ri"*) 

< {n + l)PMPEe 22 ^l€C{n) 
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A necessary condition for I G C{n) is that 

J2 lk=n A Zfc+i -lk<M , \lo\ < M , 
fc=0 

which implies: 

Ee 

(e£[0,T^'-'';nl 

< M " 

and, combining the above results, we obtain 

!ez;[0,ri"-";n) â 

< n ! M " + ' ' ( n + l ) ' ' , 

which proves the first part of the lemma. 
We now turn to the proof of the second part of the lemma whereby we assume 

that 0 < Pa{0) < 1- For this part of the proof we work with the assumption 
p == 1, that is, we consider g 6 Ci. We divide {A{k) : A; > 0} into blocks of length 
M. Let Ta{l) = Ta dcnotc the number of blocks until the first M-block equals 
a, i.e., for p{0) = 1 we have TO(1) = M and Tail) > M for p{d) < 1, and let 
Ta{k) denote the number of blocks between the [k — 1)"* and fc"* occurrence of a 
M-block that equals a (including the a block itself). Consider I e £[0, r^"~ ; n]. 
Recall that k{l) denotes the position of the highest non-zero element in I. Let 
k{l) fall into segment m, that is. 

J2 MTaim - 1) < kil) < J^ MTaim) , 
k=l k=l 

where Ta,{0) = 0. Such I doesn't contribute to the derivative if one of the first 
(m — 1) M-blocks equals a. In other words, we have to place at least one per­
turbation in each M-block (in order to destroy a). If we place at least one 
perturbation in each segment, then the n*'' derivative can at most effect the 
first n M-blocks. We now introduce the set 

Hin) = < /i G { 0 , . . . , n } " I ^ /ifc = n A /ifc = 0 => ftm = 0 for m > A; > . 

We now spHt up £[0, T ^ " " '•,n] in the following way: we first decide how many 
perturbations we place in the fc*'' segment (given by hk) and then we consider all 
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possible combinations of distributing hk perturbations over the MTa,{k) places 
of this segment: 

Eg 
^ , loUi\...l („-:)! ^(9. '--i" ')^0^" 

(n) 

i e £ [ 0 , r | " " ' ' ; n l 

< Efl 
/ifc! 

n + 1 

• ^ A i - ^ /J /»^ /u '̂ ''̂ —' E^^«w 

Observe that 

E '"'• = ( M r a W ) ' ' ^ 

see Section G.5 in the Appendix. Hence, 

Eg E 'n-' . (n) 

n + l 

h€-H(n)fc=l j = l 

< M^+^Efl E n (^a (A; ) ) ' " 'X^ ra ( j ) 
ft6W(n)fc=l j=l 

Because Tail) is geometrically distributed with probability of success Pa(0), it 
holds that 

TO! 
^^[(^^^'^^"'^(M^- ™^^' 

see Section C in the Appendix. Using the fact that {Ta{k)} is an i.i.d. sequence, 
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we obtain 

Efl 

heH{n) fc=l j = l 

= E« 
n I n 

E E n ( ^aW) ' 'M( ra{ j ) ) ' ' ^+Vra (n + l ) n ( ^ a ( f c ) ^ 
fc=l 

n / n 

= E E n IE. [(ra(fc))'^^] E . [(raO'))''^^^] 
henin)j=i \fc=i,Mj , 

+ E E«[ra(n + l ) ] n E 9 [ ( r a ( f c ) f ' ' ] 
h€nin) fc=l 

n / n 

E E n E4 ( r a ( l ) ) ' ' ^ ] E4( r , ( l ) ) ' ' ^+^] 

hk 

hen(n) fc=l 

n I n 

where the last inequality follows from the fact that (ni + n2)! > (ni)! (n2)! 
for n i ,n2 € N. It is easily seen that Hin) has 2"~^ elements, for a proof see 
Section G.5 in the Appendix. Hence, 

Ee E A"h 
(»)\p 

iec[o,; 
(„_,, /o!/ i ! . . . / , ( . - !) ! ^ ( ^ ' ' ' ^ " ' ) ^ ° (-D 

< ( n + l ) M » + i 2 " - i -̂ "-"̂ --•̂ '̂ 
n+l ' iPaie)) 

which concludes the proof of the lemma. D 
We will use upper bounds for E0[Bg^rs.,{A(k)}{n,p)], like the one in 

Lemma 5.2.2, for two purposes: (a) to calculate an upper bound for the re­
mainder term of the Taylor polynomial, and (b) to compute a lower bound for 
the radius of convergence of the Taylor series. The following lemma gives an 
alternative upper bound for Ee[5p_T-. .{x(fc)}(",p) ] at p = 1. The main difference 
between the two upper bounds is that the bound in the following lemma turns 
out to perform numerically better than that in Lemma 5.2.2. However, this 
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superiority of the new bound comes at the cost that this bound will be only 
implicitly given. 

Lemma 5.2.3 Let {A{k)} be an i.i.d. sequence of n times Ci-differentiable 
matrices inR'^^ with state space A such that ||.4||® is finite. Letpa{0) denote 
the probability that sequence a occurs for 6 and let a be of length M. Provided 
that XQ = e, it then holds for 0 < Pa{d) < 1 that 

MBg,r,AA(k)}{n,l)] < 2" (c^(o))" (flp + bg\\A\\(sb{pa{e),M,n)) , 

where 

^^' ' ^ ^ ' (1 - g)"+i-J dqi V q'^+^-J J 
j=o 

for q < 1 and for q = I 

6(1, M, n) "̂ ^̂  M"+i f^ (n + 1 - j y + \ 

Proof: Let V{g, I, r^ ) be defined as in the proof of Lemma 5.2.2. We argue 
as for the proof of Lemma 5.2.2, however, we will provide an alternative upper 
bound for 

E n}^ , (n) 
^ ,̂ l0\h\...l^,r.-^,\^(^'''-t')^°^' 

i6£[0,r^-";nl » 

Recall that M denotes the length of 5. Prom the definition of the stopping time 
r^" it follows that 

ri"^<ri"+^\ n>0. 
We divide the sequence {A{k)} into blocks of length M. The probability that 

a block is equal to a is 9 = Pa{0)- Assume that 0 < q < 1. Let Ŝi e N be 
distributed as follows 

P{Pl=k)^{l-q)''-U, k>0. 

In words, {/?i = k} is the event that the fc*'' M-block in {A{k)} is the first 
M-block that equals a. Since r^ denotes the first occurrence of an a-block, 
this implies 

4°^ < M/3i a.s. 

Let B{k, q\ •) denote the binomial distribution with parameter g, that is, 
B{k,q;n) is the probability of observing n successes in k independent trials, 
where the probability of success per trial is q, more formally 

B{k,q;n) = Q ( l - 9 ) ' - V , k>n>Q. 
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For technical convenience we set B{k,q;n) = 0 for A; < n. The event {/3n+i = 
fc + 1} is constituted as follows: there are n blocks among the first k blocks that 
are equal to a and the (fc + 1)*'* block (which is the last block) is equal to a. 
Hence, for n > 0, the distribution of /3n+i is given by 

P{Pn+i = k + l)=B{k,q;n)q 

( 1 - 9 ) 
•̂  \ /-I - \fc—n n + l 

n 

which is the negative binomial distribution shifted by n. An upper bound for 
the moments of Pn+i is computed in Section D the Appendix. 

The stopping time r^ is of maximal length if we place a perturbation 
on each of the first n occurrences of a; see Example 5.2.1 for details. In this 
case, Tg < M/3„+i and there are M " possibilities of destroying the first n 
occurrences of a through placing perturbations. Hence, 

E E n\ (n) 

.all pert, fall on the first n strings a 

< M"+iEe[/?„ + i j 

If we place n — 1 perturbations on the first n — \ occurrences of a (there are 
M""^ possibilities of doing this), then r^"' is at most M/9„. Moreover, there is 
one perturbation we are free to place on any of the M/3„ places. Hence, 

.all but one pert, fall on the first n - l strings & 

< M"-iEe[(M/3„)2] 
= M"+iEfl[^^] 

In general, for 0 < j < n. 

E - (n) 
^ l0\h\...l (n-l)! ^^(fl.'4"')#0^° 

/€£[0,T|"""^n] 
.(n-j) pert, fall on the first j strings & 

with the understanding that for j = n the sum is w.r.t. the case that no per-



220 Taylor Series Expansions 

turbation is placed on the first occurrence of a, wliich gives 

E [1^ , (i 

j=o 

(n) 

(5.23) 

- '"' Z^\ >•> (1 _ g)n+l-J d^J + l qn+l-i 

Inserting Pa{6) for q concludes the proof of the lemma for the case Pa{0) > 1-
For Pdi6) = 1, it holds that /?„ = n, for n > 1. Inserting this equality into 

(5.23) yields the second part of the lemma. D 
We summarize our analysis in the following theorem. 

Theorem 5.2.3 Let {A{k)} be an i.i.d. sequence of n times Ci-differentiable 
matrices with state space A C Rmajf ^'^c/i that ||yt||© is finite. Let a be of length 
M and let a occur with probability pa(0) and assume that 

C def (m) ^ 

A(o) = sup max c\,'-. < oo . 

Provided that XQ = e it holds, for 

.k=0 ) 

m=0 

(^[A{k)]A 
\ (n) 

® Xo 

\fc=0 

„(a.fl) 
+ rr/A0o,A), 

whereby 

def A''+^2^H-l 

" (h + iy. ^Mo)"^ 

+-7^c;^to) ^ ll-̂ ll®X (̂ °̂ ^^' tff{pa{t),M,h + i))dt, 
with f{q,M,h + l) either equal to b{pa{0), M, h + 1) as defined in Lemma 5.2.3, 
or equal to a{q, M,h + 1,1) as defined in Lemma 5.2.2. 

Proof: We only prove the statement for f{q, M,h+1) = b{pa{9), M,h+1) since 
for f{q, M,h+1) = a{pa{0), M,h+1,1) the proof follows from the same line of 
argument. 
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Note that for te (00,00 + A) it holds that 

d6"'+i 
fc=0 

g[l^A{k)»xo 

fa 

E 
Kk=0 

(h+1) 

® a;o 

(5.19) r 

< Et[5g,^,,{^(fc)j(/i + l , l ) 

< 2"+! C^|o')(«t + ^ \\A\\eKPait),M,h+l)) , 

where the last inequality follows from Lemma 5.2.3. Hence, the remainder term 
is bounded by 

1 /•^''+^ / \ 
- 2 " + ! C^+J, J (00 + A - t)''[ab + bg \\A\\^ b{pa{t),M, h + l))dt, 

see equation (G.2) on page 294 in the Appendix. Rearranging terms, the upper 
bound for the remainder equals 

:o) ag (6'o + A - t)^dt •̂  r,h+l r>h+l 

/•So+A 

h\ 
/ {{eo + ^-t)H{pa{t),M,h+l))dt 

{h+l)\ 

h\ 
j [{0o + A-t)''b{pa{t),M,h+l)) dt. 

which concludes the proof of the theorem. D 
We conclude this section by showing that Cp-analyticity of halted sequences 

is preserved under the (g>-operation. 

Theorem 5.2.4 Let {A{k)} be an i.i.d. sequence in K^a^. / / A{k) is Cp-
analytic on 0 , then Aa{k) is Gp-analytical on 0 for any k, and [Aa{k + l)]a ® 
[^(fc)]a is Cp-analytical on 0 for k > 0. Moreover, if, for 0o £ 0 , the Taylor 
series for A{k) has domain of convergence U^, then the domain of convergence 
of the Taylor series for [A{k)]a, is [/^ for any k. Moreover, the domain of con­
vergence of the Taylor series for [A{k + l)]a (gi [yl(A;)]a is U^, for any k. 

Proof: Observe that all arguments used in the proof of Corollary 4.6.2 
remain valid when we integrate over a measurable subset of the state space. 
Hence, if we split up the state space in disjunct sets representing the possible 
outcomes of [A{k + !)]„ ® [yl(fc)]a, then the proof follows from the same line of 
argument as the proof of Theorem 4.2.1 and Theorem 4.1.1, respectively. D 
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Remark 5.2.2 The framework of this section can he extended to the more gen­
eral case of halting the evaluation of the sequence x{k) whenever x{k) hits a 
certain set. For example, let B C IPR^jj^ and halt the system when x{k) 6 B. 
Take 

TXO,B{0) = inf i m : (g) ^e(n) ® a;o e S i (5.24) 

I n=0 J 

as stopping time, and let Am,xo,B{j) in the definition of the halted version, see 
(5.13) on 206, he defined as 

I (ao,ai , . . . ,a™) € 1̂™+̂  : j = min < k : ̂ an® XQ = B \ \ . 

Then, the results in this section readily extend to (higher-order) Cp-
differentiability and Cp-analyticity, respectively, of 

0 Ag(k)®xo. 
fc=0 

We illustrate the above setup with the following example. Consider an open 
queuing system with J stations, see Example 1.5.2. Denote by B the set of 
state-vectors x such that xj — XQ is greater than a threshold value h. Assume 
that the system is initially empty and model the evolution of the system via a 
homogeneous recursion, see Section 1.4.3. Consequently, when x{k) enters B, 
then the total sojourn time of the A;"' customer exceeds h. Hence, XJ{TXO,B{S)) 
yields the time at which the first customer that leaves the system violates the 
sojourn time restriction. 

5.2.2 The T ime Unti l Two Successive Breakdowns 

Let {A{k)} be a sequence of i.i.d. Bernoulli-(0)-distributed matrices with state 
space A = {Di, Dg} C Ri^^i, as defined in Example 1.5.5. Take a - {Di,Di) the 
event that two successive breakdowns occur, then the probability of observing 
the sequence is P{DI,DI){^) = ^^- Only the first-order Cp-derivative of A{k) is 
significant with A^^'+^^{k) = Di, A'-^'-'^\k) = D2 and c'l) = 1. 

We are interested in the expected time at which (for the first time) the 
second breakdown of two consecutive breakdown occurs. As already explained 
at the beginning of Section 5.2, for x e Kmaxi '^^ ^ .̂ke g{x) = {x)^ and the 
quantity of interest is Ee[g{x{T(Di,Di)))]- In particular, \g{x)\ < ||a;||0, and we 
may take a^ = 0, 6g = 1. 

For 9 e (0,1], Ta = r(£)j,£)j) is a.s. finite and the Cp-derivative oiX{T(^DI,DI)) 
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at 9 reads 

fc=0 

= E E 
/e£[0,r(D^,Dj);lli€X[/l 

1, (g) [^('•')(fc)](x,„oo®a;o, (g) [^^'•*"'(A;)](D„z>:)®a.o|. 
fc=0 fc=0 

In particular, at 0o = 1 it holds that 

{A{k):k>Q) = (L>i,L»i,£>i,...), 

which shows that T(DI,DI) = '''m D ) ~ •'• "̂̂ "̂  ''^(D £> ) ^ ^' '^'^'^ gives 

(g) [^(A:)](o. ,£>i) ®2;o 
fc=o / 

Moreover, taking the Cp-derivative at SQ = 1, we obtain 

£[0,1; 1] = {(0,1), (1,0)} 

and 
r [ (0 , l ) ] = {(0 ,+l )} and J[(1,0)] = { (+1 ,0 )} . 

To illustrate the construction of the first order Cp-derivative, take, for ex­
ample, / = (1,0) and i = (+1 , 0). The positive part of the Cp-derivative of A{k) 
is £>!, which gives 

(^((i,o),(+i,o))(^) : A; > 0) = {A{k) :k>0) = ( D i , D i , A , D i , . . . ) . 

The operator [•]{DI,DI) sets j^{(i,o),(+i,o))(^k) to E after the first occurrence of 
the sequence {Di,Di) and applying the [•](DI,DI) operator gives 

{[A(('fi^'(+'-°^\k)]^DiM:k>0) = iDuDuE,E,...). 

The second occurrence of {Di,Di) in {j4(A;)} happens for ^o = 1 at T^J J-, •. = 
3 and for any / € £[0, r(£)j £)j); 1] and i € T[l] the initial segment of 
{[^((i,o),(+i,o))(fc)]^^^_^^j : fc > 0} will be at most of length 3. We thus ob­
tain 

3 

(g)[^«''°^'<+''°»(fc)](z3,,Di) ®xo^E^E^Di®Di®xo 
fc=0 
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The negative part of the Cp-derivative of A{k) is D2 and we obtain for / = (1,0) 
and i = (—1,0): 

(^((i,o),(-i,o))(^) . ^ > 0) = {D2,Di,Di,DuD,...) 

and applying the [•]{DI,DI) operator gives 

Hence, the first occurrence of the sequence (Di,Di) is at fc = 2, which yields 

3 

fc=0 

= £>i ® Di ® D2 ® a;o . 

In the same vein, we obtain for I = (0,1) and i = (0, +1), 

3 

k=0 

and for / = (0,1) and i = (0, —1), 

3 

fc=0 

For any g e Cp, it therefore holds that 

—Ei[ff(a;(r(jr,,,D,)))] =2f l (Di ® Di ® Xo) 

- g{Di ® Di ^ D2 ® Xo) 

- g{Di ®Di®D2®Di® XQ) . 

Following the above line of argument, the second order Cp-derivative reads in 
explicit from 

d? 
-il^^i\a{x{T(DuD,)))]= 9{Di® Di ® xo) 

+ g{Di ®Di®D2®D2® XQ) 

+ g{Di ®Di®D2®Di®D2® XQ) 

+ g{Di ®Di®D2®D2®Di® xo) 

+ g{Di ® Di ® D2 ® Di ® D2 ® Di ® Xo) 

- 2g{Di ®Di®D2® Xo) 

-3g{Di ®Di®D2®Di® xo), 

for any g € Cp. Explicit expressions for higher-order Cp-derivatives can be 
obtained just as easy. 
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14.0 

12.0 

10.0 

10.0 

Figure 5.9: Taylor polynomial of degree ft = 3 at ^o = 1 for the expected time 
until two consecutive breakdowns. 

Figure 5.9 shows the Taylor polynomial for degree h = 3, where we let u = 1 
and a' = 2. The thin line indicates the true value of E9[a;3(r(jr)j_£ij))] and the 
thick line shows the Taylor polynomial. The figure shows that the approximation 
is fairly accurate for values of A up to 0.4. To illustrate the influence of the order 
of the Taylor polynomial, we plot in Figure 5.10 the Taylor polynomial at ^o = 1 
of degree 5, where we again take a = 1 and a' = 2. The thick line shows the 
Taylor polynomial and the thin line gives the true value. Figure 5.11 plots the 
actual error for /i = 3, where the actual error is obtained by taking the difference 
between Eg[x3{^r)^^p^))] and a Taylor polynomial of degree /i = 3. Figure 5.12 
shows the error for predicting ^eixsi^D^^Di))] by a Taylor polynomial of degree 
/i = 5. 

We now discuss the quality of our bound for the remainder term. Table 5.3 
lists the bound for the remainder term for ft = 3 and ft = 5, respectively, for 
various A's where we evaluate the remainder term by b{6Q,h + 1, M) given in 
Lemma 5.2.3. Comparing the values in Table 5.3 with the true error as shown in 
Figure 5.9 (Figure 5.11) and Figure 5.10 (Figure 5.12), respectively, we conclude 
that our upper bound for the remainder term is of only poor quality. As a 
last point of discussion, we turn to the upper bound for the remainder term as 
obtained by the mapping a(^Q, ft+1, M, 1) given in Lemma 5.2.2. Table 5.4 shows 
the numerical values for the (upper bound of the) remainder term. Comparing 
the values in Table 5.3 with those in Table 5.4 shows that the upper bound by 
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0.1 
~ } I 

0.5 1.0 

Figure 5.10: Taylor polynomial of degree /i = 5 at 0o = 1 for the expected time 
until two consecutive breakdowns. 

Figure 5.11: Error for the Taylor polynomial of degree h = 3 at OQ = 1 (see 
Figure 5.9). 
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Figure 5.12: Error for the Taylor polynomial of degree h = 5 at OQ (see Fig­
ure 5.10). 

Table 5.3: Bound for the remainder term using b{9Q, h+1, M) (̂ o = 1, /i = 3, 5 
and M = 2). 

A 
0.05 
0.1 
0.15 

i?r-^^>'^-^^^(i,A) 
4.0779 X 10-1 

8.3073 
55.3554 

^{(i>:.i>i),(-)3)(l_^) 

3.2365 X 10-^ 
3.2675 
58.3219 

Table 5.4: Bound for the remainder term using a(0oi h-\-l, M, 1) (̂ o = 1, ft = 3,5 
and M = 2). 

A 
0.05 
0.1 
0.15 

^C(^.i;.),(.)3)(,_^) 

1.9327 
47.9138 
386.7890 

^CCi^.,^.).C03)(i^^) 

7.4427 X 10-1 
91.6786 
2094.8819 

b{el, h+l,M) out-performs the one by a{0o, h+l,M,l). 

We now turn to our lower bound for the radius of convergence of the Taylor 
series. According to the formula of Cauchy-Hadamard, see (G.4) in Section G.4 
in the Appendix, the radius of convergence of the Taylor series, denoted by r. 
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is given by 

• 1 
lim sup 

n\ 

- 1 

— EI[CC3(T(OJ,O^))] 

At ^0 = 1, the upper bound for the n*'' order Ci-derivative in Lemma 5.2.2 ap-
pHes, and the expression on the right-hand side of the above formula is bounded 
by 

r > I Umsup I —— a( l , 2 ,n , 1) 

Inserting the explicit representation for a ( l , 2 , n , 1), we obtain a lower bound 
for the radius of convergence through 

r > [ l i m s u p ( 2 " + i ( n + l ) 2 " + i ) * ' ) = J , (5.25) 

where we use the fact that | | ^ | | e = 2 and a^.)^ = 0,6(.)3 = 1. Hence, we obtain 
1/4 as lower bound for the radius of convergence. 

As we have already noticed, the quality of the approximation increases with 
the order of the Taylor polynomial, see Figure 5.9 and Figure 5.10. Specifically, 
the Taylor series of degree 5 provides a feasible approximation for A < 0.6, 
whereas that of degree 3 only yields good results for A < 0.4. This illustrates 
that our lower bound for the radius of convergence of the Taylor series, which 
turns out to be 0.25 (M = 2), is a rather conservative lower bound. It is worth 
noting that for A large enough, our upper bound for the remainder term is in­
creasing with respect to the degree of the Taylor polynomial. This effect already 
occurs while A < r, which illustrates the imperfection of our bound because for 
these values of A convergence of the Taylor series implies that eventually the 
remainder term has to decrease when the degree of the Taylor polynomial is 
increased. 

