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Preface

This monograph presents perturbation analysis for max-plus linear stochastic
systems. Max-Plus algebra has been successfully applied to many areas of sto-
chastic networks. For example, applying Kingman’s subadditive ergodic theorem
to max-plus linear queuing networks, one can establish ergodicity of the inverse
throughput. More generally, applying backward coupling arguments, stability
results for max-plus linear queuing systems follow. In addition to that, stability
results for waiting times in open queuing networks can be obtained.

Part 1 of this book is a self-contained introduction to stochastic max-plus
linear systems. Chapter 1 provides an introduction to the max-plus algebra.
More specifically, we introduce the basic algebraic concepts and properties of
max-plus algebra. The emphasis of the chapter is on modeling issues, that is,
we will discuss what kind of discrete event systems, such as queueing networks,
can be modeled by max-plus algebra. Chapter 2 deals with the ergodic theory
for stochastic max-plus linear systems. The common approaches are discussed
and the chapter may serve as a reference to max-plus ergodic theory.

Max-Plus algebra is an area of intensive research and a complete treatment
of the theory of max-plus linear stochastic systems is beyond the scope of this
book. An area of applications of max-plus linearity to queuing systems not
covered in this monograph is the generalization of Lindley-type results for the
GI/G/1 queue to max-plus linear queuing networks. For example, in [1, 2] Alt-
man, Gaujal and Hordijk extend a result of Hajek [59] on admission control to
a GI/G/1 queue to max-plus linear queuing networks. Furthermore, the focus
of this monograph is on stochastic systems and we only briefly present the main
results of the theory of deterministic max-plus systems. Readers particularly
interested in deterministic theory are referred to [10] and the more recent book
[65]. For this reason, network calculus, a min-plus based mathematical theory
for analyzing the flow in deterministic queueing networks, is not covered either
and readers interested in this approach are referred to [79]. Various approaches
that are extensions of, or, closely related to max-plus algebra are not addressed
in this monograph. Readers interested in min-max-plus systems are referred to
[37, 72, 87, 98]. References on the theory of non-expansive maps are [43, 49, 58],
and for MM functions we refer to [38, 39]. For applications of max-plus methods
to control theory, we refer to [85].

Part II studies perturbation analysis of max-plus linear systems. Our ap-
proach to perturbation analysis of max-plus linear systems mirrors the hierar-
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chical structure inherited by the structure of the problem. More precisely, the
individual chapters will have the following internal structure:

Random variable level: We set off with carefully developing a concept of
differentiation for random variables and distributions, respectively.

Matrix level: For the kind of applications we have in mind, the dynamic of a
system is modeled by random matrices, the elements of which are (sums
of) simple random variables. Qur theory will provide sufficient conditions
such that (higher-order) differentiability or analyticity of the elements of
a matrix in the max-plus algebra implies (higher—order) differentiability
or analyticity of the matrix itself.

System level: For (higher-order) differentiability or analyticity we then pro-
vide product rules, that is, we will establish conditions under which the
(random) product (or sum) of differentiable (respectively, analytic) ma-
trices is again differentiable (respectively, analytic). In other words, we
establish sufficient conditions for (higher—order) differentiability or ana-
lyticity of the state-vector of max-plus linear systems.

Performance level: The concept of differentiability is such that it allows
statements about (higher—order) derivatives or Taylor series expansions
for a predefined class of performance functions applied to max-plus linear
systems. We will work with a particular class of performance functions
that covers many functions that are of interest in applications and that is
most suitable to work with in a max-plus environment.

The reason for choosing this hierarchical approach to perturbation analysis is
that we want to provide conditions for differentiability that are easy to check.
One of the highlights of this approach is that we will show that if a particular ser-
vice time in a max-plus linear queuing network is differentiable [random variable
level], then the matrix modeling the network dynamic is differentiable [matrix
level] and by virtue of our product rule of differentiation the state-vector of
the system is differentiable [system level]. This fact can then be translated into
expressions for the derivative of the expected value of the performance of the
system measured by performance functions out of a predefined class [perform-
ance level]. We conclude our analysis with a study of Taylor series expansions
of stationary characteristics of max-plus linear systems.

Part II is organized as follows. Chapter 3 introduces our concept of weak
differentiation of measures, called D-differentiation of measures. Using the al-
gebraic properties of max-plus, we extend this concept to max-plus matrices
and vectors and thereby establish a calculus of unbiased gradient estimators. In
Chapter 4, we extend the D—differentiation approach of Chapter 3 to higher—
order derivatives. In Chapter 5 we turn our attention to Taylor series expansions
of max-plus systems. This area of application of max-plus linearity has been
initiated by Baccelli and Schmidt who showed in their pioneering paper [17]
that waiting times in max-plus linear queuing networks with Poisson—A—arrival
stream can be obtained via Taylor expansions w.r.t. A, see [15]. For certain
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classes of open queuing networks this yields a feasible way of calculating the
waiting time distribution, see [71]. Concerning analyticity of closed networks,
there are promising first results, see [7], but a general theory has still to be de-
veloped. We provide a unified approach to the aforementioned results on Taylor
series expansions and new results will be established as well.