In the general case (that is, 9Q < 1, M and \\A\\^ arbitrary), the lower bound 
for the radius of convergence of the Taylor series for Eg[x3{T(^Di,Di))] at ^o reads 

lim sup I 
/2"ii^ii®c:^ ^(0) 

r{9o) " \ "•• 

1 ^^+1 /*! I 1 \nn—l X (n- | - l ) !M"+^(n- | - l )2 
pM(n+l) 

which gives 

riOo)- -^^ 
1 

4Mc^(0) 

^ Pa(^o) 
4 M CA(O) 
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as lower bound for the radius of convergence. Hence, for M = 2 and c^(o) = 1, 

r{eo) = \el, 

for 6a G (0,1]. Observe that r ( l ) = 1/8 is smaller by a factor of 2 than the lower 
bound r = 1/4 in (5.25). 

5.3 Taylor Series Expansions for the Lyapunov 
Exponent 

In this section, we study sequences {A{k)} = {Ae{k)] with 0 S ©. We adjust 
conditions (CI ) to (C3) in Section 2.5.1 (see page 100) accordingly: 

( C I ) For any 6 E Q, the sequence {Ae(k)} is i.i.d. with common countable 
state space A. 

(C2) Each ^ e .4 is regular. 

(C3) There is a set C of matrices such that each C G C is primitive. Further­
more, each C e C is a pattern of {Ae{k)} for any 9 € Q. 

By assumption (C3), we may choose a pattern C and take a as the c{C)-
fold concatenation of C, where c{C) denotes the coupling time of C. Under 
(CI ) to (C3), the Lyapunov exponent of {Ao{k)}, denoted by \{0), exists, see 
Theorem 2.6.2. The goal of this section is to represent the Lyapunov exponent 
of {yl(fc)} by a Taylor series. 

In Section 2.6.2, we showed that the Lyapunov exponent of a max-plus linear 
system can be written as the difference between two products over a random 
number of matrices. In this section, we combine this representation with our 
results on Taylor series expansions over random horizon products as established 
in the previous section. We thereby will obtain Taylor series expansions for the 
Lyapunov exponent of max-plus linear systems. This approach has the following 
benefits: 

• 6 may influence either particular entries of the max-plus model or the 
distribution of the entire matrix. 

• The Taylor series can computed at any point of analyticity, which is in 
contrast to the results known so far, where only Maclaurin series have 
been studied. 

• Lower bounds for the radius of convergence of the Taylor series for the 
Lyapunov exponent are deduced from more elementary properties of the 
system, which allows us to establish lower bounds for the radius of con­
vergence in a very simple manner. 

• Upper bounds for the remainder term are obtained in explicit form. 
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We illustrate our approach with the Bernoulli scheme in Example 1.5.5. 

The Lyapunov Problem: Let 9 e Q he & real-valued parameter, 6 being 
an interval. We shall take ^ to be a variational parameter of an i.i.d. sequence 
{Ae{k)} of square matrices in Rmax and study sequences {xe(k)} following 

xe{k + l)=AB{k)®xe{k), k>0, 

with xe{0) = xo for all 6. We assume that {Ae{k)} satisfies (CI) to (C3), for 
0 e 6 . The aim of this section is to write the Lyapunov exponent of {Ae(k)}, 
given by 

X{9) ® e = lim yE[(xe(k))j] , 1 < j < J , (5.26) 
fc—»oo K 

as a Taylor series. 

In Section 5.3.1 we will establish sufficient conditions for analyticity of the 
Lyapunov exponent. In Section 5.3.2, we apply these results to the Bernoulli 
scheme. Finally, Section 5.3.3 discusses the relation between our result and the 
Taylor series known in the literature. 

5.3.1 Analytic Expansion of the Lyapunov Exponent 

As explained in Section 2.6.2, under appropriate conditions, the Lyapunov ex­
ponent can be represented by the difference between two products of matrices, 
where the range of each product is given by stopping time rj. The main difference 
between the setup of Section 2.6.2 and the current section is that in the setup in 
Section 2.6.2 time runs backwards, whereas in (5.26) time runs forward. Thus, 
in order to use results of the previous section for the current analysis we have 
to reverse time. When {A{k)} is i.i.d., this can be done without any difficulty 
and we will freely use results from the previous sections in reversed time. 

Following Section 2.6.2, analyticity of the Lyapunov exponent can be de­
duced from analyticity of the product E[(2)°^_^ A{k) ® a:o], where r) is the time 
of the first occurrence of a going backward from time 0. 

We write 773 for the number of transitions in {A{k) : 0 > A;} until the first 
occurrence of a, that is, % is the counterpart of TJ. Following Section 2.6.2 we 
let ria > 0 and the actual time of the first occurrence of a in {A{k) : 0 > k} 
is thus given by —775. In the same vein we adjust the notation introduced in 
the previous section(s) to time running backwards. For fc < 0, we define [^(A;)]o 
such that [^(A;)]a = A{k) as long as a hasn't occurred in {A(k) : 0 > k} and 
[A{k)]a = E otherwise, that is, [A{k)]a = A{k) for 0 > fc > -rja and [A{k)]a = E 
for -?7a > k. 

Furthermore, denoting by rf^' the index k such that at k the (n -t- 1)"* 
occurrence of the pattern a in {A{k) : 0 > k] takes place, we adapt definition 
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(5.16) to time running backwards as follows: 

( (g) [Mk)]A (5.27) 

E n E , , I (n-l)\...l-l\lo\ , , 

n 
fc=-^<"' 

[^"•*^(fc)]a, ( g ) [^<'''">(fc)]a 

fc=-,,<") 

The bound i?g,̂ 5,{A(fc)}(n,p), defined in (5.18) reads in reserved time 

-^Ld,{A(fc)}(">P) 

def y !̂ y n 
V ( n - l ) 

/€£[-»)i""'',0-"l " ' 'a em fc=-,,(") 

(Z,i) 

X 2«<, + b J I ^ ||^(''"*'=)(fc)|| + llxolle 
Vfc=-)7i''' 

l fc=-r;. 

for n > 1, and, for n = 0, 

^9V,{A(fc)}(0,p)'= 2 a , + 6 J f ] li^(fc)|le + Ikoll® 
^ f c = —TJa 

Following the line of the proof of Lemma 4.4.2 it follows for any g e Cp that 

5M I (g) [A{k)]a»Xo] 
ik= — T}a 

< B 1° {n,p), 

for n > 1, and 

where we set 

(g) [A(k)]a ® Xo ^ < .a .{A(fc)}(0 ,p) 

(0) 

(g) A(k) (8) Xo = (g) [A{k)]a ® a;o 
k=-Va \k=-na ) 
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The following lemma is a straightforward adaptation of Lemma 5.2.1. 

Lemnna 5.3.1 For n > 1, let A{k) (0 > k) be mutually stochastically indepen­
dent and (n + 1) times Cp-differentiable matrices in Rmax • U' /"'"O < "^ < n+1, 

supEe[5? ^(j.)j(m,p)] < oo , 
flee 

then 

de" 
rEfl g (g) A{k)<S>xo E« 

\ (n) 

[^(fc)]a ®a;o 
\k=—r]a 

for any g e Cp. 

Before we can state the main result of this section, we provide an upper 
bound for 

M ( l ) ® ( ^ [Aik)]a®xo\ . 
\ k=-m J 

However, before we state the result we note that one has to distinguish 

^ ( 1 ) ® (g) [A{k)]a^Xo 

and 
(n) 

[^(l) la® (g) [A{k)U®Xo\ . 

In the former expression [•]a is applied to {A^^'^'^k) : 0 > A;} whereas in the latter 
it is applied to {A<-^''^k) : 1 > fe}, for I e £ [ -77^"~^ \ . . . , l ;n] and i e I[l]. To 
illustrate the difference, we consider the multi-server example. Let 

( y l ( l ) , ^ ( 0 ) , y l ( - l ) , ^ ( - 2 ) , . . . ) = iD„Di,Di,D2,D^,...) 

and consider / = (1 ,0 ,0 , . . . ) G £ [ - 4 " " " ^ ' , , . . , l ;n] , i = (1 ,0 ,0 ,0 , . . . ) G I[l]. 
Then, 

(^('•')(fc) : 1 > fc) = {Di,Di,DuD2,Di,...) 

and 
([^('•*)(fc)]a : 1 > fc) = {Di,DuE,E,E,...), 

whereas 

(^{h.H)(i)j^(M)(/.)] . . o > f c ) = {Di,Di,D^,E,E,...). 

The following lemma, which is a variant of the Lemma 4.4.2, provides the desired 
upper bound. 
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Lemma 5.3.2 Let {A{k)} be an i.i.d. sequence of n times Cp-differentiable 
matrices in K^^^. For any g € Cp it holds that 

0 ^ 

5' I 1^ (1)® (g) [A{k)] 
fc=-')a / 

(n)N 

^ Bl.vUMk)}(^'Py 

where 

^La,{^(fc)}("'P) 

E E n „('.») 

v .fc=-^i"> 

X" 

/ 

+' 'J E ||[^'''*"'wia|| +ikoii® 
ifc=-4"> 

PX 

/ 

Proof: The proof follows from the same line of argument as the proof of 
Lemma 4.4.2 and is therefore omitted. D 

We now turn to the Lyapunov exponent. Note that in case of the Lyapunov 
exponent we take as performance function g the projection on any component 
of the state-vector; more formally, we take g{x) = {x)j for some j e {!,..., J}. 

Theorem 5.3.1 Let assumptions (CI ) to (C3) be satisfied. If A{0) is Ci-
analytic on 9 with domain of convergence U{6o), for 9Q 6 0 , and if, for some 
j e { 1 , . . . , J], Eeo[5(^.)^.^^._{^(fc)j(n, 1)] is finite for any n and 

OO ^ 

^ - sup E j B ( \ , , , ^ _ { ^ ( , ) j ( n , l ) l | ^ - 0 o r < o o , 

then 

lira Ee[x{k + 1) - x{k)] = A(6i) ® e 
fc—+00 

exists and is analytic on G. For 6o S Q, the domain of convergence is at least 
U{OQ). Moreover, the n*^ derivative of the Lyapunov exponent is given by 

-A(6l)®e=Ee 

(n) 

^ ( 1 ) ® 0 [A{k)]s,\ ®xo 
k k=-Va I 

Ee 

( n ) 

[A(A;)]a ®a;o 
L fc—— TJa 
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Proof: Theorem 2.6.2 implies 

A(l)® 0 A{k)<S)Xo\ - (g) A{k)<S>xo\ 
k=-r,a J. \k=-rii J. 

A{1)<S) ( g ) [A{k)]a <8> Xo] - ( ( g ) [A{k)]a®Xo 

k=- k—~oo 

for any component j . Hence, for the proof it suffices to show the analyticity of 

0 \ 

Ee (g) A{k)®xo 
>.k=-n-a. J 

] • ' 

= lim Ee 
0 

[A{k)]a,®Xo 
k=~m 3 J 

(5.28) 

and 

Ee ^(1)® (g) A{k)®xo 
\ k = -Va / 

= lim Ee 
m—»oo 

A(l)® (g) [^(fc)]5®a;o 
A;= —m 

separately. Note that 
(5.29) 

for any component j , In accordance with Theorem 5.2.4, the finite products on 
the right-hand side of (5.28) and (5.29) are analytic and we obtain, for « = 0,1, 

E« (g) A{k)®xo = 1- E 4-
n=0 

Eg 

= lim J2^eo 
m—*oo * — ' 

(g) [̂ (A;)]a ®xo 

(") 

(g) [.4(fc)]a «) a;o 

(̂  - ^o)" 

(^ - ^o) " 

(5.30) 

We now show that we may interchange the order of limit and summation. In 
accordance with Lemma 4.4.2 and Lemma 5.3.2, for any m and any component 
j it holds that 

E {0 - ^o)" 
Ee„ 

(n) N 

[A{k)]a I ® Xo 
k~--m 

l ^ - ^ o l " 

n = 0 



5.3 The Lyapunov Exponent 235 

which is finite by assumption, for any 9 £ Ug^. Hence, by dominated convergence. 

Um y^ 
[9 - doY 

Efl 0 [A{k)\a ® xo 
\k~—m 

(n) 

n = 0 

(n) 

\fc=—Tn 
J-J 

for 1 < j < J. Following the line of argument for the proof of Lemma 5.2.1, we 
now show that 

lira E9„ (g ) [^(fc)]a ®xo 
\k=—m 

(n) 

=Eeo (g) [̂ ('=)la 

V L fc= — 7 7 a /J 
for 1 < j < J, which concludes the proof of the theorem. D 

By Theorem 5.3.1, we obtain an explicit representation for the [h + 1)** 
derivative of A and, thereby, an upper bound for the error term of a Taylor 
polynomial of degree h. 

Theorem 5.3.2 Under assumptions (CI ) to (C3), denote by a the sequence of 
matrices constituting the pattern. Let A{0) with state space A be (h+l) times Ci-
differentiable and letpa,{6) be the probability that the sequence a occurs. Assume 
that \\A\\^ and C^(o) are finite. Provided that XQ = e, it then holds that 

A(6»o + A ) ® e = ^ — r { ^ « o 
m = 0 

( n ) 

yl( l )® (g) [A{k)]a\ ®a;o 
V k=-Va I 

Eflo 

(n) 

(g) {A{k)\-A ®Xo 
\k=-r,a I 

foreo,9o + A e e , with 

| r^+i(^o,A)| <R^^,{9o,A) 

def 2'^+^ rSo+A yn+2 /-ffo+ii 
^ C^to') ll-^ll® _( (^0 + A - t)\l + f{pa{t),c, h + 1)) dt. 

where c denotes the length of a and / ( • , c,h+l) is either equal to b{-, c, / i+1) as 
defined in Lemma 5.2.3, or is equal to a(-, c, /i +1 ,1) as defined in Lemma 5.2.2. 

Proof: We only prove the statement for f{pa{0),M,h+l) = b{pa{9), M,h+l) 
since for f{q, M, h + 1) = a(pa{9), M,h + 1,1) the proof follows from the same 
line of argument. 
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By Theorem 5.3.1, the (/i + 1)*' order derivative of A is given by 

m' 

A{1)® (g ) [A{k)]a 

(h+1) 

)Xo 

(h+1) 

)a:o 

and in accordance with Lemma 5.3.2 and equation (5.19) on page 211 this 
implies 

^h+i 

d6"'+i 
A(^) 

e=eo 
^E«o [4),..a,{A(/c)}(/* + 1- 1)] + Efio [4)„.a,{A(fc)}(/» + 1, 1)] 

^2E.„[4).,,„{A(fc)>(/i + l , l ) ] , (5.31) 

for any component j . Following the line of argument for the proof of 
Lemma 5.2.3, we show that 

^s [Blh,v-.dA(k)}ih + 1,1)] < 2''+iC^|o^, ll^ll® (1 + b{p^{e),c, h + 1)). 

Following the line of argument in the proof of Theorem 5.2.3, we calculate with 
the help of the above inequality an upper bound for the remainder term, which 
concludes the proof of the theorem. D 

An example illustrating the above theorem will be given in the following 
section. 

5.3.2 The Bernoulli Scheme 

Let {A{k)} be a sequence of i.i.d. Bernoulli-(^)-distributed matrices with state 
space A = {Di,D2} C Kmax> ^^ defined in Example 1.5.5. For the numerical 
examples, we set o- = 1 and a' = 2. Assumptions (CI ) to (C3) hold. More 
specifically, D j is a primitive matrix that may serve as pattern. Since D2 is 
already an element of A, we have N = 0(1)2) in Definition 2.5.1, where 0(1)2) 
denotes the coupling time of D2. We now take a as the 0(^2) fold concatenation 
ofi?2: 

a l 5 ' ( i ? 2 , . . . , P 2 ) , 

c(£>2) times 

def that is, c = c{D2) is the length of a. and the probability of observing a equals 
(1 - 9)-. 

We calculate the first-order derivative of A(^) at ^ = 0. This implies that 
A{k) = D2 for all k. Furthermore, the coupling time of D2 equals c and since 
at 0 = 0 the sequence {A(k)} is deterministic: r) = c — 1. The first-order Cp-
derivative of yl(A;) is ( l ,D i ,D2) and all higher-order Cp-derivatives are not sig­
nificant, see Section 5.2.2. 
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In the remainder of this section, we denote for x,y e R"̂  the conventional 
component-wise difference of x and yhy x—y and their conventional component­
wise addition by x + y. The symbol Y^ has to interpreted accordingly. In accor­
dance with Theorem 5.3.1, we obtain 

A(6')®e = 
0 

=J2 ^r^ ® Z?! ® Da ® 0̂ - XI ^2^^ ® 0̂ 
j = 0 j=0 

c-l c - 1 

- J2 ^r^"^ ® z?! ® D^ ® So + X i>2 
j=0 j=0 

)Xo , 

compare Section 5.2.2. We set XQ = D2 ® â o and, since c is the coupling time 
of D2, it follows that XQ is an eigenvector of Da- In accordance with (2.48) on 
page 113, we obtain 

e=o 

c 
A(6I) (g) e =J2 (^r^ ® £»i ® Xo - I>2 ® ^ 0 ) 

c - l 

j=0 

-1 

j=o 

Higher-order Ci-derivatives are obtained from the same line of thought. The 
Taylor polynomial of degree h = Sis shown in Figure 5.13 and Taylor polynomial 
for h = 5 is shown in Figure 5.14, where the thin line represents the true value, 
see Example 2.4.1. 

Next we compute our upper bound for the remainder term. Note that 
CA(O) = 1 and that | |^ | |© = | | i? i | |e ® ll-'^2||©- We thus obtain for the re­
mainder term of the Taylor polynomial of degree h: 

2^+2 

i?^+i(eo,A) = - ^ ( | p i | | e ® | p 2 | | © ) 
/•flo+A 

X / {eo + A-t)''{l + b{{l-tY,c,h + l))dt, 

with ^0 £ [0,1) and 9o < OQ + A < 1. In the following, we address the actual 
quality of the Taylor polynomial approximation. At 9o = 0, A(0) is just the 
Lyapunov exponent of Di, and we obtain A(0) = 1. From 

A(O-hA) < A(0) -I- R^iO,A) 

we obtain an immediate (that is, without estimating/calculating any derivatives) 
upper bound for A(A). For example, elaborating on the numerical values in 
Table 5.5 (left), it follows A(O.Ol) < 3.0130. Unfortunately, this is a rather 
useless bound because, for cr = 1 and a' = 2, the Lyapunov exponent is at most 
2 and thus 1 < A(O.l) < 2. 

Table 5.5 shows the error term for the Taylor polynomial at ^0 = 0 and 
^0 = 0.1 for A = 0.01 and for various values of h. Comparing the results in 
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\{e) 2.0 

T 1 1 1 1 1 1 1 1 1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 5.13: Taylor polynomial of degree /i = 3 at 0o = 0 for the Lyapunov 
exponent. 

\{e) 2.0 

T 1 1 1 1 1 1 1 \ 1 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 5.14: Taylor polynomial of degree /i = 5 at 6*0 = 0 for the Lyapunov 
exponent. 

Table 5.5 (right) with the results in Table 5.5 (left), one observes (i) that the 
error terms at ^o = 0.1 are larger than those at ^o = 0 and (ii) that the error 
decreases at a slower pace at OQ = 0.1 than at ^o = 0. This comes as no surprise, 
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Table 5.5: 6lo = 0, A = 0.01 (left side); OQ = 0.1, A = 0.01 (right side) 

h 
0 
1 
2 
3 
4 
5 
10 

ii^+i (0.0,0.01) 

13.0096 
2.1376 

2.8680 X 10-1 
3.4577 X 10-2 
3.8653 X 10"^ 
4.1227 X 10~* 
3.7668 X 10-* 

h 
0 
1 
2 
3 
4 
5 
10 

fl;^+i(0.l,O.Ol) 
20.6007 
4.2526 

7.4748 X 10-1 
1.2096 X 10-1 
1.8505 X 10-2 
2.7206 X 10-=* 
1.3633 X 10-^ 

since the system at ^o = 0 is deterministic whereas at OQ = 0.1 we observe a 
stochastic system. 

The most erratic behavior of the system will occur at 6Q = 0.5 and Table 5.6 
presents numerical results for this case. According to (5.32) we have to choose 
A < 0.00390 (=0.5^/16). 

Table 5.6: OQ = 0.5, A = 0.003 (left side); Oo = 0.5, /i = 5 (right side) 

5 
10 
15 

i^^+i (0.5,0.003) 
6.6768 

9.5109 X 10-2 
1.1311 X 10-3 

A 
10-^ 
10-3 
10-" 
10-5 

i?^(0.5,A) 
9699.6700 

9.0143 X 10-3 
8.9506 X 10-" 
8.9442 X 10-15 

Inspecting the numerical values, one concludes that the error term decreases 
at too slow a pace for a Taylor approximation for A(0.503) at 6o = 0.5 at 
to be of any use. Finally, we illustrate in Table 5.6 the influence of A and h 
on the remainder term at ^o = 0.5. Specifically, Table 5.6 (right) illustrates 
that A = 10-3 is a reasonable choice, when we assume that one is willing to 
evaluate the first five derivatives of A with respect to 6 at 0.5. However, the 
numerical values presented in the above tables are only upper bounds for the 
true remainder term, which stems from the fact that we only work with a (crude) 
upper bound given by h{q, c,h + \). 

In the remainder of this section, we discuss our bound for the radius of 
convergence for the Taylor series. Denote the radius of convergence of the Taylor 
series at 9 by r{6). According to the formula of Cauchy-Hadamard, see (G.4) 
in Section G.4 in the Appendix, a lower bound for radius of convergence of the 
Taylor series at ^ = 0 is obtained from (5.31) together with Lemma 5.2.2 as 
follows 

r ( 0 ) > limsup - 2 " + i ( | p i | | e e | | D 2 | | © ) ( l + a ( l , c , n , l ) ) 
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Hence, a lower bound for r(0) is given by 

2n+l 

n! 
limsup ( - ^ (||Z?i||e ® IP2II©) (1 + n\c"+Hn + 1)) 

For example, let a = 1, a' = 2, then c{Di) = 4, see Example 2.1.1, and 

IP i l be l l -Da l l© = max((T,c7') = 2 , 

which implies 

limsup (-^2"+2 (1 + n ! 4 " + i ( n + l ) ) y I 

for the lower bound for radius of convergence. Hence, 

riO) > I , 

which recovers the result in [7]. The above results were improved in [8] using 
a contraction argument for Hilbert's projective metric inspired by [88]. Elabo­
rating on the 'memory loss' property implied by the occurrence of a, Gaubert 
and Hong improve in [48] the lower bound for the domain of convergence of the 
Taylor series at ^0 = 0 in [7, 8]. 

In the general case (that is, 9o > 0, c and ||.4||0 arbitrary), we obtain 

1 _ ,. / 2 " + i | | ^ | | e C » 
< limsup I 

r{0o) 

X ( l + ( n - f l ) . c - V + l ) 2 " - ^ ^ ) ) \ 

which gives 

rieo) > j - ^ Pa{0o) (5.32) 

as lower bound for the radius of convergence. 

5.3.3 A Note on the Elements of the Taylor Series for the 
Bernoulli System 

The coefficients of the Taylor series are rather complex and can be represented 
in various ways; see for example the representations in [7]. Our analysis leads to 
yet another way of representing the coefficients of the Taylor series and in what 
follows we illustrate for the first-order derivative of the Lyapunov exponent 
of the Bernoulli system that the expression in Theorem 5.3.1 can indeed be 
algebraically manipulated in order to resemble the coefficients in Theorem 1 in 
[7]. 
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We have already shown that 

c 

X{e) ig) e =J2 (or^ ®Dx®Xo - D2® XQ\ 
• :0 

c - l 

- Yl {or^"^ ®Di®Xo- Xo) , (5.33) 

de i=0 j = 0 

j=0 

where, like in the previous section, we denote for x,y 6 R'' the conventional 
component-wise difference of x and y by x — y, their conventional component­
wise addition by x + y and interpret the symbol ^ accordingly. Recall that 

which gives 

d 

A(0) ® e = D2®Xo-Xo, 

\{e) ® e = - c A(0) ®e - D2®Xo 
e=o 

+Y^ D^-^ ®Di®Xo ~Y1 ^T^"^ ®DI®XQ. (5.34) 

It is easily checked that 

c c—1 

j=o 3=0 

Inserting the above equality into (5.34) we obtain 

A(6') ®e=D^ ®Di®Xo - D2®Xo - cA(0) ® e . 
d_ 

de 

Using the fact that D2® XQ = A(0) ® XQ, which can be written as D2 ® XQ 
A(0) ® e -t- XQ, we obtain 

de 
\{e) ® e =D^ ®Di®Xo-Xo-{c+ l)A(O) ® e , (5.35) 

0=0 

which is the explicit form of the first-order derivative of the Lyapunov exponent 
at ^0 = 0 as given in [7]. 

For example, let cr = 1 and a' = 2. The matrix 

Do = 

fle2e\ 
l e e s 
e e e e 

\e e 2 eJ 
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has eigenvalue A(D2) = 1, and coupling time c{D2) = 4, see Example 2.1.1. It 
is easily computed that 

/ 4 4 5 4 \ 

( ^ 2 ) ' = 
4 4 5 4 
3 3 4 3 

\ 4 4 5 4 / 

The eigenspace of Z?2 is given by 

f h) /̂ Â / i \ 1 
^^^^^-\\:: G Riax 3a G R : 

X2 

X3 
= a ® 1 

0 
[ \x,J \x,J \lj J 

see Theorem 2.1.2, Hence, Equation (5.35) reads 

d 

d9 
A(6l)®e = 

/ 4 4 5 4 \ 
4 4 5 4 
3 3 4 3 ® 

/ I e 2 £^ 
1 £ £ £ 
£ e 2 £ 

® 
1 
0 

1 
0 

\4 4 5 4j \e e 2 ej \lj \lj 

-0 1 
0 

- 5(8)e 

\y VJ 
= 1 (8>< " 7 

> , 

- 5 ® e 

which implies that 

x{e) = 1 
9=0 

Remark 5.3.1 The coupling time of D2 is of key importance for the above 
expressions for the derivative of X{9) at 6 = 0. Unfortunately, there are no ef­
ficient algorithms for evaluating the coupling time of a matrix. In particular, 
determining the coupling time of large matrices poses a serious problem. How­
ever, inspecting the above formulae for the derivative of \{9), one observes that 
the explicit knowledge of the coupling time can be avoided. We will explain this 
in the following. Starting point is the representation in (5.35). Notice that 

(c + l)A(O) ® e = Dl+^ ®Xo - XQ, 

which implies 

(c + l)A(O) ® e + Xo = Dl+^ ® Xo . 

Inserting the above into (5.35) yields 

de \[e) ®e = D^®Di®Xo - £12 ® ^0 
)=o 
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For j > 0, let 

X(j) = D{®DI®XO and Y{j) = D{+'' ® XQ . 

Under the general assumptions, the eigenspace of D2 reduces to the single point 
Xo in IPK Ĵjax ^^'^ ^^ denote the number of transitions until X{j) = Y{j) = XQ 
by T, or, more formally. 

r = i n f { j > 0 : X( j ) = F ( j ) = X Q } 

This implies 

I>2 ® -Dl ® ^0 

Hence, 
d 
de (>—( 

- Dl^' 

m = 
1 

Note that T < c. Provided that X{j) = Y{j) = XQ, it holds that 

D^ ® X{j) - D^ ® YU) = XU) - Y{j), fc > 0 . 

® Xo = DJ ® -Di ® Xo - Z)2 ® -D2 ® Xo . 

DJ ® Z?! » Xo - DJ ® D2 ® Xo 

and we obtain a representation of dX/dO that is independent of the coupling 
time. Moreover, the above representation can be implemented in a computer 
program in order to compute the derivative with a sequential algorithm. To see 
this, recall that efficient algorithms exists for computing an eigenvector of a max-
plus matrix (see Section 2.1), and an eigenvector is the only input required for 
computing r. Following the above line of argument, representations for higher-
order derivatives avoiding the explicit knowledge of the coupling time can be 
obtained as well. 

5.4 Stationary Waiting Times 

In this section we turn to the analysis of stationary waiting times. In particular, 
we will provide a light-trafRc approximation for stationary waiting times in open 
queuing networks with Poisson-A-arrival stream. By 'light-traffic approximation' 
we mean a Taylor series expansion with respect to A at A = 0. Note that A = 0 
refers to the situation where no external customers arrive at the system. 

Here 'A' stands for the intensity of a Poisson process, which is in contrast to 
the previous sections where A denoted the Lyapunov exponent. Both notations 
are classical and we have chosen to honor the notational traditions and speak 
of a Poisson-A-process instead of a Poisson-^-process, which would be the more 
logical notation in the context of this monograph. Specifically, since 'A' is the 
parameter of interest in this section we will discuss derivatives with respect to 
A rather than with respect to 6. 

We consider the following situation: An open queuing network with J sta­
tions is given such that the vector of beginning of service times at the stations, 
denoted by x{k), follows the recursion 

x{k + 1) = A{k) ® x{k) ® r(fc -1-1) ® B{k), (5.36) 
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with xo = e, where Tfc denotes the time of the k*'^ arrival to the system; see equa­
tion (1.15) in Section 1.4.2.2 and equation (1.28) in Example 1.5.3, respectively. 
As usually, we denote by O'Q(A;) the A;*'* interarrival time, which implies 

k 

r(fc) = ^ ( T o ( i ) , k>l, 

with r(0) = 0. Then, Wj{k) = Xj{k) — T{k) denotes the time the k*'^ cus­
tomer arriving to the system spends in the system until beginning of her/his 
service at server j . The vector of A;*'' waiting times, denoted by W{k) = 
{Wi{k),..., Wj{k)), follows the recursion 

W{k + 1) = A{k)®C{ao(k + l))®W(k)®B{k), fc>0, (5.37) 

with W{0) = XQ (we assume that the queues are initially empty), where C{h) 
denotes a diagonal matrix with —/i on the diagonal and £ elsewhere, see Sec­
tion 1.4.4 for details. Alternatively, Xj{k) in (2.30) may model the times of the 
fc"* departure from station j . With this interpretation of x{k), Wj{k) defined 
above represents the time spend by the k*'^ customer arriving to the system 
until departing from station j . 

We assume that the arrival stream is a Poisson-A-process for some A > 0. In 
other words, the interarrival times are exponentially distributed with mean 1/A 
and {Tx(k)} is a Poisson-A-process, or, more formally, T\{0) = 0 and 

k 

nik) = Ylo-Q{i), k>l, 

with {ao{k)} an i.i.d. sequence of exponentially distributed random variables 
with mean 1/A. 

Throughout this section, we assume that ( W l ) and (W2) are in force, see 
page 87. Moreover we assume that 

( W 3 ) ' The sequence {{A(k), B"{k))} is i.i.d. and independent of {n(A;)}. 

See (W3) for a definition of S«(A;). Whenever, W{k) = B{k - 1), the /fc*'' 
customer arriving to the system receives immediate service at all stations on 
her/his way through the network. Suppose that W{m) = B{m— 1). From (5.37) 
together with (W3) ' it follows that {W{k) : k < m) and W{k) : k > m} are 
stochastically independent. The first time that W(k) starts anew independent 
of the past is given by 

7A = inf{ k> 1: W(k) = B{k - 1) } 

and we call {W{k) : 1 < fe < 7A} a cycle. Condition ( W l ) , (W2) and (W3) ' 
imply that {W{k)} is a regenerative process, see Section E.9 in the Appendix 
for basic definitions. 
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5.4.1 Cycles of Waiting Times 

Let (j) be some performance characteristics of the waiting times that can be 
computed from one cycle of the regenerative process {ly(fc)}. A cycle contains 
at least one customer arriving at time T\{\) and we call this customer initial 
customer. This customer experiences time vector B(0), that is, it takes the 
initial customer Bj (0) time units until her/his beginning of service at station j 
and Bj{Q) = e if the customer doesn't visit station j at all. This property is not 
obvious and we refer to Lemma L4.3 for a proof. A cycle may contain more than 
just the initial customer and these customers are called additional customers. 
The number of additional customers in the first cycle, denoted by I3\, equals 
/9A = 7A ̂  1- III words, on the event {P\ = rn), the cycle contains one initial 
customer and m additional customers. The (m + 2)"'^ customer experiences thus 
no waiting on her/his way through the network and she/he is the initial customer 
of a new cycle. Observe that for any max-plus linear queuing system, Px is 
measurable with respect to the cr-field generated by {{T\{k + 1), A{k), B{k))'). 

By conditions ( W l ) — (W3) ' , it holds with probability one that 

VA : 0 < A < A o = » Px{k) < Px„{k) , k>0. (5.38) 

The reason for this is that, for A < AQ, the 'A' system is visited by less customers 
than the 'AQ' system and waiting times are thus smaller. For a rigorous proof of 
this statement use the fact that any finite element of A{k) and B{k) is positive 
and that W{k) is thus monotone in Tx{k), see (5.37), and that Tx{k) is monotone 
decreasing in A. 

The fact that (j) only depends on one cycle can be expressed as follows: 

,j>,iW {!),..., W{px +I)) 

= E 9iW{k)) 
fc=i 

= <Pg{{Tx{k) : 1 < fc < /3A + 1}, {{Aik), Bik)) •.0<k< M) 

^^'M{rx{k)}), (5.39) 

where g : [0, oo) —» R is some measurable mapping. For example, (pg may yield 
the accumulated waiting time per cycle. Observe that 4>g depends on A only 
through {Tx{k)} and Px-

Notice that {W(A;)} depends on {Tx{k)} only through the interarrival times, 
see (5.37). We have assumed that {Tx{k + 1) — Tx{k)} constitutes an i.i.d. se­
quence. Hence, we may as well assume that the initial customer arrives at time 
zero and set W{1) = 5 (0) . In other words, we shift the arrival process by 
(To(l) to the left so that T;^(1) = 0 a.s. The arrival process thus describes only 

def 
the additional customers and the cycle performance becomes 4>g{{Tx{k)}) = 
0,({O}U{r,(fc)}). 

In the following we consider i^j for the truncated arrival processes. Suppose 
that the initial customer is the only customer who arrives, that is, Px = 0 and 
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{Tx{k) > 0 : 1 < A; < /?A} = 0. In this case, the cycle performance equals 

<P<,m = giWil)) = 9 (5 (0 ) ) , (5.40) 

which stems from the fact that it takes the initial customer Bj{0) time units 
until beginning of her/his service at station j . If the arrival stream contains in 
addition to the initial one an extra customer, and if this additional customer 
arrives at time r > 0, we set 

W{2; T) = ' ^(1) ® C ( T ) ® W^(l) 9 5(1) . 

For vectors x and y, write x > y ii Xi > yi for all elements and if there exists at 
least one element j such that Xj > yj. With this notation, we obtain 

<^g(r) = 5(5(0)) + lwi2;r)>B(i)g{Wi2;T)) , 

where ^(5(0)) refers to the initial customer. The indicator mapping in the 
above equation expresses the fact that W{2;T) only contributes to the cycle 
i f W ^ ( 2 ; r ) ^ 5 ( l ) . 

More generally, suppose customers arrive from the outside at time epoches 
T i , . . . , Tfc, with 0 < Ti < T2 < • • • < Tfc < 00 and fc > 1, then the waiting time 
of the customer arriving at Tk is given by 

W{k + l;Ti,...,Tk) = A{k) ^ C{Tk+i - Tk) ®W{k;Ti,... ,Tk-i) ® B{k) 

and it holds that 
k i 

(l>g{Tl,...,Tk)=g{B{0)) + ^g{W{i + l;Ti,...,Ti)) Y[lw(j+l•,r^,...,Tj)>B{j) • 

Example 5.4.1 Consider the M/G/1 queue. For this system we have 5(0) = 0 
and ¥.[g{W{l))\ = g{0); the arrival times of customers are given by the Pois-
son process {Tx{k)} and T\{k + 1) — Tx{k) follows thus an exponential distribu­
tion with rate A. Assume that the service time distribution has support [0, oo) 
and denote its density by f^. The values E[PV(2;n(l))] , E[W{3;TX{1),TX{2))] 
and E[H^(4;r(l),T(2), r(3))] are easily computed with the help of the explicit 
formulae in Section 5.1.3.1. To see this, recall that we have assumed that the 
interarrival times are i.i.d. exponentially distributed with mean 1/A. Hence, 

nM-rxim^m + mw(2;r,(i))>og{w{2;Tx{m] 
poo poo 

= 5 ( 0 ) + / / g{s-a)f^(s)\e-^''dsda, (5.41) 

Jo Ja 

E[,^ , ( r , ( l ) ,n(2)) ] 

= p(0)+E[lH.(2;r.(l))>05(W^(2;r(l)))] 
+ E [lw(3;rA(l),rA(2))>olu'(2;TA(l))>0 9(1^(3; Tx{l), TA(2)))J 

/•OO /»oo /•oo /•oo 
= g ( 0 ) + A M / / / {g{8i + 82 - ai - a2) + g{si - ai)) 

Jo Jo Jai+aiJo 

xf^{s2) f^isi) e-^("^+"') ds2 dsi da2 dai 
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/•oo roo pax-\-a2 f'OO 

+A^ / / / / (5(^1 + S2 - ai - 0,2) + g{si - ai)) 

xf{s2) fisi) e-^("^+"'' ds2 dsi do2 dai (5.42) 

and 

E[Mn{i),n{2),T,i3))] - 5(0) 

= E[lw(2;r,(l))>0 9{Wi2,Tx{l))) 

+ l w ( 2 ; r A ( l ) ) > 0 l v i / ( 3 ; r x ( l ) , T A ( 2 ) ) > 0 5 ( W ^ ( 3 ; T A ( l ) , T A ( 2 ) ) ) 

+ W ( 2 ; r A ( l ) ) > 0 l w ( 3 ; T A ( l ) , T i ( 2 ) ) > 0 iw{4;r^il),rx(2),rx(3))>Q 

xgiWi4;Txil),Tx{2),n{3)))] 

noo POO roo /-oo 

JQ JO JO Jai-{-a2+a3 
/'OO 

/•oo 

/ h(Si,S2, 5 3 , « 1 J ^ 2 , ^ a ) ^ 5 3 d S 2 C^^l ^^^3 ^^12 C^«l 

/•oo /-oo /*oo / ' a i + a 2 

+ / / / / 

f 
• / a i 

/»oo 
/ /i(si) S2) 53, a i , a2, as) ^53 ds2 dsi da^ da2 da\ 

Jo 

/>oo poo /*oo /"a 

Jo Jo Jo Jai 

F 
^ ax 

I 
J a 

i + a 2 + a 3 - S i 

/o 

/>oo /'OO /*oo / • a i + a 2 

+ 
Jo Jo Jo Jai 

fai+a2+a3~si 

1 + 0 2 - S i 

0'l+a2+a3 — si~S2 

h{si, S2, S3,ai,a2,a3)ds3 ds2dsi dazda2 da\ 

f'OO /-oo /"OO / • a i + a 2 + a 3 

+ , , , , 
1 + 1 2 

/•OO /-OO /"OO /.a 

- /o Jo Jo Jai 

f + a 2 + a 3 —Si 
/•oo 

/ /^n(si, S2, S35 tti, a2,a3) dsa ds2 (̂ Si c?a3 da2 dai 
Jo 
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/•oo ^oo ^oo / -o i+aa+ag 

+ 
/•oo /-oo POO rai+a 

Jo Jo JQ Jai-\-a2 

I 
Jo 

a i + a 2 + a 3 —SI 

Ja ai+a2+a3 — si—s2 

xhii (*i) *2, S3,oi,a2, as) dsa ds2 dsi das da2 dai , 

(5.43) 

with 

h{si,S2,S3,ai,a2,a3) = {g{si + S2 + S3 - tti - 02 - as) + 

+ gisi + S2-- ai- fl2) + ff(si - ai)) 

X /^(S3) /^(S2) f{si) A3e-^(«>+-^+«3) . 

A basic property of Poisson processes is that a Poisson process with rate 
0 < A < Ao can be obtained from a Poisson-Ao-process through thinning the 
Poisson-Ao-process in an appropriate way. Specifically, let {T\g{k)} denote a 
Poisson-Ao-process and define {T\{k)} as follows: with probability A/AQ an el­
ement in {TAo(fc)} is accepted and with probability 1 — A/Ao the element is 
rejected/deleted. Then, {Tx{k)} is a Poisson-A-process. In order to make use of 
this property, we introduce an i.i.d. sequence {Yx{k)} as follows 

P{Yx{k) = l) = MA(1) = A = i-PiYxik) = 0) = nx{0). 
Ao 

Given {Y\{k)}, let {TXo{k)\Yx{k)} denote the subsequence of {TXg{k)} con­
stituted of those TXo{k) for which Yx{k) = 1, that is, the m*'^ element of 
{'rXoik)\Yx{k)} is given by 

rx„(n) if n = i n f | f c > l : X ^ F x ( 0 = m i , 

and set 
M{rXo{k)},{Yx{k)}) = M{no{k)\Yxik)}) . 

By (5.39), 4>g depends on {Yx{k)} only through the first Pxo elements: 

M{rxo{k)},{Yx{k)}) = < ,̂( {n„(A:)}, (FA(1) , . . . ,FA(,9A„)) ) • 

Remark 5.4.1 Notice that 'thinning' only affects additional customers. The 
reason for this is that with positive probability all customers of a cycle may 
be rejected. Obviously, a cycle has to contain at least one customer and we 
guarantee that the 'A' version of the cycle obtained by thinning contains at least 
one customer through excluding the initial customer form thinning. 

The resulting cycle is a legitimate sample of the first cycle under A. To see 
this, notice that W(k) depends on TX only through the interarrival times and 
that the thinning decisions are i.i.d. by (W3) ' . 
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Thinning the Poisson-Ao-processes according to {Yx{k)} yields 

nuirximiPxo] 
=^E[U{rXo{k)},iyx{l),..-,Yx{M))\Px,] 

E M{rxoik)},v) 

= E 

PXo 

1 ^ (l^gi{noW},V) XMA*°('?1,---:»?/3XO) 

.t;e{0,l}''-^o 

Pxo 

where 

MA(»?I. • • • , % ) = n^^^''*^)' 
fc=l 

for 7? 6 {0,1}' ' . 
The measure fxx is oo-times R^-differentiable, with R^-derivative 

M1^^ 
-^0 

(5.44) 

and no higher order R^-derivative is significant, see Example 4.1.2. Moreover, 
fix is R^-analytic on [0, AQ], see Example 4.6.2, and our product rule implies 
that n m = i A'A is R^-analytic on [0, AQ] as well. 

For the following we need an additional technical assumption: 

(W4) Constants co,ci,p 6 [0,oo) exist such that 

M{rXoik)})\ <co + cApx 0 ''"Aod^Ao) ) ^•^• 

Example 5.4.2 Denote by 4nd the accumulated waiting time per cycle in a 
G/G/1 queue, then 4>i4 satisfies (W4) for p = 1. Indeed, any waiting time has 
to he smaller than the cycle length TX{PX) o,nd there are Px non-zero waiting 
times in a cycle; hence, 

14>id{W{l),..., Wipx + 1)) I < PxTxiPx) a.s. 

and because 

T/s^iPx) < T0^g{Pxo) and Px < Pxo as-

condition (W4) is satisfied for (pid. 



250 Taylor Series Expansions 

For ease of exposition, we assume in the following that CQ = 0 and ci = 1. 
Applying the product rule of ^-differentiation, see Lemma 4.2.1, yields for any 
m> n 

dA" 
-E Uirxik)}) /3AO = " i 

dA»' 
E 

j)6{0,l}' '*o 

Pxo =rn 

E 2^ 2^ Xn 
leCll,pXg;n]i€J[l] 

1 n! 

/3AO 

E '^9({n„(fc)},77) 
7,S{0,l}''^o 

xn(^A""^(^^)-A'^'^''fe)) 

= E 

fc=i 

i6£[l,/3>,„;n]ieX[il ° ^6{o,l} ' '^o 

Pxo = " » 

/?Ao = W 

where the last equality stems from the fact that only the first order derivative of 
IJ,X is significant, that is, Ik £ {0,1}. For m < n, the above n*^ order derivative 
equals zero. 