A reader interested in an introduction to stochastic max-plus linear systems
will benefit from Part I of this book, whereas the reader interested in pertur-
bation analysis, will benefit from Chapter 3 and Chapter 4, where the theory
of D-differentiation is developed. The full power of this method can be appre-
ciated when studying Taylor series expansions, and we consider Chapter 5 the
highlight of the book.

Notation and Conventions

This monograph covers two areas in applied probability that have been disjoint
until now. Both areas (that of max-plus linear stochastic systems and that of per-
turbation analysis) have developed their own terminology independently. This
has led to notational conventions that are sometimes not compatible. Through-
out this monograph we stick to the established notation as much as possible.
In two prominent cases, we even choose for ambiguity of notation in order to
honor notational conventions. The first instance of ambiguity will be the symbol
8. More specifically, in ergodic theory of max-plus linear stochastic systems (in
the first part of this monograph) the shift operator on the sample space 2, tra-
ditionally denoted by 8, is the standard means for analysis. On the other hand,
the parameter of interest in perturbation analysis is typically denoted by 8 too,
and we will follow this standard notation in the second part of the monograph.
Fortunately, the shift operator is only used in the first part of the monograph
and from the context it will always be clear which interpretation of § is meant.
The second instance of ambiguity will be the symbol A. More specifically, for
ergodic theory of max-plus linear stochastic systems we will denote by A the
Lyapunov exponent of the system and A will also be used to denote the inten-
sity of a given Poisson process. Both notations are classical and it will always
be clear from the context which interpretation of A is meant.

Throughout this monograph, we assume that an underlying probability
space (9,4, P) is given and that any random variable introduced is defined
on (Q, A, P). Furthermore, we will use the standard abbreviation ‘i.i.d.’ for ‘in-
dependent and identically distributed,” and ‘a.s.” for ‘almost surely.” To avoid
an inflation of subscripts, we will suppress in Part II the subscript § when this
causes no confusion. In addition to that, we will write Ey in order to denote the
expected value of a random variable evaluated at . Furthermore, let a < b, for
a,b € R, and let f: (a,b) — R be n times differentiable with respect to 6 on
(a,b), then we write 2= | 9=0, J () for the nth derivative of f evaluated at 0.
We will frequently work with the set RU {—oc0} and we introduce the following
convention: for any z € R we set £ + (—00) = —c0+ 2T = —00 = —00 — z,
x — (—00) = 00, and —00 + (—00) = —00 and ~o0 — (—00) = 0.
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Max-Plus Algebra



Chapter 1

Max-Plus Linear Stochastic
Systems

In this chapter we introduce max-plus algebra. The basic properties of max-plus
algebra are discussed in Section 1.1. A first example of a max-plus linear system
is presented in Section 1.2. A variant of the basic max-plus model best suited
for studying the asymptotic behavior of max-plus linear systems is presented
in Section 1.3. In general, the type of system that can be analyzed through
max-plus techniques is best described in terms of Petri nets which are intro-
duced in Section 1.4. To make the modeling aspects involved more transparent,
we present in Section 1.5 a characterization of max-plus linearity in terms of
queueing networks. This section also contains many examples of max-plus linear
systems. Finally, we discuss in Section 1.6 properties of max-plus algebra that
are of importance when max-plus linear recurrences are studied. In particular,
we present approaches with which the growth rate of a max-plus linear system
can be measured and we discuss various ways of making max-plus algebra a
metric space.

1.1 The Max-Plus Algebra

In this section we introduce max-plus algebra. For an extensive discussion of the
max-plus algebra and similar structures we refer to [10, 65]. An early reference
is [37]. A historical overview on the beginnings of the max-plus theory can be
found in [47].

Max-Plus algebra is usually introduced as follows. Let ¢ = —00, e = 0 and
denote by Rp,ax the set RU{e}. For elements a, b € Ry,,x we define the operations
@ and ® by

a®b=max(a,b) and a®b=a+b, (1.1)

where we adopt the convention that for all ¢ € R: max(a, —00) = max(—o0,a) =
a and a+(—00) = —oo+a = —o0. The set Ryax together with the operations &
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and ® is called max-plus algebra and is denoted by Riyax = (Ruyax, @, ®, €, €).
In particular, € is the neutral element for the operation & and absorbing for ®,
that is, for all a € Ryax: ¢ ® € = € ® a = . The neutral element for ® is e = 0.

The max-plus algebra is an example of an algebraic structure, called semi-
ring, that is introduced below.