Remark 5.4.2 Because only the first order derivative of ix\ is significant, 
C[l,P\g;n] = 0 if Pxg < n. Indeed, the set C[l,(3xa\n\ contains those I G 
{0, l}''-^o that satisfy Ylk^k = n, which already implies that I has at least n 
elements. In words, the derivative only contributes on the event {Px^ > n} and 
is otherwise zero. 

For any / € C[\,PxoM and i G l[l], the measures rifcLVi' '" ' ' ' ' and 

rifcii l^x''''' s^^^^ the mass of the vectors 77. More specifically, let Z G £[1, /3A„ ; n] 
and i G X[l], if Ik = 0, then the fc*'' point of the Poisson-Ao-process is accepted 
with probability A/AQ and rejected with probability 1 — A/AQ; whereas if Ik = 1, 
then the k*^ point is always accepted if i^ = 1 or i^ = 1 and the point is always 
rejected if ik = —1 or i^ = —1. Observe that for I G C[\,l3xa;n] and i G T[l] 

the measures Ilfcii MA '''° ^'^^ Wk'^i MA *' '̂ '̂̂  accept at most Pxo points. By 
(W4), it holds for any 7? G {0, l}''^o 

\U{rx{k)],v)\ < {PxoTx,{Px,)y 
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and we obtain for the absolute value of the n*'' order derivative: 

dA" 
-E Mirxik)}) Pxa =m 

1 

An 
E E E " ' E M{rXo{k)},v) 

fc=l 
^Ao = ' ^ 

< T - n E Y^ E"'(/3A„rA„(/3A„)) ' 
/e£[i,/3Ao;"HeiW 

/3AO = W 

The set J[l] has at most 2" ^ elements and 

E "! ^ (̂ Ao)" 
/e£[l,/3Ao;n] 

see Section G.5 in the Appendix. Hence 

d" 
dX' 

-E '9i{rx{k)})\/3x, = m 

2 
< 

From the above we conclude that 

is a sufficient condition for 

(5.45) 

E dA" 
E ji{rx{k)})\Pxo=m PiPxo = m) 

to be finite, and applying the dominated convergence theorem yields 

- r ; - E 
dA» 

- _ ^ 
" dA" 

OO 

= E 

Ml-rxik)}) 

OO 

E i E 

- ^ E 
dA" 

M{rxik)}) 

Mirxik)}) 

Px, 

Pxo 

= m 

= m 

PiPxo = m) 

î (/3A„ = m ) , (5.46) 
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inserting the explicit representation for the n order derivative gives 

= E E 

fc=l 

Pxo = 'm PiPxo = m), 

basic probability calculus now gives 

E E E E ^ E MinMU) 

/e£[l,/3>,„;n]i6X[/] ° ^e{0, l} ' '^0 

fc=l = E E E ^ E u{rxo{k)U) 
leCll,0^„;n]i€Xll] ° ^ e { 0 , l } ' ' ^ o 

/5xo 

fc=l 

:E 2^ 2-j \n Z_/ 

/5AO 

A{rXoik)},v) 

xn(/̂ '̂"'fe)-M '̂̂ "̂ (̂ )̂) 
fc=i 

/ ?Ao>" ^(^Ao > n) , 

where the last but one equality follows from the fact that the expression for the 
derivative only contributes on the event {f3xo ^ '^}i see Remark 5.4.2. 

The above analysis leads to (the first part of) the following theorem. 

Theorem 5.4.1 Under assumption ( W l ) — (W4) , suppose that for n G N ii 
holds that 

E[C^AO(/?A„)] <OO. 

Then, for any A with 0 < A < Ao, El4>g{{Tx{k)})] is finite and it holds that 

dA' :E M{rxim 

E E 12^11 M{rXo{k)},v) 

/3x 

n {t^t^'^Vk) 
k=l 

i^t''\m)) 
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//, for 0 < Ao, a number rxg > p exists such that 

E[T^^(/3A„)e''^o/'xo] < cx), 

then the Taylor series for E Mirxim exists at any point A G (0, AQ) and 

the radius of convergence of the series is at least |Ao(rAo ^ p ) -

Proof: Finiteness oiE[4>g{{Tx{k)})] follows from (W4). It holds that 

EA M{rxm) = X^ E[0,({r,(fc)})|/?,„ = m] PiPxo = m) 

As a first step of the proof, we show that E [<f>gi{{Tx{k)})\ Pxg = m] is analytic. 
Writing E[(f>g{{Tx{k)}) \ Pxo = m] &s a Taylor series at A, with 0 < A < AQ, gives: 

EiiAi" 
n = 0 

d\ 
-E[<Pgi{Tx{k)})\Pxo=m] 

(5.45) ^ 1 
< y"—|A|"2"E m n+p 

— ^AoM 

= E 

E 

• ^ 1 m " + P 

^ ^ n ! ' ' AS ^°^ ' 

Tl^{m)mFYl, 

\ n Ao 

n+p 

n 
0 

1 / 2 l A | m \ " 

n = 0 
n! V Ao 

PXa = W 

Pxo = rn 

Pxo =rn 

[ 2 |A|m I -| 

Tl{m)mPe 'o \Pxo=m\ 
< E rlMei"^'-^)' Pxo^^rnl , (5.47) 

where the last inequality stems from the fact that for m > 1 it holds that 
m^ = gMmjp < gmp gy assumption, the expression on the right-hand side of 
the above series of inequalities is finite provided that 

or, equivalently, if 

2|A| ^ 
Ao 

|A| < ^ ^ ( ' ' A o - P ) 

Hence, E ['f>gi{Tx{k)})\ Pxo = ™] can be written as a Taylor series at any A < Ao. 
The domain of convergence of the Taylor series is (at least) the entire interval 
(Ao - |Ao(rAo - p ) , Ao + l^o{rxo - P) )• 
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For the second step of the proof, we sum the Taylor series expansions for 
TO. For |A| < |AO(T'AO •" P)) the bound for the Taylor series conditioned on the 
event {/3o = TO} in (5.47) satisfies 

OO r > V 

m = 0 
P\o = " l P{P\o =rn) < OO 

and interchanging the order of summation and differentiation is justified in the 
following row of equations, see Theorem G.4.1 in Section G.4 in the Appendix: 

EA 

OO 

= ^ EA [UirxikmPx, = m\ P{pXo = m) 
m—1 

OO OO , „ 

= E E ;n^"7i;rE [< .̂({n(fc)})l/3Ao = m] P(/3A„ = m) 
m=l n=0 rfA" 

" " 1 W " 

= E ;^^" E ^ l E [0g({r,(fc)})|/?,„ = TO] P(/3,„ = TO) 
n—0 771=1 

n=u 

where the last equality follows from (5.46). This concludes the proof. D 
We now turn to the application of the above results to waiting times. Let TTX 

denote the stationary distribution of W{k) provided that the arrival stream has 
intensity A. We write E^^ to indicate that the expectation is taken with respect 
to TTx. Under conditions ( W l ) — (W3) ' , a sufficient condition for the existence 
of a unique stationary distribution is that A < a, see Theorem 2.3.1. It follows 
from renewal theory that 

(5.48) 

where 

^-[^(^)1 = E [ / J ^ / 

/9A + 1 

X; g{W{k)) = <p, 
fc=l 

• /9A+ 1 

E 9{W{k)) 

Mfc)}). (5.49) 

Theorem 5.4.1 provides sufficient conditions for differentiability of 

E [Ef i t^f lW^e^))] - Moreover, setting 

(3x = M{rx{k)}), (5.50) 

we obtain sufficient conditions for differentiability of E\/3x] as well. If Theo­
rem 5.4.1 applies, we can, in principle, expand the left-hand side of (5.48), that 
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is, the stationary waiting time, into a Taylor series. Unfortunately, due to the 
fact that E ĵ̂  b(W^)] is given through a fraction whose numerator and denomi­
nator both depend on A, higher-order derivatives are too complex to be of any 
practical use. However, when a light traffic approximation is considered, the 
individual derivatives have a surprisingly simple representation. 

5.4.2 Light Traffic Approximat ion 

In the previous section we studied (higher order) derivatives evaluated at a 
point A that had to lie between 0 and a predefined reference point AQ. Instead of 
derivatives we could have considered left sided derivatives in the above analysis 
and in the Taylor series expansion we would then have replaced higher order 
derivatives by their left sided counterparts. The resulting theorem is stated 
below. 

Theorem 5.4.2 (Theorem 5.4-1 revisited) Assume that assumptions ( W l ) — 
(W4) are satisfied, and denote the maximal Lyapunov exponent of {A{k)} by 
a. For any A with a > A > 0 the following holds: If a number r\> p exists such 
that 

E [rr(/9A)e'-^''^] < 00 . 

then 

E 4>g{{rx+A{k))) 

dX" M{rxm) 

+ 
1 rX+A 

{X + A-t)' 

A" 

dA''+i x=t 
Mirxik)}) dt. 

where |A| < hX{r\ —p). 

The expected stationary waiting time can be expressed via expected values 
taken over the first cycle of waiting times, see (5.48). Theorem 5.4.2 applies to 
the numerator and the denominator appearing on the right-hand side of (5.48). 
Hence, the Taylor series for the stationary waiting at A exists and letting A tend 
to zero in the Taylor series yields a so called light traffic approximation of the 
stationary waiting time. Light traflac approximations of stationary waiting times 
in open max-plus linear queuing systems have been intensively studied in the 
literature. Let Wi denote the i*^ component of the vector of stationary waiting 
times. The pioneering paper on light traffic expansions for ElW ĵ] is [17], where 
sufficient conditions for the existence of the light traffic approximation for E[Wi] 
are established and the (first) elements of the Taylor series are computed ana­
lytically. These results have been extended in [16] to E[/(W^j)], where / belongs 
to the class of performance measures T, where h & !F ii h : [0, oo) —y [0, oo) and 
h{x) < cx'^ ioT X >0 and iv e N. In [5] expansions are obtained for E[/(Wi, Wj)], 
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for / : [0,oo)2 -> [0,oo) with f{x,y) < cx^^x"" for x,y > 0 and Ui,i^2 e N. In 
[3, 4], explicit expressions are given for the moments, Laplace transform and 
tail probability of the waiting time of the n*'' customer. Furthermore, starting 
with these exact expressions for transient waiting times, exact expressions for 
moments, Laplace transform and tail probability of stationary waiting times in a 
certain class of max-plus linear systems with deterministic service are computed. 

In the remainder of this section we will provide a heuristic approach to light 
traffic approximations. To begin with, we will discuss light-traffic approxima­
tions of the cycle performance. As it will turn out, the elements of the light traffic 
approximation are closely related to the variables W[Tn; i j , 12, • •• ^ik] introduced 
in Section 5.L3.1. 

According to Theorem 5.4.1, we have to compute 

lim T T - E A 

= lim — E 
MO A" 

73A+ 1 

E 9iW{k)) 
, fc=i 

E E E M{rxik)U) 
leC[l,0x;n] ieJV] r,e{0,l}l^>. 

0x 

X 

fc=l 

n {f^t''\m) - ^t'^\vk)) 

for 4>g as in (5.49). The random variable in the above expression for the n*'' 
order derivative only contributes if /9A > n, which stems from the fact that 
£[1, Px; n] = 0 for f3\ < n (see Remark 5.4.2). Letting A tend to zero implies that 

f3x tends to zero. Hence, the measures nfc=i A*A'""'^(%) and Yikti f^x'"'^'' iVk) 
converge to point masses as A tends to 0. Specifically, /i)^' becomes the Dirac 
measure in 1 and /i^ '~ ' becomes the Dirac measure in 0, see (5.44). Note that 
£ [ l ,n ; n] = { ( 1 , 1 , . . . , 1)} and let 1 denote the vector in R" with all elements 
equal to one. For A sufficiently small, it holds 

E En/^1'^'^^(-)«E flt^i'''\-) 
leC[l,0>,;n]ieX[l]k=l i€l[l] fc=l 

ieX[l] k=l 

and 

0x 

E En^r^"*(')«En^r^-) 
leCll,0x;n]ieIll]k=l i6l[l] fc=l 

= E n(\-=i'5i(-)+k-=-A(-)). 
te i [ i ] fc=i 
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In words, the measures degenerate in the limit to point masses. For i e 2^(1], set 

1 ififc = l, 
Vk{i) = 

0 iiik = -l, 

for 1 < fc < n, and 

J + [ n ] = U Mi)} and I-[n] = ( J Mi)}. 
tei[i] iei-[i] 

Hence, for A sufficiently small, 

lim - r—EA 

d" 

dA" 

n! 

. fc=i 

.fc=i 
EA 

-E 
V€l+[n] l)el-[n] 

(5.51) 

For example, for n = 1, we have 2'"'"[1] = {1} and X~[l] = {0}, which 
implies that 

d 
E 

A=0 fc=i 
-E 0 , ( T A ( 1 ) ) - <^,(0) 

for A sufficiently small, where (pg{0) evaluates a sample path where the cycle con­
sists only of the initial customer and it holds that </>(,(0) = g{B{0)), see equation 
(5.40). It thus remains to calculate the term E[(l)g{{Tx{l)})]. This term describes 
the following experiment. At time zero an initial customer enters the system and 
an additional customer arrives at time ^ ( 1 ) . This quantity has already been 
computed in the previous section, where it was denoted by W{2;T{1)). For A 
sufficiently small it holds that 

A. 
dX 

E 
A=0 

E aiwik)) 4E[0,(rA(l)) - 0,(0)] 

= -E[ff(B(0)) + lw(2;r,ii))>o9iW{2;T,{l))) - g(B(0))] 

'=vi(i). 
Notice that the event {W{2;Tx{i-)) > 0} in the above equation describes the 
event that the cycle contains W{1) and H^(2). We set 

l imV^(l ) = ^ ' ( l ) , 

provided the limit exists. 
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Example 5.4.3 For the M/G/1 queue, we obtain 

V ^ ( l ) ' ' = " r r g{s - a) f{s)e-^-'ds da . 
Jo Ja 

In particular, if the service times are exponentially distributed with rate ji and 
g G Cp([0,oo)) for some p, then 

V 9 ( l ) = / / g{s-a)fie-'"'dsda. 
Jo Ja 

We now turn to the second order derivative. For n = 2, we have I"*" [2] = 
{(1,1), (0, 0)} and J - [2] = {(1, 0), (0,1)}, which implies that the second order 
derivative is approximated by 

dA2 
A=0 

dA2 

-0X + 1 

3 

> 

M 
, (n( l ) ,Tx(2)) + <^g(0) - Mrxil)) - Mn{2)) 

1W(2;TX(1))>O1W(3;TX(1) ,T^(2) )>0 5(W^(3;n(l) ,rx(2))) 

g{W {2; rx{2)))] 

= ' V « ( 2 ) , 

for A sufficiently small. 

Example 5.4.4 For the M/G/1 queue, a closed form expression for 

E[llV(2;rA(l))>0lM/(3;rx(l),Tx(2))>0ff(W^(3;TA(l),TA(2)))J 

can be obtained via (5.42). We address computing 

(W^(2;r,(2)))]. 

Recall that the sum of two independent exponentially distributed random vari­
ables with mean 1/A is governed by a Gamma-(2, X)-distribution with density 
X^xe'^^ for X > 0. Hence, following (5.41), 

E l 
/-OO /'OO 

>op(iy(2;r (2))) j = A^y J gis - a)a f^is) e'^''dsda . ^W(2;rx{2)) 

In particular, if the service times are exponentially distributed with rate /i and 
g e Cp([0, oo)) for some p, then 

l imVf(2) = VS(2) 
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exists, and it holds that 

/'oo poo />oo 1*00 
V » ( 2 ) = 2 / / / / ff(si+S2-01-02) 

Jo Jo Jai+a2 Jo 

Xfj,'^ e~^^^ e"''*' ds2 dsi da2 dai 
/>oo /-oo /'ai4-a2 /"Oo 

+ 2 / / / / 5 ( 5 1 + 8 2 - 0 1 - 0 2 ) 
Jo Jo J a\ J a\-'ra2 — si 

x/i^ e"'*'! e"''*' ds2 dsi da2 dai 

- 2 / / g{s - a)aiJ,e''^^ dsda . 
Jo Ja 

For the third order derivative, first observe that 

I+[3] = {(1,1,1) , (1,0,0) , (0,1,0) , (0,0,1)} 

and 

2:-[3] = {(1 ,1 ,0) , (1 ,0 ,1) , (0 ,1 ,1) , (0 ,0 ,0)} . 

The third order derivative is evaluated through 

d\^ 
E 

A=0 

/3A + 1 

fc=i 

J5_ 
A3 

E[<^, (n( l ) , rA(2) ,n(3)) + ^ , ( n ( l ) ) + <Pg{rx{2)) + </>S(TA(3)}) 

-0j(TA(l),rA(2)) - 0 ,(TA(l) ,n(3)) - 0,(rA(2),rA(3)) - 0 ,(0)] 

-j^E[^lvV(2;r;^(l))>0 W(3 ;Tx( l ) , rA(2) )>0 W(4;rA(l) , rA(2) , rA(3))>0 

x p ( T y ( 4 ; n ( l ) , n ( 2 ) , n ( 3 ) ) ) 

l w ( 2 ; r A ( l ) ) > 0 W ( 3 ; r x ( l ) , r A ( 2 ) ) > 0 5 ( W ^ ( 3 ; - r A ( l ) , T A ( 2 ) ) ) 

+ 2-W(2;r .( l))>05(W^(2;n(l))) 

+ W(2;r.(2))>0ff(W^(2;rA(2))) 

+ lm2ir.(3))>o5(W^(2;n(3))) 

-2- lw(2; r . ( i ) )>o9(W^(2;n( l ) ) ) 

-lvV(2;r.(2))>0ff(W^(2;n(2))) 

- 1 I V ( 2 ; T X ( 1 ) ) > 0 W ( 3 ; T A ( l ) , r A ( 2 ) ) > 0 5 ( W ^ ( 3 , T A ( l ) , T A ( 2 ) ) ) 

- W ( 2 ; T > , ( 1 ) ) > 0 W(3 ;Tx( l ) , rA(3) )>0 9 ( ^ ^ ( 3 ; Tx{l), Tx{Z))) 

- l w ( 2 ; r A ( 2 ) ) > 0 W ( 3 ; r A ( 2 ) , T A ( 3 ) ) > 0 5 ( W ^ ( 3 ; n ( 2 ) , r A ( 3 ) ) ) J 
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~ ^ E [ l w ( 2 i r ; ^ ( l ) ) > 0 lM'(3;rx(l),r;^(2))>0 ^W(4;rx{l).Tx(2),T>,{3))>0 

xg{W{4;rx{l),rx{2),Tx{3))) 

+ ^w(2;r,m>o9{W{2;rxi3))) 

- 1W(2;TX(1) )>0 W(3;rA(l),rx(3))>0 ff ( W ^ ( 3 ; T A ( 1 ) , ^ ( 3 ) ) ) 

- lw(2;rA(2))>0 W(3;Tj(2),r;,(3))>09(W'(3;TA(2),TA(3)))J 

'= V i ( 3 ) . 

Example 5.4.5 T/ie term 

IE[lvK(2,Tx(l))>0 lw(3;rx(l),T;,(2))>0 1VK(4;TX(1),TA(2),TX(3))>0 

xg(l^(4;rA(l) ,n(2),rA(3)))] 

in the above expression is easily evaluated via (5.43), and, choosing the densities 
appropriately, the other terms can he evaluated via (5.41) and (5.42), respec­
tively. In particular, if the service times are exponentially distributed with rate 
fi and g € Cp{[0, oo)) for some p, then the limit for V^(3) as A tends to zero, 
denoted by V®(3), exists, and can be computed in the same vein as V^{2) and 
V^l ) . 

Generally, we set 

V?(n) I^Mim-^E 
^^ •' Aio dX" 

k=i 

provided that the limit exists. We summarize our discussion in the following 
scheme. 

Light Traffic Approximation Scheme: Assume that assumptions (Wl) — 
(W4) are satisfied. Suppose that for some Ao > 0 it holds that 

for r^o > 0 sufficiently small. Provided that the limit V^(n) exits for n < h, 
the following light traffic approximation exists for E,r;i[g(W)]: 

0x+i 
E 

with rh (A) —> 0 as A tend to zero. 

E 9{W{k)) 
h ^ 

= E ^ V » + r . ( A ) , 

We illustrate the above light traffic approximation by the following numerical 
example. 
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Example 5.4.6 Consider a M/M/1 queueing system with arrival rate A and 

service rate ji, and assume that p = A//i < 
accumulated waiting time per cycle is equal to 

def 
service rate fi, and assume that p = X/p, < 1. For this system the expected 

(5.52) 

To see this, note that the expected stationary waiting time is equal to 

P 

M ( I - P ) ' 

Let {Xn} be the Markov chain describing the queue length in a M/M/1 queue. 
Notice that the arrival of a customer triggers an upward jump ofX„. Start {X„} 
in 0 and denote the expected number of upward jumps of {Xn} until returns to 
state 0 by C, then 

2 C - 1 

which gives 

and using (5.48) equation (5.52) follows. 
The accumulated waiting time is described through the functional (jiid, that 

is, we take g{x) — x in the previous section. Recall that (f>id satisfies condition 
(W4) , see Example 5.4-8. Inserting pe~'^'' for f^{x) in the formulae provided 
in Example 5.4.3 to Example 5.4-5, the first three elements of the light traffic 
approximation are explicitly given by V*(n), for n = 1,2,3. 

The light traffic approximation is given by 

E 
0X + 1 

E 9iW{k)) 
n=l 

For the numerical experiments we set p = 1. Figure 5.15 shows a light traffic 
approximation of degree /i = 3 and Figure 5.16 shows a light traffic approxima­
tion corresponding to h = 5. In both figures, the thin line represents the true 
expected accumulated waiting time and the thick line represents the Taylor series 
approximation. It is worth noting that the light traffic approximations are fairly 
accurate up to p ra 0.3 for h = 3 and p « 0.4 for /i = 5. 

We now turn to light-trafRc approximations for stationary waiting times. 
Under conditions ( W l ) — (W3) ' , a sufficient condition for the existence of a 
unique stationary distribution is that A < a, see Theorem 2.3.1. It follows from 
renewal theory that 

^-[^(^)] = np^f 
•0X+1 

E 9{W{k)) 
.k=l 

(5.53) 
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3.a 3.a 

Figure 5.15: Light traffic approxima- Figure 5.16: Light traffic approxima­
tion of degree /i = 3 for the accu- tion of degree /i = 5 for the accu­
mulated waiting time per cycle in a mulated waiting time per cycle in a 
M/M/1 queue. M/M/1 queue. 

Recall that for g{x) = 1, we can deduce expressions for higher-order derivatives 

of E[Px + 1] from the Taylor series expansion for E [Ef=t^ s(W^(^))] • 

Notice that 
nrnE[/?A + l] = 1, (5.54) 

and, provided that g{B{0)) = 0, 

l imE 
lk=l 

= 0. (5.55) 

We thus obtain for the derivative of E^^[g(lV) 

d 
lim^E.J,(Vr)]=lim-E A. 

Tl'o dX' 
E 9iW{k)) 
fc=i 

= l i m V ? ( l ) . 

Higher-order derivatives are obtained just as easy, where we make use of (5.54) 
and (5.55) to simplify the expressions for the derivatives. We conclude the sec­
tion with a numerical example. 

E x a m p l e 5.4.7 The situation is as in Example 5.4'6 and we consider the ex­
pected stationary waiting time as performance measure of interest; this quantity 
can be computed through 

P 
M i - p ) ' 
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0.1 0.3 0.5 0.7 
P P 

Figure 5.17: Light traffic approxima- Figure 5.18: Light traffic approxima­
tion of degree /i = 3 for the station- tion of degree ft = 5 for the station­
ary waiting time in a M/M/1 queue. ary waiting time in a M/M/1 queue. 

for p = A//U < 1. For the numerical experiments we set fi = 1. 
Figure 5.17 shows a light traffic approximation of degree h = 3 and Fig­

ure 5.18 shows a light traffic approximation corresponding to h = 5. In both 
figures, the thin line represents the true expected stationary waiting time and 
the thick line represents the Taylor series approximation. Notice that the light 
traffic approximation is fairly accurate up to p » 0.35 for h = 3 and p R; 0.55 
for h = 5. 
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Basic Algebra 

Let i? be a non-empty set equipped with a binary mapping 0 . The mapping 0 
is called associative if 

'^a,b,c€ R : aQ {bQ c) = {aQ b) Q c . 

The mapping is called commutative if 

\/a,b e R : aQb = bQa. 

An element z S R is called neutral elem,ent, or, identity for 0 if 

\/a € R : aQ z = z Qa = a . 

If © represents 'addition,' then z is also called a zero element of 0 and if 0 
represents 'multiplication,' then z is also called a unity element of 0 . 

Let 0 ' be another binary mapping on R. We say that 0 is right distributive 
over 0 ' if 

\/a,b,ce R : [aQ' b)Qc = {aQ c) Q' {b 0 c) 

and 0 is called left distributive over Q' if 

\/a,b,ceR : a O (6O' c) = (a 0 c) O' (6 0 c ) . 

An element w € JJ is called absorbing for O if 

V a G i J : aQ u = u . 



Appendix B 

A Network with 
Breakdowns 

In this section, we derive the sample-path dynamic for the model with break­
downs introduced in Example 1.5.5. 

For the first beginning of service^ at the single-server station to take place, 
two conditions have to be satisfied: the customer initially in service has to leave 
the station, which happens at time 0:2(1), and a new customer has to arrive at 
the single-server station. This happens at time 2:4(1) because the first customer 
arriving at the single-server station is the first customer who leaves the multi-
server station. In formula, 

a;i(l) = 0:2(1) ©0:4(1) 

and, by finite induction, 

xi{k) = o:2(A;) ® o:4(A;), k>l. 

The first departure from the single-server station takes place at time a and the 
second departure takes place a time units after the first beginning of service. In 
formula, 

0:2(1) = a and 0:2(2) = a:i(l)®(T. 

Letting 0:2(0) = 0, finite induction yields: 

X2{k + 1) - xi{k) ® a , k>0. 

We now turn to the multi-server station. Following the same line of argument 
as for the single-server station, the departure times at the multi-server station 
follow 

o:4(A; + 1) = X3{k) ®a', k>0, 

^The first beginning of service is triggered by the first customer arriving at the station. 
The initial customer is not considered as an arrival. 
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where we set a;3(0) = 0. 
Consider the multi-server station with no breakdown. The first beginning of 

service occurs at time 3^3(1) = 0 and for the second beginning of service the 
following two conditions have to be satisfied: the first departure from the multi-
server takes place and a new customer arrives from the single-server station. In 
formula, 

xsW = 0 

and 

By finite induction, 

a;3(2) = 0:2(1)® 0:4(1). (B.l) 

xsik + 1) = X2{k) ® Xiik), k>0, 

where we set 0:4(0) = 0. The sample-path dynamic of the network with no 
breakdown is thus given by 

xi{k + 1) = X2{k + 1) © X4{k + 1) 

X2{k + 1) =xi{k) ® a 

xz{h-{- \)=^X2{k)®XA{k) 

X4{k + 1)= X3{k) ® a' , 

for fc > 0. Replacing X2{k+1) and a;4(fc+l) in the first equation by the expression 
on the right-hand side of equations two and four above, respectively, yields 

Hence, for fc > 0, 

xi{k -I- 1) = {xi{k) ® (T) © {X3{k) ® a') . 

xi{k -t-1) = {xi{k) ® (T) ® (xsik) ® a') 

X2{k + l) = Xi{k) ®a 

X3{k + 1) - X2{k) ® X4{k) 

X4{k+ l) = X3{k)®a', 

which reads in matrix-vector notation: 

x{k + l) = ^ e £ £ ^x{k), 

with A; > 0. 
In case a breakdown at the multi-server station has occurred, the first be­

ginning of service at the multi-server station takes place upon the departure of 
the customer initially in service: 

3^3(1) = 2:4(1) . 
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The second beginning of service depends on two conditions: the second departure 
from the multi-server station takes place and a new customer arrives from the 
single-server station. In formula, 

X3(2) = a;2(l)®a;4(2), 

compare with (B.l). By finite induction, 

xsik + 1) == X2{k) ® X4{k + 1) , k>0. 

The sample-path dynamic of the network with breakdown is therefore given by 

xi{k + l)-=X2{k + 1) 0X4{k + 1) 

X2{k + 1) = xi{k) ® a 

X2,{k + 1) = X2{k) ®XA{k + 1) 

X4{k -I-1) = xz{k) ® G' , 

for A; > 0. As we have already explained, the above set of equations implies that 

xi{k -I-1) = {xi{k) (8)0-)® (X3(fc) ® a') . 

Furthermore, replacing Xi{k + \) on the right-hand side of the equation for 
Xz(k + 1) by xz{k) ® a' yields 

Hence, for /c > 0, 

X3{k -I- 1) = X2{k) © (a;3(fe) ® a' 

xi{k -f 1) = ixi{k) ® 0-) ® {X3{k) ® a') 

X2{k + 1) =xi{k) g> a 

X3{k + 1)= X2ik) ® {xsik) ig) a') 

Xiik + 1) = X3{k) ® a', 

which reads in matrix-vector notation: 

x{k + l) = 

/ a s a' e^ 
a £ e e 
£ e a' £ 

\ £ £ a' £ J 

®x{k) 

with A; > 0. 



Appendix C 

Bounds on the Moments of 
the Binomial Distribution 

For p G (0,1) it holds that 

oo 

n=0 ^ 

Taking the derivative with respect to p impHes 

Multiplying both sides by (1 — p) yields 

oo 

n=l ^ ^' 

which is noticeably the first moment of the Binomial distribution. 
For higher moments we derive an upper bound. Starting point is the following 

equation: 

i_y-p» = f - - i - . (c.i) 
(C.2) 

Note that 

and 

m! 
dp™ 1 - p (1 - p)'n+i 

'^ n=0 n=0 

>Y,n"'p"- (C.3) 
n=0 
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Inserting (C.2) and (C.3) into (C.l) yields 

V n ^ r j " < — 
Z ^ ^ P ^ (l-p)m+i ' n=0 

which implies 

n=0 ^ ^' 

Hence, the m*^ moment of the Binomial distribution is bounded by 

(1 - p)™ ' 



Appendix D 

The Shifted Negative 
Binomial Distribution 

Perform a series of mutually independent experiments each of which has prob­
ability of success 0 < q' < 1 and let /?„ = fc describe the event that the n*'' 
success occurred at the k*'^ experiment. Then, the distribution of /?„ — n, that 
is, the number of failures until the n" ' success is called negative binomial distri­
bution. The random variable /3„ is thus governed by a shifted negative binomial 
distribution. 

In the following we will compute E[ (/?„)' ], ior I > 1. The basic equation for 
the shifted binomial distribution reads 

k=n ^ ^ 

P{pn = k) = ( ^ : ; ) ( ! - 9 ) ' - " 9 " , k>n, 

that is, 

which implies 

and 

l e : ; ) " - ' - - r ( 1 - 9 ) l+n 

ior I > 1. Taking the /*'' derivative with respect to q yields 
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Hence, 

j2{k + i){k + i-i).--{k + i)p{p^ = k)=i-iy^^^i^^--^ 

which implies 

E[(A 



Appendix E 

Probability Theory 

E.l Measures 

Let S 9̂  0 be a set. A a-field <S on 5 is a collection of subsets of S with the 
following properties: (i) S & S, (ii) li A e S, then A'^ G S, where yl'̂  = {s € 
S : s ^ A}, and (iii) if Ai G S, for i e N, then (J^^pj^j 6 <S. Let A denote a 
collection of subsets of S. We denote by a{A) the cr-field generated by A, that 
is, the smallest tr-field that contains A. Let {S, T) be a topological space. The 
BOrel field of S, denoted by B, is the cr-field generated by the collection of open 
sets T, in formula: B = CT(T). 

The pair {S,S), where <S is a cr-field on S, is called a measurable space. A 
measure /Li on a measurable space (S,S) is a mapping /i : (S —» R U {—00,00} 
such that for any sequence {An} of mutually disjoint elements of iS it holds that 

0 0 00 

The measure m on {M.,B), where B denotes the Borel field on R, assigning 
m((o, 6]) = 6 — o to an interval (a, 6] is called Lebesgue measure. It generalizes 
the notion of length in geometry and is the case closest to everyday intuition. 

The collection (S, S, fi) is called measure space. A measure fj, is called signed 
if/i(yl) < 0 for some A & S and otherwise it is called non-negative. Furthermore, 
a measure n is called finite if n{A) € K for any A e S. We denote the set of 
signed measures on {S,S) by AI. A non-negative measure /x is called a-finite if 
there exist countably many sets Ai in S such that n{Ai) < 00 and IJ^ Ai = S. 

Let {S, S) and [R, TV) be two measurable spaces. A mapping g : 5 —» i? is 
said to be measurable if for any A G 7?. it holds true that {s ^ S : g{s) & A] & S. 
A measurable mapping is also called random variable. 

Let /u G A^ be non-negative. Then for any measurable mapping 5 : 5 —> R 
the fi-integral of g, denoted by 

<g,IJ'> = 
IS 
I 9{s)ix{ds) 

Js 
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is defined although it may take values in {—oo, oo}. In particular, for any A € S, 

< U , M > = f^iA), 

where 1^ : 5 —» R is defined by IA{S) = 1 for S € J4 and 1A(S) = 0 otherwise. 
For any signed measure /j, € A4 a measurable set 5+ exists such that, for 

any ^ £ <S, it holds that fj.{A n 5+) > 0, whereas iJ,{A n (5 \ S+)) < 0, see, for 
example. Proposition IV. 1.1 in [86] for a proof. The positive part of fj, is defined 
by 

[l,]+{A) = i,{AnS+), AGS 

and the negative part by 

[l,]-{A) = -n{An{S\s;)), AeS. 

The pair ([A']"'"I M ~ ) '^ called Hahn-Jordan decomposition. The absolute measure 
|/u| is defined by |/u| = [/i]+ + [//]". Integration with respect to a signed measure 
is defined by 

< 5, M > = < ff> M"*" > - <9, M " > 

and integration with respect to an absolute measure is defined by 

<g,\ix\> = <g,[tj.]+> +<g,[fi]->, (E.l) 

provided that the terms on the right-hand side of the above formulas are finite. 
The Hahn-Jordan decomposition is unique in the sense that if G is another set, 
such that iJ.{A n G) > 0 and iJ,{A n G") < 0 for any AeS, then iJ,{A n G) = 
/j,(A n 5+) for any A e S. A signed measure /j, & M is finite if [/.t] + (5) and 
[lJ,]~{S) are finite. 

A probability measure fiis a, non-negative measure such that /i(5) = 1 (which 
already implies that /u(0) = 0). If /U is a probability measure on (5, <S), then the 
collection (5, <S,/i) is called probability space. 

Consider cr-finite measures n and i/ on a measurable space {S,S). /i is said 
to be absolutely continuous with respect to v if ^{A) = 0, for AeS, implies 
H{A) = 0. If yU is absolutely continuous with respect to v, then a measurable 
mapping dfi/dv : 5 —» R exists such that 

t^{A) = I ^{s)u{ds), AeS. 

The mapping dfj,/dv is called v-density of fj,, or Radon-Nikodym derivative. 
Let {S, S, (i) and (T, T , u) be probability spaces. The product of fi and v on 

S X T, denoted by /x x i/, is a measure such that 

'iAeS,B€T: {fj,xi^){AxB) = n{A)v{B) 

and Fubini 's theorem states that 

/ f(s,t){nx,y){ds,dt)= f { j f{s,t)n{ds)\v{dt) 
JSxT JT \JS / 

= j^(^j^ns,t)y{dt)^ix{ds), 
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for any measurable mapping / : 5 x T —» K. 
Let (5, <S, ju) be a measure space and p : 5 —> R a measurable mapping from 

(S, S) to (R, 7?.), where 7?. is a cr-field over R. The induced measure of g, denoted 
by /i^, is defined as follows 

^lB{A) = ix[{seS:g{s)€A)}), AeTl. 

The cumulative distribution function (c.d.f.) of a real-valued random variable 
X defined on a probability space {S,S,fi) is the function F : [—00,00] —^ [0,1], 
where 

F(a;) = / i ' ^ ( ( -oo ,a : ] ) , - 0 0 < x < 00 . 

We take the domain [—00, 00] since it is natural to assign the values 0 and 1 
to F ( - o o ) and F(oo). A c.d.f. has the decomposition F{x) = F'{x) + F"{x), 
where F'{x) is positive only on a set of Lebesgue measure zero, and F"{x) 
is absolutely continuous with respect to the Lebesgue measure. The Radon-
Nikodym derivative of F" with respect to the Lebesgue measure exists and is 
called probability density function (p.d.f.). If / is the p.d.f. of the c.d.f. F , then 
it holds that f{x) = dF{x)/dx except for a set of Lebesgue measure zero. 

Let /U be a finite measure on {S,S), where 5 is a locally compact Hausdorff 
space, see any book on functional analysis for definitions, and S contains the 
Borel field on S. The measure /i is called regular if 

niA) = mi{iJ,{U) : U open mS,AGU} , AeS , 

and for any open set U C S it holds 

fi{U) = sup{^(F) : F is compact in S,F cU} . 

E.2 Polish Spaces 

Let 5 be a nonempty set with zero element Os' A norm is a mapping || • || : 5 —» 
[0,00) having the properties (i) 0 < ||a;|| < 00 for a; f̂  Os and ||05:|| = 0, (ii) 
||aa;|| = \a\ \\x\\ for Q e R and (iii) \\x + y\\ < \\x\\ + \\y\\ (triangle inequality), 
for any x,y e S. 

A metric is a mapping d : 5 x 5 —> [0,00) having the properties (i) d{x, y) = 
d{y,x), (ii) d{x,y) — 0 •^ x = y, and (iii) d{x,z) < d{x,y) + d{y,z) (triangle 
inequality), for any x,y,z e S. If (i) and (iii) hold but d{x,y) = 0 is possible 
when X ^ y, we call d a pseudo metric. A metric space {S, d) is a set S paired 
with metric d. 

An open set of {S, d) is a set ^ C 5 such that, for each s & A, 5 > 0 exists 
such that {a: € 5 : d{x,s) < 6} C A. The collection of open subsets of S is 
denoted by T{d). Hence, (S,T(d)) is a topological space. The Borel field on a 
metric space {S,d) is the cr-field generated by T{d). 

A metric is said to be complete if the metric space {S, d) is complete, that 
is, if the limiting point of any Cauchy sequence in S lies in S. If there is a 
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countable collection of open subsets of T{d) such that any open subset of S can 
be written as union of these sets, then T{d) is said to have a countable basis. A 
topological space (5, T) is called a Polish space if (i) its topology is defined by 
a complete metric (that is, there exists a metric d such that T = T{d)) and (ii) 
T has a countable basis. 

E.3 The Shift-Operator 

Many stochastic concepts, such as stationarity or coupling, can be expressed 
through the shift-operator in a very elegant manner. Let {Q,, J^, V) be a proba­
bility space. We call the mapping 0:0,-^0, shift-operator if 

• the mapping 0 is a bijective and measurable mapping from f2 onto itself, 

• the law T is left invariant by 6, namely E[X] = E[Xo0] for any measurable 
and integrable random variable. 

For any n, m e Z, we set 0" o 0™ = 0"+™. In particular, 0^ is the identity and 
^^n^-i _ Q-n gy convention, the composition operator 'o' has highest priority 
in all formulae, that is, X o OY means {X o 0)Y. 

The shift operator allows to define sequences of random variables. To see this, 
let X be a measurable mapping defined on (n,.F) and set X(n, w) = X{9"ui), 
for n G T C Z. Because the law V is invariant, the distribution of X{n) is 
independent of n. This motivates the following definition. We call {X{t) : t e T}, 
with X{t) a K-valued random variable defined on (Q, .F) and T C Z, 9-stationary 
if 

X{t;u>) == X{Si,e*uj) , w G f i , (E.2) 

for any t. We call a sequence X = {X{t) : t € T} compatible with shift operator 
0 ii a version of X exists satisfying (E.2). Moreover, we call X stationary if X 
is compatible with shift operator 9 so that X is ^-stationary. 

The shift 9 is called ergodic if 

1 " 
lim - V X o 6''= = E[X] a.s. , 

n—•oo 71 
fc=:l 

for any measurable and integrable function X : fl -^ K. We call a sequence 
X = {X{t) : t & T} ergodic if X is compatible with an ergodic shift operator. 

An event A & J^ is called invariant if P{A) = P{9*'A) for any t, where 9*A = 
{9*w : ui e A}. Ergodicity of a shift operator is characterized by Birkhoff's 
pointwise ergodic theorem: the shift operator 9 is ergodic if (and only if) the 
only events in .F that are invariant are f2 and 0, see [20]. 

Let X = {X{t) : < € T} be a sequence of random elements on a state space 
S. For m > 1, let Q G 5™ be a sequence of states such that 

{X{t + m-l),X{t + m-2),..., X(t)) = a 
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with positive probability. Define the sequence of hitting times of X on a as 
follows: 

ro = i n f { t > 0 : {X{t + m - 1), X(t + m - 2),... ,X{t)) = a } 

and, for A; > 0, 

Tfc+i = inf{i >Tk + m: {X{t + m - l),X{t+ m - 2),... ,X{k)) = a). 

Result: (Theorem 2.10 in [11]) If X is a stationary and ergodic sequence 
compatible with shift operator 6, then it holds that (i) Tfc < oo with probability 
one for all k, and (ii) limfc_,oo Tfc = oo with probability one. 

E.4 Types of convergence 

Let X,Xn, n > 0, be real-valued random variables defined on a common prob­
ability space (n, J^, P) with state space S and let S be equipped with the Borel 
field. 

E.4.1 Almost Sure Convergence 

The sequence {Xn) converges almost surely to X as n tends to oo if for any 

lim P[ sup \Xm -X\> 5] = 0 , 
"^°° ^ m>n ' 

or, equivalently, 

P{ lim sup \X^-X\ > j ) = 0 

and yet another equivalent condition is that the event 

{ lim X„ = X\ 

has probability one. 

E.4.2 Convergence in Probabi l i ty 

The sequence {X„} converges in probability to X as n tends to oo if for any 
<5>0 

lim P ( | X „ - X | > 5 ) = 0 , 

n—>oo 

or, equivalently, 

lim P(\X„-X\>5) = 0 . 
n--»oo \ / 

Result: Almost sure convergence of {X„] to X implies convergence in proba­
bility of {Xn} to X. On the other hand, convergence in probabiUty of {Xn} to 
X implies a.s. convergence of a subsequence of {Xn} to X. 
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E.4.3 Convergence in Distribution (Weak Convergence) 

Let Cb{M.) denote the set of bounded continuous mapping from S onto R. A 
sequence {/U„} of measures on 5 is said to converge weakly to a distribution fj, 
if 

lira [ fdi^n = [ fdn, / G C b ( R ) . 
"^°° Js Js 

Let fj,n denote the distribution of X„ and fi the distribution of X. If {fin} 
converges weakly to fj, as n tends to oo, then we say that {X„} converges in 
distribution to X. 

Result: Convergence in probabiUty implies convergence in distribution but the 
converse is not true. 

E.4.4 Convergence in Total Variation 

The total variation norm of a (signed) measure /i on 5 is defined by 

sup 
/ECi,(K) L fdfj. 

s 

In particular, weak convergence of a sequence {/u„} of measures on S towards a 
distribution /i is equivalent to 

lim \\jj,„ - nWtv = 0 . 
n—»oo 

Let again /t„ denote the distribution of Xn and fj, the distribution of X. If 
{/L(„} converges in total variation to /U as n tends to oo, then we say that {X„} 
converges in total variation to X. The convergence in total variation of {X„} 
to X can be expressed equivalently by 

lim sup I P{Xn eA)- P{X eA)\ = 0. 

Result: Convergence in total variation implies convergence in distribution (or, 
weak convergence) but the converse is not true. 

E.4.5 Weak Convergence and Transformations 

With the notation of the previous section we now state the continuous mapping 
theorem. Let /i : R —> R be measurable with discontinuity points confined to a 
set Dh, where lJ.{Dh) = 0. If /U„ converges weakly towards fx as n tends to oo, 
then p^ tends to n^ as n tends to oo, or, equivalently, 

lim / J{h{x)) ^in{dx) = / fih{x)) n{dx) , / 6 Cb{R). 

Hence, if {X„} converges weakly and h is continuous, then {h{Xn)} converges 
weakly. 
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E.5 Weak Convergence and Norm Convergence 

Let {S, d) be a separable metric space and denote the set of continuous real-
valued mappings on S by C{S). Let w : 5 —» K be a measurable mapping such 
that 

infw(s) > 1. 
ses ' ~ 

The set of mappings from 5 to R can be equipped with the so-called v-norm 
introduced presently. For g : S —* R, the v-norm of g, denoted by \\g\\v, is 
defined by 

\\g\\v = sup—77-, 

see, for example, [64] for the use of the w-norm in the theory of measure-valued 
differentiation of Markov chains. If g has finite v-norm, then \g{s)\ < cv{s) for 
any s e 5 and some finite constant c. For example, the set of real, continuous 
v-dominated functions, defined by 

def VyiS) = {g e C{S) \3c>0: \g{s)\ < cv{s),Vs e S}, (E.3) 

can be characterized as the set of all continuous mappings g : 5 —> R having 
finite u-norm. Note that C''{S) is a particular •D^(S')-space, obtained for v = 
const. Moreover, the condition that infv(s) > 1 implies that C''{S) C VviS) 

for any choice of v. 
The i)-norm of a measure /j, on (S, <S), with S the Borel-field with respect to 

the metric d, is defined through 

def 
sup 

Il9llv<l 

or, more explicitly, 

In particular, it holds that 

sup 

/ g{s)fi{ds) 
Js 

/ g{s)^i{ds) 
Js 

M\v = J v{s)\n\{ds), (E.4) 

see (E.l). Let {nn} be a sequence of measures on (5, S) and let /i be a measure 
on (5, <S). We say that /x„ converges in v-norm towards p if 

lim ||/Lf„ - ii\\y = 0. 
n—»oo 

It can be shown that the set 'Dy{S) endowed with the v-norm is a Banach 
space. This last remark indicates the following fact: For each measure fi with 
Jv{s)fi{ds) finite, the mapping T^ : 'Dy{S) -^ R defined through 

TM 
def 

/ 
gd^x, 
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is a continuous linear functional on the Banach space X>„(5') and the operator 
norm of T^ satisfies ||T^|| = ||/i||t)- The Cauchy-Schwartz inequality thus holds 
for w-norms, i.e., 

/ 
gis)ij.{ds) < Mv 

for all g € 'Dy{S) and /i such that v is /^-integrable. 
Let {/Xn} be a sequence of measures on {S,S) and let /̂  be a measure on 

{S,S). We say that /i„ converges weakly in !'„(S')-sense towards /x if 

Urn / g{s)Unids) = / g{s)ij,{ds), 

"D (S) 
for all g G 'Dy{S); in symbols /Lt„ = ^ /i. 

R e m a r k E.5.1 Note thatv-norm convergence implies'Dy{S)-convergence. This 
can be seen as follows. According to Cauchy-Schwartz Inequality, for each g € 
•D„(S) it holds that: 

/ g{s)fj.n{ds) - / g{s)ii{ds) = / ff(s)(Mn - lJ-)ids) < llMn - M i k -

Hence, ||/i„ — /x||„ —> 0 implies that the left-hand side in the above relation 
converges to 0 as n ^> oo. 

For a 2?„(5')-differentiable measure //«, !>„ (S')-convergence of the measure 
(A'e+A — fJ-e)/^) as A tends to zero implies v-norra continuity of jjig. The precise 
statement is given in the following theorem, where My{S) denotes the set of all 
measures ^ on {S, S) such that / vd^ exists and is finite. 

T h e o r e m E.5.1 Let{iie]e&e C M^iS) beVy{S)-differentiable ate eQ. Then 
IJ,e+h converges in v-norm to ij,g, as h —* 0, In symbols: lim||^e_|.;i — neWv = 0. 

h—^O 

Proof: Assume without loss of generality that 6 is an interior point of 9 . Thus, 
we can choose A > 0 such that [0 - A, 6* + A] C 0 . Denote by T(h) the linear 
continuous functional on Vy[S) defined as {h ^ 0): 

{T{h))ig) = ^jg{s){ne+h-l^e), 

for all g G Vy{S). The operator norm of T{h) satisfies: 

WfJ-s+h - fieWv 
WTWIU = \h\ 

for all /i / 0 such that \h\ < A. By I>„(5)-differentiability of /ug, for each 
g € Vy{S): 

sup | (T( / i ) ) (5 ) |<oo , 
|h|<A 
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and the Banach-Steinhaus Theorem'^ yields 

sup \\T{h)\\y =M <oo. 
\h\<A 

Thus, 
Wfj-e+h - IJ-e\\v <M-\h\, 

for \h\ < A. Letting h ^ 0, concludes the proof. D 
Recall that we introduced the following notation in Chapter 3. The set of all 

probability measures on (5,<S) is denoted by Mi = Mi{S). Moreover, £^(^e) 
denotes the set of continuous absolutely integrable mappings with respect to fie 
and 

cHi^e-.eee) = f]cHt,e) 

denotes the set of continuous absolutely integrable mappings with respect to /ig 
for any 6 e Q; see the section 'List of Symbols.' 

We assume that S, Z are two separable complete metric spaces endowed 
with the mappings w : 5 —> [l,oo) and u : Z -^ [l,oo), respectively. Let w : 

def 
S X Z —i [l)Oo) be defined as w{s,z) — v{s)u{z). Then we can consider the 
space of continuous mappings on S x Z bounded by w up to a multiplicative 
constant, denoted by V^iS x Z), see (E.3). Furthermore, if /i : 0 —» Mi{S) 
and i^: 0 -^ MiiZ), then P„(S) C r^Mfl • 0 & &) and X>„(Z) C C^{i^e : 6 e Q) 
implies V^{S x Z) C jC^((p x i>)o : 0 e 0 ) ; for a proof use Fubini's Theorem. 

Lemma E.5.1 Let {/Un}n>i C M'"{S) and {t'„}n>i C A4"(.^). ///U„ converges 

in v-norm to fj, and Vn ==> v, then 

V^(SxZ) , V^{SxZ) 
Mn >< f̂ n = * • jJbX V and Vn X Hn ==>• V X fl. 

T) (Z\ 
Proof: Note that !/„ ===> v implies 

(;.„ - v) "HI' O, (E.5) 

where O denotes the null-measure assigning value 0 to any measurable set. 
Hence, in order to prove the first part of lemma, we may assume without loss 

1) {Z^ 

of generality that t/„ = ^ O and we have to show that 

Let g € V.u,{S x Z), i.e., 

\g{s,z)\<\\g\Uv{s)u{z). (E.6) 

'The result is also known in the literature as The Principle of Uniform Boundedness and 
it basically asserts that weak and strong boundedness are equivalent. The precise statement 
is as follows. Let {X, \\ • ||) be a Banach spa<;e and let K he a, family of continuous linear 
functionals from X to R. If for each x £ X the set {T(x) : T e /C} is bounded in M, then 
sup{||r||: T e A:} < GO. 
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Then we have: 

/ g{s,z){iJ.nXiyn){ds,dz) = g{s,z)iin{ds)i'n{dz) = / hn{z)vn{dz), (E.7) 

where hn{z) = J g{s,z)iJi„{da), for n > 1. Set h{z) — Jg{s,z)fi{ds). Then, 

\h{z)\<j\g{a,z)\ • \ix\{ds) < \\g\U j v{s)u{z)\ii\{ds) 

= 11511." / 'v{s)\n\{ds) \u{z), 

for all z & Z, where the inequality follows from (E.6). Thus, \\h\\u < | |5|UIIM||D, 
which implies h G Vu{Z). Consequently, by (E.5), Jh{z)i'n{dz) —> 0. To prove 
the lemma it now sufRces to show that J{hn(z) — h{z))vn{dz) —> 0. To this end, 
we note that for all ^̂  e Z: 

\K{z)-h{z)\<j \g{s,z)\ • | / / „ - / i | ( d s ) 

< lIslU • "(z) / v[s)\txri - ^J•\{ds) 

where the last equality follows from (E.4). This yields 

j {hn{z) - h{z))y„{dz) < I | / l n ( z ) - / l ( z ) | ^ n K ^ z ) < llfflU • | |A«r.-MlU-l^nlU-

We have Ju{z)\vn\{dz) = Ht'nllu < oo for all n, and an immediate application 
of the Banach-Steinhaus theorem yields 

SUp||l/„||u < OO. 
n> l 

Now, the fact that //„ converges in v-norm to /it concludes the proof of the first 
part of the lemma. 

For the proof of the second part of the lemma we apply Pubini's theorem in 
order to reverse the order of integration in (E.7). The proof of the second part 
of the lemma then follows from the same line of argument as the proof of the 
first part. D 

In order to apply Lemma E.5.1, one has to assume that any g eVwiS x Z) 
is continuous. However, it is possible to slightly deviate from the continuity 
assumption. If g is bounded by some h € V^iS x Z) and if the set of disconti­
nuities, denoted by Dg, satisfies [fi x v)[Dg) = 0 (resp. [v x fJ.){Dg) = 0), then 
Lemma E.5.1 apphes to g as well. 
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E.6 Coupling 

E.6.1 Coupling Convergence 

We say that there is coupling convergence in finite time (or, merely coupling) of 
a sequence {-X"„} to a stationary sequence {Y o 0"} if 

lim P{\/k : Xn+k = Yoe"+'') = 1, 
n—*oo ' 

or, equivalently, there exists an a.s. finite random variable N such that 

Xiv+fc = Y o 0^+'=, /c > 0 . 

Result: Coupling (convergence) implies total variation convergence. 

E.6.2 Strong Coupling Convergence and Goldstein's MEIX-
imal Coupling 

We say that there is strong coupling convergence in finite time (or, merely strong 
coupling) of a sequence {Xn} to a stationary sequence {Y o ^"} if 

N° = inf{n > 0 I V/c > 0 : X„+fc o ^""-'^ = Y } 

is finite with probability one. 

Result: Strong coupling convergence implies coupling convergence but the 
converse is not true. 

We illustrate this with the following example. Let ^m, with ^^ 6 Z and 
E[^i] = CO, be an i.i.d. sequence and define X„, for n > 1, as follows 

Uo f o r X „ _ i = 0 , 
Xn = I X„_i - 1 for X„_i > 2 , 

[Xn for X„_i = 1, 

where XQ — 0. It is easily checked that {Xn\ couples with the constant se­
quence 1 after ^o — 1 transitions. To see that {X„} fails to converge in strong 
coupling, observe that the shift operator applies to the 'stochastic noise' f™ as 
well. Specifically, for fc > 0, 

U^oQ-^ for X„_i o ^-fc = 0 , 
X„ oQ-^ = I Xn-x oQ-^ - \ for X„_i o 0-'= > 2 , 

\XnoQ-^ for X„_i o 6'-'= = 1 ; 

where XQ O 0^'' — 0, and ^_fc = ^o ° ^~'°- This imphes 

N° = inf {n > 0 I V/fc > 0 : X^+k ° 6""''" = 1 } 

= inf {n > 0 IVA; > 0 : f„+fc - 1 < n } 

= oo a.s. 
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Result (Goldstein's maximal coupling [80]): Let {X„} and Y be defined 
on a Polish state space. If {X{n)} converges with coupling to Y, then a version 
{X{n)} of {X(n)} and a version F of y defined on the same probability space 
exists such that {X{n)} converges with strong coupling to Y. 

E.6.3 5-Coupling 

Coupling and strong coupling, as introduced above, are related to total varia­
tion convergence. We now state the definition of 5-coupling which is related to 
weak convergence. (The classical terminology is e-coupling. We have changed it 
to J-coupling to avoid confusion with the notation e = — oo for the max-plus 
semiring.) 

Consider a metric space {E,d) and two sequences {Xn} and {Yn} defined 
on E. We say that there is S-coupling of these two sequences if 

• for each 5 > 0, versions of {Xn} and {Yn} exist defined on a common 
probability space, and 

• an a.s. finite random variable rjs exists such that, for n> r]s, it holds that 
d{Xn,Yn)<S. 

Result: Consider a sequence {Xn} and a stationary sequence {Yn} defined on a 
metric space E. If there is (5-coupling of the two sequences, then {X„} converges 
weakly to Y. 

E.7 The Dominated Convergence Theorem 

Let {S,S, n) be a probabiHty space. Let / „ : 5' —» R, for n £ N, be measurable 
and assume that f,g : S -* R are measurable mappings such that, for any 
n € N, the set of points s e S with 

\fn{s)\ < gis) 

and 

Mm fn{s) = / ( s ) 
n—*oo 

has ;ti-measure one. If 

/ \ 9is) \ fJ-ids) < oo, 
Js 

then 

lim / fn{s)ii{ds) = / f{s)iJ,{ds). 
"-»°° Js Js 
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E.8 Wald's Equality 

Let {X{n)} be an i.i.d. sequence such that E[X(1)] is finite. Furthermore, let 
T; be a non-negative integer-valued random variable with finite mean. If for all 
m > 0 the event {77 = m} is independent of {X{m + n) ; n > 1}, then 

E E^w E[77]E[X(1)] < 00, 

E.9 Regenerative Processes 

Let {X{n)} denote a stochastic process with state space {S,S). A random time 
Tfc is called stopping time if the occurrence or non-occurrence of Tfc at time t is 
known from {X{n) :n <t}, that is, the event {rfc = t} lies in a{{X{n) : n < t}), 
for any t. The process {X{n)} is called classical regenerative, or, regenerative if 
there exists a sequence of stopping times {Tfc} such that 

• {''•fc+i — Tfc , A; > 0} is an i.i.d. sequence; 

• for every sequence of times 0 < t i < (2 < • • • < tn and every k > 
0, the random vectors {X{ti),X{t2), • • •, X(t„)) and {X{Tk + ti), X{Tk + 
42), • • •, X{Tk-'rtn)) have the same distributions, and the processes {X{n) : 
n < Tk} and {X{n) : n> T^) are independent. 

Thus, in a regenerative process, the regeneration points {Tfc : fc > 0} cut 
the process into independent and identically distributed cycles of the form 
{X{n) : Tk < n < Tfc+i}. A distribution function is called lattice if it assigns 
probability one to a set of the form {0,6,26,...}, for some 6 > 0, and it is 
called non-lattice otherwise. 

Result: Let {X{n)} be a regenerative process such that the distribution 
of Tfc+i — Tfc is non-lattice. If, for a measurable mapping / : 5 —» R, 
nEn=r\ / ( ^ ( » ) ) ] is finite, then 

lim f- y f{X{n)) = '- ^, : i a.s. 
iV^oo N ^^•'^ ^ " E[T2 - Ti] 



Appendix F 

Markov Chains 

Let {S, <S) denote a Polish state space, where S denotes the Borel field of S. The 
mapping P : 5 x <S —» [0,1] is a Markov kernel (on (5, <S)) if 

(a) P{s; •) is a probability measure on {S,S), for all s € 5; and 

(b) P{-; B) is <S measurable for all B e S. 

The product of Markov kernels is again a Markov kernel. Specifically, let P, Q be 
two Markov kernels on (5, <S), then the product of P and Q is defined as follows: 
for a e S and B & S set PQ{a;B) = ( P o Q ) ( s , B ) = Jg P{s;dz) Q{z;B). 
Moreover, write P"{s; •) for the measure obtained by the n fold product of P in 
the above way. 

When an initial distribution fi is given, P defines a Markov chain {X{n)} 
with state space {S,S): 

[X{n)eB) = j ^i{d8)P^{8;B), 

where P denotes the underlying probability measure on {S,S). 
Let 0 be a cr-finite measure on {S,S). A Markov chain with transition kernel 

P{x; B) is (j)-irreducible if 

( oo 

y X{n) G B 
n = l 

X{Q) = x\ > 0 , xeS,BeS, 

whenever </>(B) > 0. 
A Markov chain {X{n)] is called uniformly cp-recurrent if there exists a 

non-trivial measure 4> on (S, S) such that for each A & S, with (f>{A) > 0, 

k 

lim V ^ P ™ ( a ; , ^ ) = 1 
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uniformly in x, where AP™{X,A) is the taboo probability defined by 

AP"'{X,A) = ¥{{X{m) €A,X{0) = x,Xi ^ A,1 < i < m - 1}) , AeS . 

A uniformly (/i-recurrent Markov chain is also called Harris recurrent. 
A d-cycle of a (^-irreducible chain {X{n)} is a collection {Si,... ,Sd} of 

disjoint subsets of S such that <f){S — uf=i5i) = 0 and P{s; Si+i) = 1 ioi s e Si 
and 1 < i < d (take Si+i = ^ i when i = d). At least one d-cycle exists for a 4>-
irreducible chain and the period of the chain is the smallest d for which a d-cycle 
exists. The chain is called aperiodic if it is (^-irreducible and d = 1; otherwise 
it is called periodic. Observe that aperiodicity of a chain already implies its ^-
irreducibility. A uniformly (/i>-recurrent and aperiodic Markov chain is also called 
Harris-ergodic. 

Result: A uniformly (/)-recurrent and aperiodic (resp. Harris ergodic) Markov 
chain converges, for any initial distribution, weakly towards a unique stationary 
regime n. Moreover, for any measurable mapping / : 5 —* R, with J^ f{s) 7r(ds) 
finite, it holds that 

1 ^ r 
f->oo iV ^—^ Jg 

Let {X{n)} be a Harris ergodic Markov chain. For B € S, let r„ = Tsin) 
denote the n*'' hitting time of X(n) on B, where we set T„ = oo if X(n) doesn't 
visit B for at least n times. Hence, r„ is a stopping time. A set B 6 5 is called 
a regeneration set if, with probability one, T„ < oo, for any n G N, and with 
probability one: 

lim r„ = oo . 
n—*oo 

A regeneration set B is called atom if the regeneration points {T^ : k > 0} 
cut the Markov chain into independent and identically distributed cycles of 
the form {X{n) : Tk < n < Tk+i}. Thus, whenever X{n) hits B it starts 
independent from the past. In particular, if we consider two versions of X{n), 
where one version is started according to an initial distribution /i and the other 
according to an initial distribution v, then both versions couple when they 
simultaneously hit B, which occurs after a.s. finitely many transitions. 

Result: A Harris ergodic Markov chain {X{n)} with atom converges, for any 
initial distribution, in strong coupling to its unique stationary regime. In addi­
tion to that, let B denote an atom of {X{n)}, then it holds that 

L 
E [ E ^ / ( ^ ( n ) ) | x ( 0 ) € s ] 

^J{sMds)=. E[ri\XiO)eB] 

for any measurable mapping / : 5 -^ R such that fg f{s) n{ds) is finite, where 
Ti denotes the first hitting time of X{n) on B. 



Appendix G 

Tools from analysis 

G.l Cesaro limits 

A real-valued sequence {a;„} is called Cesaro-summable if 

1 " 
lim - y^ a;„. 

exists. If 

exists, then 

lim x„ = X 
Tl—*00 

1 " 
lim — y^ n~-*oo ?T, 

In words, any convergent sequence is Cesaro-summable. The converse is, how­
ever, not true. To see this, consider the sequence a;„ = (—1)", n £ N. 

G.2 Lipschitz and Uniform Continuity 

Let X C K be a compact set. A mapping / : X —* R is called Lipschitz contin­
uous \i K eM. exists such that for any x, x -t- A e X is holds that 

\f{x)- f{x + A)\ <K\A\. 

The constant K is called Lipschitz constant. 

Result (Mean-Value Theorem): For X = [a,b] C R, let f : X -^ R be 
continuous on [a, b] and differentiable on ]a, b[. Then ^ e]a, b[ exists such that 

b ~ a 
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where / ' denotes the derivative of / . 

For differentiable mappings, a sufficient condition for Lipschitz continuity 
can be found by the Mean-Value Theorem. The precise statement is given in 
the following. 

Result: For X = [a, 6] C R, let / : X —» R be continuous on [a, b] and differen­

tiable on ]a, b[. If 

sup \f'ix)\ = ' i f < oo, 
a;G]a,6[ 

then / is Lipschitz continuous on (a, 6) with Lipschitz constant K. 

G.3 Interchanging Limit and Differentiation 

Let T denote a set of mappings from X = [a, 6] C R to R. .F is called uniformly 
bounded if M e [0, oo) exists such that, for any f & T, 

I f(x) \< M, x€X. 

A mapping / : X = [o, 6] C R is called uniformly continuous if for any r] > 0 
a 5 > 0 exists such that, for any a;i,X2 6 X = [a, b] C R with |a;i — xal < 5, it 
holds that 

\fixi) - f(x2)\ < r,-

The set J-^ is called uniformly continuous if for any 77 > 0 a <5 > 0 exists such 
that, for any xi,X2 € X = [a,b] cM with |a;i — a;2| < 6 and any / € .F, it holds 
that 

Ifi^l) - f{x2)\ < V-

Result (Arzela-Ascoli): Let J" be a (at least) countable set of mappings 
from X = [a, b] C R to R. If T is uniformly bounded and uniformly continuous, 
then one can choose a uniformly convergent sequence out of T. 

Result: For n G N, let / „ be a continuously differentiable mapping from X = 

[a, 6] C R to R. If 

(i) fn converges pointwise to / on X, 

(a) the sequence of derivatives /^ converges uniformly on X, 

then / is differentiable and it holds that 

lim f'^ix) = f'{x) . 
n—*oo 

We combine the above results to the following statement. 

Theorem G.3.1 For n G N, let / „ be a twice differentiable mapping from 
X = [a, 6] C R to R. If 
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(i) / „ converges pointwise to J on X, 

(ii) /^ converges pointwise on X, 

(iii) a constant M exists, such that 

max sup sup |//,(a;)i, sup sup \fn{x)\ ] < M , 
\nenxex neNxex / 

where fl[ denotes the second order derivative of f, 

then f is differentiable and it holds that 

lim f^{x) = fix) . 

Proof: By the foregoing result, it remains to be shown that /4 converges uni­
formly on X. Set 

^ = {/; : n e N} . 

By assumption, J^ is uniformly bounded. Uniform continuity follows from the 
fact that /^ is Lipschitz continuous with Lipschitz constant M. See Section G.2. 
Since the Lipschitz constant is independent of n, T is uniformly continuous. 
Hence, according to the Arzela-Ascoli Theorem we may choose a sequence {/n„ : 
m G N} out of {/„} that converges uniformly on X. This yields 

lim f'Jx)= lim !'^^{x) 

Ti—*oo m—>oo 

which concludes the proof of the theorem. D 

G.4 Taylor Series Expansions 
Fix XQ eM. and A > 0, let / : [XQ, XQ + A] —» R be an (n + 1) times continuously 
differentiable mapping on [a;o,a;o + A] (where differentiability at the boundary 
has to interpreted as one-sided differentiability). Then it holds that 

/(.o+A) = ; ^ ^ '' 
m! dx"^ 

m=0 

fix) + Rn+iixo) (G.l) 
X=XQ 

and f e (0,1) exists such that 

Rn+lixo) = 
(n + 1)! dai^+i x=xo-i-uA 

The above remainder term is called Lagrange remainder. An alternative way of 
expressing Rn+i is the Cauchy remainder: 

An+l / / "+ ! 
Rn+lixo) = (1 _ , . ' ) " -

dx"+^ 
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where v' is again a number in (0,1). In addition to that, Rn+\ can be expressed 
using integration as follows: 

(•a:o+A 

Rn + 1 1 r (xo + A - tf 
^n+l 

da;"-* 
f{x)dt. (G.2) 

The expression on the right-hand side of (G.l) is called a Taylor polynomial for 
f of degree n at XQ. If 

A™ d™ 

m! dx" E / (^) (G.3) 

exists, for given XQ and A, then this series is called Taylor series or Taylor series 
expansion for f at xo evaluated at A. In the particular case â o = 0, (G.3) is also 
called MacLaurin series. The radius of convergence of a Taylor series, denoted 
by r-(xo), is the largest A such that the sum in (G.3) exists and is finite. Because 
Taylor series are power series, they converge absolutely if they converge at all. 
Hence, if the radius of convergence of the Taylor series expansion for / at XQ 
is r{xQ) > 0, then the series converges for any XQ + A, with |A| < r{xo)- The 
radius of convergence of the Taylor series for / at xo is given by the formula of 
Cauchy-Hadamard: 

-—-r- = limsup — 
r{xo) \n\ dx" 

fix] (G.4) 

where r{xo) = 0 if the limsup equals oo and r{xo) = oo if the limsup equals 0. 
A real-valued mapping / : { / — > R, with f/ C R, is called analytic if, for 

any XQ & U, a, r{xo) > 0 exists such that the Taylor series for / at XQ equals 
/ for any |A| < r(xo). For U open, it can be shown that analyticity of / on (7 
is equivalent to the existence of a holomorphic extension of / to the complex 
plane, which explains the term 'analytic ' 

Let the Taylor series expansion for / at XQ have radius of convergence r{xo) > 
0 such that the Taylor series for / at XQ equals / for any |A| < r{xo). This 
implies that the expression in (G.l) converges to / for at least those a;o -|- A, 
with |A| < r{xo)- In other words, the remainder term Rn+i{xo) tends to 0 as 
n tends to oo for all |A| < r{xo). Does this mean that increasing the degree of 
the Taylor polynomial improves the accuracy of the approximation? To answer 
this question, note that, for n £ N, 

/(xo + A) - J2 
m = 0 

m! dx™ 
fix) E 

m=n+l 

A™ d™ 

m\ dx"^ 

^ E 
def „ 

dx" 

m 

fix) 

Existence of the Taylor series implies that Hn \ 0. Observe that /?„ < Hn-
Hence, the error in predicting f{xo + A) by a Taylor polynomial of degree n is 
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at most Hn, where H„ is a monotone decreasing sequence. Thus, with growing 
n, Rn+i eventually decreases. Unfortunately, this does not imply that increasing 
the order of a Taylor polynomial from n to n + 1 will improve the quality of the 
approximation. To see this, let / be given such that (f^f/dx™ = 0 iov m > N, 
for some finite N. In this case, it is not ruled out that the accuracy of the 
approximation decreases with increasing the degree of the Taylor polynomial 
provided the degree is smaller than A'̂ . For example, it can happen that 

R„ < Rn+i forn < Af - 1 

and Rn+i = 0 ior n > N. In such a case, increasing the degree of the Taylor 
polynomial may even decrease the quality of the approximation. 

Let {/„} be a sequence of functions that converges point-wise to a function / . 
Under appropriate conditions the limit of the Taylor series for / „ will converge 
to the Taylor series for / . The exact statement is given in the following theorem. 

Theorem G.4.1 Consider X = [a;o, xo + A] C K and let {/„} be a sequence of 
mappings such that 

(i) f„ converges pointwise to a mapping f on X, 

(a) d^ fn/dx'^ converges pointwise on X as n tends to oo, 

(Hi) on X, the Taylor series for fn exists and converges to the true value of 

(iv) a sequence {Affc} exists, whereby 

(a) 

sup sup 
neNxex 

dx^ 
fn{x) < Mk, ke. 

and 

(b) 

then it holds that 

J2 -n-Mk < 00 , 
fc=0 

k\ 

k=0 

k 

k\ dx'' 
fix) = lim Y^ 

^ f c ^ f c 

n->oo •"—' k\ dx'' 
k=0 

fn{x) . 

Proof: Repeated application of Theorem G.3.1 yields, for any k, 

d'' 
lim -r-kfnix) 

n—•oo ax'^ 

d^ 

dx*' /W (G.5) 

on X, where differentiability at the boundary of X has to be understood as 
one-sided differentiability. Assumption (iv)(a) implies that, for any n 6 N and 
any a; G X, 

d'' 

dx^ 
fn{x) < Mk. 
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Together with assumption (iv)(b), the dominated convergence theorem can be 
applied. This yields 

A;=0 fc=0 

and inserting (G.5) gives 

fc=0 fc=0 

which concludes the proof. D 

G.5 Combinatorial Aspects of Derivatives 

Let {/fc} be a sequence of n times difFerentiable mappings from R to K and 
denote the n*'' order derivative of fk by /^" , and let fl — fk^ We denote the 
argument of fk by x. The first order derivative of the product YViLi ft '^ given 
by 

m m 
d T-T „ K - - T T ^ ( U = i) 

t = l fc=l i = l 
dx Ilf^ = EUfP 

where lk=i = I if k = i and zero otherwise. Generally, the n^^ order derivative 
of the product of m mappings is given by 

mm mm. 

i=l ki=lk2 = l k„ = l i=l 

Obviously, the above expression has m " elements. However, some elements occur 
more than once. Specifically, let 

Uh,...,lm)e{0,...,nr f^lk = n\ C[l,m;n] = { [li,...,lm) e { 0 , . . . , n } 

and interpret / = {h,... ,im) as 'taking the Ij^ order derivative of the /:*'' el­
ement of an m fold product,' then the combination of higher-order derivatives 
corresponding to I G C[l,m;n] occurs 

/ i ! - - ' / m ! 

times in the n*'' order derivative. Indeed, there are n\/li\ • • • Zm! possibilities of 
placing n balls in m urns such that finally urn k contains Ik balls. Hence, 

i=l l€Cll,m;n] ^ ™ i = l 

ih) 
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The above sum has 
m + n — 1 

n 

elements, which stems from the fact that this is exactly the number of possi­
bilities of placing n balls in m urns. Denoting the number of elements of a set 
^ C N" by 1^1, this can be written by 

I C[l,m;n] I = m + n— 1 

Recall that the overall derivative is built out of m " elementary expressions and 
thus 

l€C[l,m;n] 

For / € £[1,77i; n] introduce the set 

m = 
yll J . . . , Ijji) ik e {0, + 1 , - 1 } , ifc = 0 iff /fc = 0 and n «fc=+i} 

The set X[l] has at most 2" ^ elements, that is, 

yie£[l,m;n] : \l[l]\ < 2 " - ^ 

This can be seen as follows. Any I e £[l,7n;n] has at most n entries different 
from zero. We can place any possible allocation of ' + 1 ' and ' — 1 ' on n— 1 places. 
The n*'' place is completely determined by this allocation because we have to 
chose this element so that 

n «fc=+i-
tfc/0 



Appendix H 

Appendix to Section 5.1.3.2 

Table H.l lists values for the Taylor polynomial of degree ft = 2 and h = 
3, respectively, for various traffic loads of the M/M/1 queue. Specifically, the 
upper values refer to the Taylor polynomial of degree h = 2, the values in the 
second row are those for the Taylor polynomial of degree /i = 3, and the values 
in brackets are the 'true' values (which stem from intensive simulation). For 
the naive approximation, the values 1̂ 1̂ (2; 0,1) are the upper values and the 
values Vid(3;0,1,2) are listed on the second row. Eventually, the table fist the 
stationary expected waiting for the various traffic loads. 
Table H.2 lists values for the Taylor polynomial of degree h = 2 and h = 3, 
respectively, for various traffic loads of the D/M/1 queue. Specifically, the upper 
values refer to the Taylor polynomial of degree h = 2, the values in the second 
row are those for the Taylor polynomial of degree h = 3, and the values in 
brackets are the 'true' values (which stem from intensive simulation). For the 
naive approximation, the values Vid{2;0,1) are the upper values and the values 
Vid{3;0,1,2) are listed on the second row. 
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Table H.l: Approximating the expected m*'' waiting time in a M/M/1 queue 
via a Taylor polynomial of degree 2 and 3, respectively. 

m 

5 

10 

20 

50 

naive 

analytic 
(n = oo) 

p = 0.1 
0.1066 
0.1101 
[0.1110] 
0.1066 
0.1100 

[0.1110] 
0.1066 
0.1100 

[0.1110] 
0.1066 
0.1100 

[0.1115] 
0.1066 
0.1100 

0.1111 

p = 0.3 
0.3598 
0.4010 

[ 0.4082 ] 
0.3600 
0.4036 

[ 0.4264 ] 
0.3600 
0.4036 

[ 0.4283 ] 
0.3600 
0.4036 

[ 0.4283 ] 
0.3249 
0.3707 

0.4285 

p = 0.5 
0.7893 
0.8025 

[ 0.7804 ] 
0.8444 
0.9802 

I 0.9235 ] 
0.8457 
0.9963 

[ 0.9866 ] 
0.8457 
0.9963 

[ 0.9994 ] 
0.5185 
0.6378 

1 

p = 0.7 
1.3080 
1.1374 

[ 1.1697] 
1.9948 
1.6228 

[ 1.5894 ] 
2.2934 
2.6459 

[ 1.9661 ] 
2.3077 
2.8626 

[ 2.2617 ] 
0.6810 
0.8813 

2.3333 

/9 = 0.9 
1.4534 
1.5364 

[ 1.5371 ] 
2.4537 
1.5537 

[ 2.3303 ] 
6.0912 
-5.7325 
[ 3.3583 ] 
14.7404 
-6.1387 
[ 5.0376 ] 
0.8161 
1.0931 

9.0000 

Table H.2: Approximating the expected m*'' waiting time in a D /M/1 queue 
via a Taylor polynomial of degree 2 and 3, respectively. 

m 

5 

10 

20 

50 

naive 

p = 0.1 
0.00004542 
0.00004542 
[0.00004601 ] 
0.00004542 
0.00004542 
[0.00004602] 

0.00004542 
0.00004542 
[0.00004615 ] 
0.00004542 
0.00004542 
[0.00004607 ] 
0.00004542 
0.00004542 

p = 0.3 
0.04241 
0.04259 
[0.04266 ] 
0.04241 
0.04261 
[0.04268 ] 
0.04241 
0.04261 
[0.04268 ] 
0.04241 
0.04261 
[0.04268 ] 
0.04118 
0.04229 

p = 0.5 
0.2443 
0.2412 
[0.2410 ] 
0.2127 
0.2533 
[0.2535 ] 
0.2536 
0.2560 
[0.2552 ] 
0.2536 
0.2560 
[0.2552 ] 
0.1902 
0.2175 

p = 0.7 
0.6171 
0.5918 
[0.5981 ] 
0.8314 
0.7115 
[0.7460 ] 
0.9246 
0.8606 
[0.8387 ] 
0.9292 
0.8957 
[0.8747 ] 
0.3791 
0.4743 

p = 0.9 
0.8955 
1.0584 
[1.0225 ] 
1.1456 
1.7005 
[1.5102 ] 

2.2680 
0.3134 
[2.1053 ] 
5.7393 
-4.4469 
[2.9735 ] 
0.5579 
0.7389 



Bibliography 

[1] Altman, E., B. Gaujal, and A. Hordijk. Admission control in stochastic 
event graphs. IEEE Transactions on Automatic Control, 45:854-867, 2000. 

[2] Altman, E., B. Gaujal, and A. Hordijk. Discrete-Event Control of Stochas­
tic Networks: Multimodularity and Regularity. Lecture Notes in Mathe­
matics, vol. 1829. Springer, Berlin, 2003. 

[3] Ayhan, H., and D. Seo. Tail probability of transient and stationary wait­
ing times in (max,+)-linear systems. IEEE Transactions on Automatic 
Control, 47:151-157, 2000. 

[4] Ayhan, H., and D. Seo. Laplace transform and moments of waiting times 
in Poisson driven (max,-|-)-linear systems. Queueing Systems - Theory 
and Applications, 37:405-436, 2001. 

[5] Ayhan, H., and F. Baccelli. Expansions for joint Laplace transforms for 
stationary waiting times in (max,+)-linear systems with Poisson input. 
Queueing Systems ~ Theory and Applications, 37:291-328, 2001. 

[6] Baccelli, F. Ergodic theory of stochastic Petri networks. Annals of Prob­
ability, 20:375-396, 1992. 

[7] Baccelh, F., and D. Hong. Analytic expansions of (max,-!-) Lyapunov 
exponents. Annals of Applied Probability, 10:779-827, 2000. 

[8] Baccelh, F., and D. Hong. Analyticity of iterates of random non-expansive 
maps. Advances in Applied Probability, 32:193-220, 2000. 

[9] Baccelli, F., E. Gelenbe, and B. Plateau. An end-to-end approach to the 
resequencing problem. Journal of the Association for Computing Machin­
ery, 31:474-485, 1984. 

[10] Baccelli, F., G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization 
and Linearity. John Wiley and Sons, (this book is out of print and can 
be accessed via the max-plus web portal at h t t p : / / m a x p l u s . o r g ) , 1992. 



302 B I B L I O G R A P H Y 

[11] Baccelli, F., and J. Mairesse. Ergodic Theorems for Stochastic Opera­
tors and Discrete Event Networks. In Idempotency (editor J. Gunawar-
dena), vol. 11 of Publications of the Newton Institute. Cambridge Univer­
sity Press, 1998. 

[12] Baccelli, F., and M. Canales. Parallel simulation of stochastic Petri nets 
using recurrence equations. ACM Transactions on Modeling and Com­
puter Simulation, 3:20-41, 1993. 

[13] Baccelli, F., and P. Bremaud. Elements of Queueing Theory. Springer, 
Berlin, 1984. 

[14] Baccelli, F., and P. Konstantopoulos. Estimates of cycle times in stochastic 
Petri nets. In Lecture Notes in Control and Information Science 177, pages 
1-20. Springer, Berhn, 1992. 

[15] Baccelh, F., S. Hasenfufi, and V. Schmidt. Transient and stationary wait­
ing times in (max,+)-linear systems with Poisson input. Queueing Sys­
tems - Theory and Applications, 26:301-342, 1997. 

[16] Baccelli, F., S. Hasenfufi, and V. Schmidt. Expansions for steady-state 
characteristics of (max,+)-linear systems. Stochastic Models, 14:1-24, 
1998. 

[17] Baccelli, P., and V. Schmidt. Taylor series expansions for Poisson-driven 
(niax,-|-)-linear systems. Annals of Applied Probability, 6:138-185, 1996. 

[18] Baccelli, F., and Z. Liu. Comparison properties of stochastic decision free 
Petri nets. IEEE Transactions on Automatic Control, 37:1905-1920, 1992. 

[19] Baccelh, F., and Z. Liu. On a class of stochastic evolution equations. 
Annals of Probability, 20:350-374, 1992. 

[20] Billingsley, P. Ergodic Theory and Information. Wiley, New York, 1968. 

[21] Blondel, V., S. Gaubert, and J. Tsitsiklis. Approximating the spectral 
radius of sets of matrices in the max-plus algebra is NP hard. IEEE 
Transactions on Automatic Control, 45:1762-1765, 2000. 

[22] Borovkov, A. Ergodicity and Stability of Stochastic Processes. Probability 
and Statistics. Wiley, Chichester, 1998. 

[23] Borovkov, A., and S. Foss. Stochastically recursive sequences and their 
generalizations. Siberian Advances in Mathematics, 2:16-81, 1992. 

[24] Bougerol, P., and J. Lacroix. Products of Random Matrices with Applica­
tions to Schrodinger Operators. Birkhauser, Boston, 1985. 

[25] Bouillard, A., and B. Gaujal. Coupling time of a (max,plus) matrix. In 
Proceedings of the workshop on (max,-!-)-algebra and applications, pages 
235-239. Prague, Czech Republic, August 2001, 1991. 



B I B L I O G R A P H Y 303 

[26] Brauer, A. On a problem of partitions. American Journal of Mathematics, 
64:299-312, 1942. 

[27] Bremaud, P. Maximal coupling and rare perturbation analysis. Queueing 
Systems - Theory and Applications, 11:307-333, 1992. 

[28] Brilman, M., and J. Vincent. Dynamics of synchronized parallel systems. 
Stochastic Models, 13:605-617, 1997. 

[29] Brilman, M., and J. Vincent. On the estimation of throughput for a 
class of stochastic resources sharing systems. Mathematics of Operations 
Research, 23:305-321, 1998. 

[30] Cao, X.R. The MacLaurin series for performance functions of Markov 
chains. Advances in Applied Probability, 30:676-692, 1998. 

[31] Cheng, D. Tandem queues with general blocking: a unified model and 
comparison results. Journal of Discrete Event Dynamic Systems, 2:207-
234, 1993. 

[32] Cochet-Terrasson, J., G. Cohen, S. Gaubert, M. Mc Gettrick, and J.P. 
Quadrat. Numerical computation of spectral elements in max-plus-
algebra. In Proceedings of the IFAC conference on Systems Structure and 
Control, pages 699-706. Nantes, Prance, July 1998, 1998. 

[33] Cohen, G., D. Dubois, J.P. Quadrat, and M. Viot. Analyse du comporte-
ment periodique de systemes de production par la theorie des dioides. IN-
RIA Research Report No. 191, INRIA Rocquencourt,78153 Le Chesnay, 
France, 1983. 

[34] Cohen, G., D. Dubois, J.P. Quadrat, and M. Viot. A linear system-
theoretic view of discrete event processes and its use for performance 
evaluation in manufacturing. IEEE Transactions on Automatic Control, 
30:210-220, 1985. 

[35] Cohen, J. Subadditivity, generalized products of random matrices and 
operations research. SIAM Reviews, 30:69-86, 1988. 

[36] Cohen, J. Erratum "Subadditivity, generalized products of random ma­
trices and Operations Research". SIAM Reviews, 35:124, 1993. 

[37] Cuninghame-Green, R.A. Minimax algebra, vol. 166 of Lecture Notes in 
Economics and Mathematical Systems. Springer, Berlin, 1979. 

[38] Cuninghame-Green, R.A. Maxpolynomial equations. Fuzzy Sets and Sys­
tems, 75:179-187, 1995. 

[39] Cuninghame-Green, R.A. Minimax algebra and its applications. Advances 
in Imaging and Electron Physics, Vol. 90. Academic Press, New York, 
1995. 



304 B I B L I O G R A P H Y 

[40] Daduna, H. Exchangeable items in repair systems: delay times. Operations 
Research, 38:349-354, 1990. 

[41] de Vries, R.E. On the Asymptotic Behavior of Discrete Event Systems. 
PhD thesis, Faculty of Technical Mathematics and Informatics, University 
of Technology, Delft, The Netherlands, 1992. 

[42] Dumas, Y., and P. Robert. On the throughput of a resource sharing model. 
Mathematics of Operations Research, 26:163-173, 2001. 

[43] Gunawardena, J. (editor). Idempotency. Publications of the Newton In­
stitute, Cambirgde University Press, 1998. 

[44] Pu, M., and J.Q. Hu. Conditional Monte Carlo: Gradient Estimation and 
Optimization Applications. Kluwer, Boston, 1997. 

[45] Furstenberg, H. Noncommuting random products. Transactions of the 
American Mathematical Society, 108:377-428, 1995. 

[46] Gaubert, S. Performance evaluation of (max,+) automata. IEEE Trans­
actions on Automatic Control, 40:2014-2025, 1995. 

[47] Gaubert, S. Methods and applications of (max,+)-linear algebra. 
In Proceedings of the STACS'1997, Lecture Notes in Computer Sci­
ence, vol 1200. Springer (this report can be accessed via the WEB at 
http://www.inria.fr/RRRT/RR-3088.html), 1997. 

[48] Gaubert, S., and D. Hong. Series expansions of Lyapunov exponents and 
forgetful monoids. INRIA Research Report No. 3971, 2000. 

[49] Gaubert, S., and J. Gunawardena. The duality theorem for min-
max functions. Comptes Rendus de VAcademic des Sciences, Serie I, 
Mathematique, Paris, t. 326, Serie 1:699-706, 1998. 

[50] Gaubert, S., and J. Mairesse. Asymptotic analysis of heaps of pieces and 
application to timed Petri nets. In Proceedings of the 8th International 
Workshop on Petri Nets and Performance Models (PNPM'99). Zaragoza, 
Spain, 1999. 

[51] Gaubert, S., and J. Mairesse. Modehng and analysis of timed Petri nets 
using heaps of pieces. IEEE Transactions on Automatic Control, 44:683-
698, 1999. 

[52] Glasserman, P. Structural conditions for perturbation analysis deriv­
ative estimation finite-time performance indices. Operations Research, 
39(5):724-738, 1991. 

[53] Glasserman, P., and D. Yao. Stochastic vector difference equations with 
stationary coefficients. Journal of Applied Probability, 32:851-866, 1995. 



B I B L I O G R A P H Y 305 

[54] Glasserman, P., and D. Yao. Structured buflfer-allocation problems. Jour­
nal of Discrete Event Dynamic Systems, 6:9-41, 1996. 

[55] Grigorescu, S., and G. Oprisan. Limit theorems for j~x processes with a 
general state space. Zeitschrift fiir Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, 35:65-73, 1976. 

[56] Gunawardena, J. Cycle times and fixed points of min-max functions. In 
11th International Conference on Analysis and Optimization of Systems, 
pages 266-272. Springer Lecture Notes in Control and Information Science 
199, 1994. 

[57] Gunawardena, J. Min-max functions. Journal of Discrete Event Dynamic 
Systems, 4:377-407, 1994. 

[58] Gunawardena, J. Prom max-plus algebra to nonexpansive maps. Theoret­
ical Computer Science, 293:141-167, 2003. 

[59] Hajek, B. Extremal splittings of point processes. Mathematics of Opera­
tions Research, 10(4):543-556, 1985. 

[60] Hartmann, M., and C. Arguelles. Transience bounds for long walks. Math­
ematics of Operations Research, pages 414-439, 1999. 

[61] Heidergott, B. A characterization for (max,+)-linear queueing systems. 
Queueing Systems ~ Theory and Applications, 35:237-262, 2000. 

[62] Heidergott, B. A differential calculus for random matrices with applica­
tions to (max,-t-)-linear stochastic systems. Mathematics of Operations 
Research, 26:679-699, 2001. 

[63] Heidergott, B. Variability expansion for performance characteristics of 
(max,plus)-linear systems. In Proceedings of the International Workshop 
on DES, Zaragoza, Spain, pages 245-250. IEEE Computer Society, 2002. 

[64] Heidergott, B., and A. Hordijk. Taylor series expansions for stationary 
Markov chains. Advances in Applied Probability, 23:1046-1070, 2003. 

[65] Heidergott, B., G.J. Olsder, and J. van der Woude. Max Plus at Work: 
Modeling and Analysis of Synchronized Systems. Princeton University 
Press, Princeton, 2006. 

[66] Hennion, B. Limit theorems for products of positive random matrices. 
Annals of Applied Probability, 25:1545-1587, 1997. 

[67] Ho, Y.C., M. Euler, and T. Chien. A gradient technique for general buffer 
storage design in a serial production line. International Journal of Pro­
duction Research, 17:557-580, 1979. 

[68] Ho, Y.C., and X.R. Cao. Perturbation Analysis of Discrete Event Systems. 
Kluwer Academic, Boston, 1991. 



306 B I B L I O G R A P H Y 

[69] Hong, D. Exposants de Lyapunov de Reseaux stochastiques max-plus 
lineaires. PhD thesis, INRIA, 2000. 

[70] Hong, D. Lyapunov exponents: When the top joins the bottom. Technical 
report no. 4198, INRIA Rocquencourt, 2001. 

[71] Jean-Marie, A. Waiting time distributions in Poisson-driven deterministic 
systems. Technical report no. 3083, INRIA Sophia Antipolis, 1997. 

[72] Jean-Marie, A., and G.J. Olsder. Analysis of stochastic min-max-plus 
systems: results and conjectures. Mathematical Computing and Modelling, 
23:175-189, 1996. 

[73] Karp, R. A characterization of the minimum cycle mean in a digraph. 
Discrete Mathematics, 23:309-311, 1978. 

[74] Kingman, J.F.C. The ergodic theory of subadditive stochastic processes. 
Journal of Royal Statistical Society, 30:499-510, 1968. 

[75] Kingman, J.F.C. Subadditve ergodic theory. Annals of Probability, 1:883-
909, 1973. 

[76] Knuth, D. The Art of Computing, Vol. I. Addison-Wesley, Massachusetts, 
1997. 

[77] Krivulin, N. A max-algebra approach to modeling and simulation of tan­
dem queueing systems. Mathematical Computing and Modelling, 22:25-37, 
1995. 

[78] Krivulin, N. The max-plus algebra approach in modelling of queueing 
networks. In Proc. 1996 Summer Computer Simulation Conference, Port­
land, July 21-25,1996, pages 485-490. SCS, 1996. 

[79] Le Boudec, J.Y., and P. Thiran. Network Calculus: A Theory of Deter­
ministic Queueing Systems for the Internet. Springer, Lecture Notes in 
Computer Science, No. 2050, Berlin, 1998. 

[80] Lindvall, T. Lectures on the Coupling Method. Wiley, 1992. 

[81] Loynes, R. The stability of queues with non-independent inter-arrival 
and service times. Proceedings of the Cambridge Philosophical Society, 
58:497-520, 1962. 

[82] Mairesse, J. A graphical representation of matrices in the (max,-!-) algebra. 
INRIA Technical Report PR-2078, Sophia Antipolis, France, 1993. 

[83] Mairesse, J. A graphical approach to the spectral theory in the (max,-|-) 
algebra. IEEE Transactions on Automatic Control, 40:1783-1789, 1995. 

[84] Mairesse, J. Products of irreducible random matrices in the (max,4-) 
algebra. Advances of Applied Probability, 29:444-477, 1997. 



B I B L I O G R A P H Y 307 

[85; 

[86; 

[87; 

[9o; 

[91 

[92 

[93 

[94; 

[95 

[96; 

[97; 

McEneany W. Max-Plus Methods for Nonlinear Control and Estimation. 
Birkhauser, Boston, 2006. 

Neveu, J. Mathematical Foundations of the Calculus of Probability. 
Holden-Day, San Francisco, 1965. 

Olsder, G.J. Analyse de systemes min-max. Recherche Operationelle (Op­
erations Research), 30:17-30, 1996. 

Peres, Y. Domains of analytic continuation for the top Lyapunov expo­
nent. Annales de I'Institut Henry Poincare Probabilites et Statistiques, 
28:131 - 148, 1992. 

Pflug, G. Derivatives of probability measures - concepts and applications 
to the optimization of stochastic systems. In Discrete Event Systems: 
Models and Applications, Lecture Notes Control Information Sciences 103, 
pages 252-274. IIASA, 1988. 

Pflug, G. Optimization of Stochastic Models. Kluwer Academic, Boston, 
1996. 

Polya, G., and G. Szego. Problems and Theorems in Analysis, Vol. 1. 
Springer, New-York, 1976. 

Propp, J., and D. Wilson. Exact sampling with coupled Markov chains and 
applications to statistical mechanics. Random Structures and Algorithms, 
9:223 - 252, 1996. 

Resing, J.A.C., R.E. de Vries, G. Hooghiemstra, M.S. Keane, and G.J. 
Olsder. Asymptotic behavior of random discrete event systems. Stochastic 
Processes and their Applications, 36:195-216, 1990. 

Rubinstein, R. Monte Carlo Optimization, Simulation and Sensitivity 
Analysis of Queueing Networks. Wiley, 1986. 

Rubinstein, R., and A. Shapiro. Discrete Event Systems: Sensitivity Anal­
ysis and Optimization by the Score Function Method. Wiley, 1993. 

Saheb, N. Concurrency measure in communication monoids. Discrete 
Applied Mathematics, 24:223-236, 1989. 

Seidel, W., K. von Kocemba, and K. Mitreiter. On Taylor series expan­
sions for waiting times in tandem queues: an algorithm for calculating the 
coefficients and an investigation of the approximation error. Performance 
Evaluation, 38:153-171, 1999. 

[98] Subiono and J. van der Woude. Power algorithms for (max,+)- and bipar­
tite (min,max,+)-systems. Journal of Discrete Event Dynamic Systems, 
10:369-389, 2000. 



308 B I B L I O G R A P H Y 

[99] van den Boom, T., B. De Schutter., and B. Heidergott. Complexity re­
duction in MPC for stochastic max-plus-linear systems by variability ex­
pansion. In Proceedings of the 41st IEEE Conference on Decision and 
Control, pages 3567-3572, Las Vegas, Nevada, December 2002. 

[100] van den Boom, T., B. Heidergott, and B. De Schutter. Variability expan­
sion for model predictive control. Automatica, (to appear). 

[101] van der Woude, J. A simplex-like method to compute the eigenvalue 
of an irreducible (max,-f)-system. Linear Algebra and its Applications, 
330:67-87, 2001. 

[102] Vincent, J. Some ergodic results on stochastic iterative discrete event 
systems. Journal of Discrete Event Dynamic Systems, 7:209-232, 1997. 

[103] Wagneur, E. Moduloids and pseudomodules 1.: dimension theory. Discrete 
Mathematics, 98:57-73, 1991. 

[104] Zazanis, M. Analyticity of Poisson-driven stochastic systems. Advances 
in Applied Probability, 24:532-541, 1992. 



List of Symbols 

The symbols are listed in order of their appearance. 

N = { 0 , 1 , 2 , . . . } the set of natural numbers 

R the set of finite real numbers 

Z the set of integers 

'S5^\g-g / (^ ) the n*'' derivative of / evaluated at ^o, page v 

Ee the expected value evaluated at 9 

Kraax the set R U {—oo}, page 4 

T̂ max the structure (Rmaxi ffi = max, (8> = + , e = —oo, e = 0), page 4 

T^min the structure (R U {oo}, ® = min, (g) = +, e = oo, e = 0), page 4 

A^ the transpose of A, page 4 

G{A) the communication graph of matrix A, page 5 

Z?(yl) the set of edges in the communication graph of matrix A, page 5 

A" = A^" = <S)2^i A{k), for A{k) = A, the n"" power of A, page 6 

A* the ®-sum over all powers of A, page 13 

mil© = maxi<i<imaxiKjKj lAijen\Aij\, page 50 

Pllmin = m i n i < i < / m i n i < j < j ^ y , page 51 

ll^ilmax = m a x i < i < / m a x i < j < j ^ y , page 52 

Q'^{A) the critical graph of matrix A, page 62 

iTZj reachability relation between node i and j in a graph, page 62 

e a vector with all entries equal to e, page 63 

A'°P the top Lyapunov exponent, page 69 



310 List of Symbols 

A''°* the bottom Lyapunov exponent, page 69 

rr (8> e a vector with all entries equal to some number x, page 110 

rj the backward coupling time, page 112 

Ml = Mi{S) the set of probability measures on a set 5 , page 120 

C^ {He : ^ e 0 ) the set of functions that are continuous absolutely integrable 
with respect to /^e, for ^ G 9 , page 120 

C''{S) the set of bounded continuous real-valued functions g : S >-^R, page 120 

25(5', Z) a space of mappings on the product space S x Z, page 126 

Cp{S, II • lis) the set of all functions g : S —^R, such that \g{x)\ < ci + C2||a;||'', 
page 128 

C{S, Z) a space of continuous mappings on the product space S x Z, page 130 

M^^'^ an extended state space to accommodate P-derivatives, page 136 

= weak equivalence, A = B ii for any g out of a specified set D it holds that 
E[g{A)] = E[g{B)], page 138 

s{fj,e) the order of the highest significant O-derivative of probability measure 
fie, page 152 

C[m\,m2\n] set of multi-indices to describe higher-order derivatives, page 155 

card(i!f) the cardinality of set H, page 155 

T[l\ set of multi-indices to describe positive and negative parts of higher-order 
derivatives, page 155 

s(Xfl) the order of the highest significant 'D-derivative of random variable Xe 
page 158 

I© = suPAe^ ll^lle. page 168 

c^(o) normaUzing constant for finite products, page 168 

Bg,m,{A(k)}{''^,p) an upper bound for the n*'* order derivative over a finite prod­
uct, page 168 

\A the indicator mapping for event A, page 192 

Aa{k) the halted system, page 202 

r^"' the maximal length of the n*'* order derivative, page 209 

^g,T^,{A{k)){n,p) an upper bound for the n*'' order derivative over a random 
horizon product, page 211 



List of Symbols 311 

a{q,M,n,p) an upper bound, page 213 

b{q, M, n) an upper bound, page 218 

CA(O) supremum of a normalizing constant for finite products, page 220 

7?̂ " the maximal length of the n*'' order derivative, page 230 

B° r^/^,^,(n,p) an upper bound for the n*'' order derivative over a random 
product for the Lyapunov exponent, page 231 



List of Assumptions 

(A) page 23 

(C) page 82 

(CI) page 100 and 229 

(C2) page 100 and 229 

(C3) page 100 and 229 

(C4) page 103 

(C4)' page 104 

(D) page 108 

(51) page 66 

(52) page 66 

(53) page 66 

(W) page 184 

(Wl) page 87 

(W2) page 87 

(W3) page 87 

(W4) page 249 



Index 

P-analyticity 
of a measure, 170 
of a random variable, 174 

2?-derivative 
higher order, of a measure, 152 
higher order, of a random variable, 

162 
of a measure, 121 
of a random variable, 132 

Z?-differentiability 
higher order, of a measure, 151 
higher order, of a random variable, 

163 
of a measure, 120 
of a random variable, 132 

(5-type coupling, 286 
/Lj-integral, 275 
{^-irreducible, 290 
a-field, 275 
r-projection, 137 
' ^max) 4 

a.s., V 
absolute measure, 276 
absolutely continuous, 276 
absorbing, 4, 265 
additional customer, 245 
analytic, 294 
aperiodicity, 290 
arrival index, 31 
Arzela-Ascoli theorem, 292 
associativity, 265 
asymptotic pattern, 103 
atom, 290 

autonomous Petri net, 11 
average weight of a path, 62 

backward coupling. 111 
Banach space, 281 
Banach-Steinhaus theorem, 283 
batch processing, 22, 48 
Bernoulli distribution, 142 

analyticity, 172 
differentiability, 142 
higher order differentiability, 159 

Birkhoff's pointwise ergodic theorem, 
278 

blocking, 22, 47 
discipline, 23 
index, 32 

Borel field, 275 

c.d.f., 277 
Cauchy term, 293 
Cesaro sum, 291 
circuit, 6 
classical regenerative, 287 
closed queueing network, 21 
communication graph, 5 
commutativity, 265 
continuous mapping theorem, 280 
convergence 

w-norm, 281 
almost surely, 279 
in distribution, 280 
in probability, 279 
total variation, 280 
weak, 280 

coupling, 285 
J-type, 286 
backward. 111 



316 I N D E X 

from the past, 111 
Goldstein, 286 
strong, 285 
time, 61 

critical graph, 62 
cumulative distribution function, 277 
customer 

additional, 245 
initial, 245 

cycle 
formula, 106, 111, 116 
of a regen. process, 287 

cyclicity 
of a graph, 62 
of a matrix, 61 

deadlock, 13 
density, 277 
diagonal condition, 80 
dioid, 5, 6 
Dirac measure, 125 
distribution 

Bernoulli, 142, 159, 172 
Dirac measure, 125 
Exponential, 123, 153, 158, 171 
Gamma, 124, 158 
negative binomial, 273 
shifted negative binomial, 273 
Uniform, 124 

distribution function, 277 
distributivity 

left, 265 
right, 265 

dominated convergence theorem, 286 

eigenspace, 61 
eigenvalue, 61 
eigenvector, 60 

unique, 64 
element 

nonstandard, 140 
standard, 140 

equality 
in the weak O-sense, 138 
strong, 138 

ergodicity, 278 

ersatz derivative, 142 
event graph, 11 
Exponential distribution, 123 

analyticity, 171 
differentiability, 123 
higher order differentiability, 153, 

158 

firing time, 11 
first order limit, 59 
fixed support, 17 
fork, 22 
Pubini's theorem, 276 

Gamma distribution, 124, 158 
general sample path formula (GSPF), 

20, 33 
Goldstein's maximal couphng, 286 
graph 

average weight of a path, 62 
circuit, 6, 62 
communication graph, 5 
critical graph, 62 
cyclicity, 62 
length of path, 6 
maximal strongly connected sub­

graphs, 62 
path, 6 
random, 85 
reduced, 62 
strongly connected, 62 
weight of path, 6 
weight of path in random graph, 

85 

Hahn-Jordan decomposition, 120, 154, 
276 

Harris 
ergodic, 290 
recurrent, 290 

heap of pieces, 7 
homogeneous recurrence relation, 6 

i.i.d., v 
idempotent, 4, 6 
identity, 265 



I N D E X 317 

index 
arrival, 31 
blocking, 32 
service, 31 
service time, 31 

indicator mapping, 192 
induced measure, 277 
inhomogeneous recurrence relation, 6 
initial 

customer, 245 
marking, 11 

input of a matrix, 132 
integrable, 50 
internal overtaking, 23 
invariant queueing network, 45 
irreducibility, 16 

of random matrices, 17 

join, 22 

Lagrange term, 293 
lattice type distribution, 287 
Lebesgue measure, 275 
left distributivity, 265 
Leibnitz principle, 140 
length of path, 6 
limit 

first order, 59 
second order, 59 
type I, 59 
type 11(a), 59 
type 11(b), 59 

Lindley's equation, 28 
linear 

dependent, 10 
independent, 10 

Lipschitz 
constant, 291 
continuity, 291 

live Petri net, 13 
Loynes 

scheme, 88 
sequence, 89 
variable, 90 

Lyapunov exponent, 73 
bottom, 70 

max-plus , 73 
maximal, 70 
minimal, 70 
top, 70 
vector, 79 

m.s.c.s., 62 
MacLaurin series, 294 
marking 

initial, 11 
maximal, 11 

Markov chain, 94, 289 
(/(-irreducible, 289 
aperiodicity, 290 
atom, 290 
d-cycle, 290 
Harris ergodic, 290 
period, 290 
transition kernel, 289 
uniformly ^-recurrent, 95, 289 

matrix 
communication graph, 5 
cyclicity, 61, 62 
integrable, 50 
irreducible, 16 
primitive, 62 
random and irreducible, 17 
rank one, 81 
reducible, 16 
regular, 4 
scsl-cycl, 62 
transpose, 4 

max-plus 
algebra, 4 
linear queueing network, 38 
model, 4 
upper bound, 49 

maximal 
marking, 11 
strongly connected subgraphs, 62 

mean-value theorem, 292 
measurable 

mapping, 275 
space, 275 

measure, 275 
/Lx-integral, 275 



318 I N D E X 

(7-finite, 275 
absolute, 276 
absolutely continuous, 276 
finite, 275 
induced, 277 
measurable space, 275 
non-negative, 275 
probability, 276 
Radon-Nikodym, 276 
regular, 277 
signed, 275 

measure space, 275 
memory loss property, 81 
metric, 277 

complete, 277 
metric space, 277 

complete, 277 
projective, 58 
pseudo, 277 

min-plus algebra, 4 
min-plus model, 4 
MLP, 81 

negative binomial distribution, 273 
neutral element, 265 
no-routing condition, 23 
non-autonomous Petri net, 11 
non-lattice type distribution, 287 
nonstandard elements of M^'^'', 140 
norm, 277 

operator norm, 282 
projective, 57 
total variation, 280 
v-norm, 281 

open 
queueing network, 21 
set, 277 

operator norm, 282 
order of GSPF, 33 

p.d.f., 277 
path, 6 

average weight, 62 
length of path, 6 
random graph, 85 

weight, 6 
weight in random graph, 85 

pattern, 100 
asymptotic, 103 
of {^(A;)}, 103 
of a random sequence, 100 

Perron-Probenius theorem, 61 
perturbation analysis, 119 
Petri net, 10 

autonomous, 11 
deadlock, 13 
live, 13 
marking 

initial, 11 
maximal, 11 

non-autonomous, 11 
place, 11 
stochastic, 12 
timed, 12 
transition, 11 

place, 11 
Polish space, 278 
primitive, 62 
principle of uniform boundedness, 283 
probability 

density function, 277 
measure, 276 
space, 276 

product rule 
Cp-analyticity 

of ®-sums and igi-products, 177 
of measures, 173 

Cp-differentiability 
higher-order, of ®-sums and ®-

products, 165 
higher-order, of measures, 160 
of ©-sums and (gi-products, 144 
of measures, 130 

I>-analyticity 
of measures, 172 

•D-differentiability 
higher-order, of measures, 155 
of measures, 125 

projective 
metric, 58 
norm, 57 



I N D E X 319 

pseudo metric, 277 

queueing discipline, 23, 47 
queueing network 

closed, 21 
invariant, 45 
max-plus linear, 38 
open, 21 

Radon-Nikodym, 276 
random graph 

weight of path, 85 
random variable, 275 
randomization, 146 
rank one, 81 
recurrence relation 

homogeneous, 6 
inhomogeneous, 6 
standard autonomous, 14 
standard max-plus linear, 38 
standard non-autonomous, 15 

reduced graph, 62 
reducibility, 16 
regeneration set, 290 
regenerative, 287 
regenerative process, 287 
regular 

matrix, 4 
measure, 277 

renovating events. 111 
resequencing, 23 

domain, 32 
right distributivity, 265 

scsl-cycl, 62 
second order limit, 59 
semiring, 4 
service 

index, 31 
time index, 31 

shift operator, 278 
compatible, 278 
ergodic, 278 
invariant, 278 
stationary, 278 

shifted negative binomial distribution, 
273 

solid space, 125 
space 

Banach, 281 
measurable, 275 
metric, 277 
Polish, 278 
probability, 276 
projective, 10 
solid, 125 
topological, 277 

standard 
autonomous recurrence relation, 

14 
construction, 122 
elements of M^**'', 140 
max-plus linear recurrence rela­

tion, 38 
non-autonomous recurrence rela­

tion, 15 
stationary, 278 
stochastic Petri net, 12 
stopping time, 287 
strong 

coupling, 285 
equality, 138 

strongly connected graph, 62 
subadditive process, 66 

taboo probability, 290 
Taylor series, 293 

Cauchy term, 293 
Lagrange term, 293 
MacLaurin series, 294 
Taylor polynomial, 294 

timed Petri net, 12 
topological space, 277 
total variation norm, 280 
transition, 11 
transpose, 4 
type I limit, 59 
type 11(a) hmit, 59 
type 11(b) limit, 59 

Uniform distribution, 124 



320 I N D E X 

differentiability, 124 
uniformly 

0-recurrent Markov chain, 95, 289 
bounded, 292 
continuous families of mappings, 

292 
continuous mappings, 292 

unit element, 265 
up-crossing property, 80 
upper bound, 49 

v-norm, 281 
convergence, 281 

variability expansion, 186 
variable 

destinations, 23 
origins, 22 

vector 
linear dependent, 10 
linear independent, 10 
transpose, 4 

waiting time 
forward construction, 20 
Loynes sequence, 89 
Loynes variable, 90 
stability, 92 

Wald's equality, 287 
weak P-sense equality, 138 
weak computation 

rules of, 139 
weak derivative, 119, 125 
weak differentiability, 125 

zero element, 265 



Printed in the United States 