Definition 1.1.1 A semiring is a nonempty set R endowed with two binary
relations, ®r and ®r, so that &g is associative and commutative with identity
element eg; ®pr distributes over © g, is associative, has identity element ep and
er is absorbing for ® g. Such a semiring is denoted by R = (R, ®r, ®R,€R,€R)-
We call R commutative if ®pg is commutative and we call it idempotent if
a®ra=a for all a € R. To simplify the notation, the relation ®p precedes
®r-

The following example provides interpretations of R which are of interest in
applications.

Example 1.1.1

o If we identify &g with conventional addition and ®g with conventional
multiplication, then the neutral elements are eg =0 and eg = 1. We call
Rst = (R,-,+,0,1) the standard model of R. Since conventional multipli-
cation is commutative, the standard model of R is a commutative semiring.
Note that the standard model is not idempotent.

o The structure Rmax 18 an idempotent semiring and we call Ryax the maz-
plus model of R. Note that ® is commutative. Hence, the maz-plus model
of R is an idempotent, commutative semiring.

o In the same way as for the max-plus model of R we find the min-plus
model Rmin = (Rmin = R U {oo}, min, +, 00,0} of R. Note that Rumin 1s
an idempotent, commutative semiring.

e Let § be a non-empty set. Denote the power set of S by R, then
(R,U,N,0,8) is a commutative, idempotent semiring.

For more examples of semirings we refer to the excellent overview in [47].
To keep the notation simple, we will in the following suppress the subscript R
when referring to a semi-ring.

An element A € R'*/ is called matriz and its elements are denoted by Ay
for 1 <i<I,1<3j<J. A matrix A € RI*/ is called regular if A contains
at least one element different from € in each row. The transpose of a matrix
A, denoted by AT, is defined in the usual way: (AT);; = Aj; for all 4,5. For
matrices A € R'*7 and B € R7*K the matrix product A @ B is defined in the
usual way as follows:

J
(A® B)ikz@Aij ® Bjk o A ®B1r @ - @ Aiyy ® By, (1.2)
j=1
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for 1<i<I,1<k<K,andfor A(k) € R7*7, 1<k <m,

Ak) & Am)®@ Am-1)® -+ ® A(1).

W

)
I

1

Specifically, for A € R'*7 and o € R, scalar multiplication is defined by
(a®A)yj=a® Aij, (1.3)

for 1 <i<1I,1<j < J Addition of matrices 4 € R'* and B € RI*,
denoted by A & B, is defined through

(AGBB)Z']' =Aij @Bij s (1.4)

for 1<4<1,1<35<J,and for A(k) € R™*/, 1<k <m,

éA(k)  Am)® Am -1 @ @ AQ1).
k=1

Let £(I,J) denote the I x J matrix with all elements equal to ¢ and
E(I,J) the matrix with e on the diagonal and ¢ elsewhere. For R'*”, the
@-sum, as defined in (1.4), is associative, commutative and has zero element
E(I,J), and for R7*7 the ®-product is associative, distributive with respect
to @, has identity element E(J,J) and £(J,J) is absorbing for ®. Idempo-
tent semirings are called dioids in [10]. Note that if @ is idempotent, then the
addition of matrices in (1.4) is idempotent. Thus, if @ is idempotent, then
RI* = (R, ®,®,E(J,J), E(J,J)) is a dioid. For example, both the max-
plus model and the min-plus model of R are dioids, cf. Example 1.1.1. Observe
that generally R7*7 fails to be commutative even if R is a commutative semi-
ring, which is due to the definition of the matrix product in (1.2).

Remark 1.1.1 The elements of RY % R7*Y are called vectors. In the following
we will carefully distinguish R’ (the set of J-dimensional vectors in R), RI*J
(the set of I x J-dimensional matrices in R), and R7*7 (the set of square
matrices in R). Note that for A € R™J and x € R’ the product A ® = is
defined in (1.2), whereas A® A is only defined for A € R7*7.

For the kind of applications we will study in this monograph, we focus on
the max-plus semiring. Roughly speaking Ryax is used to model departure
times, called daters, in a class of discrete event dynamic systems which will be
introduced in Section 1.4 and Section 1.5. In what follows formulas have thus
to be interpreted in max-plus algebra.

Let A be a J x J dimensional matrix. We denote the communication graph of
Aby G(A) = (N(A),D(A)), where N(A) = {1,...,J} denotes the set of nodes
and D(A) C {1,...,J}x{1,..., J} the set of arcs where (¢, j} € D(A) if and only
if Aj; # e. For any two nodes i, j, a sequence of arcs p = ((in,Jn) : 1 < n < m),
so that 4 = 41, jp = ipp1 for 1 < n < m and j, = j, is called a path from
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i t0 j. In case i = 7, p is also called a circuit. For any arc (¢,5) in G(A),
we call Aj; the weight of arc (4,7). The weight of a path in G(A) is defined
by the sum of the weights of all arcs constituting the path; more formally, let
0= ((in,jn) : 1 £ n £ m) be a path from i to § of length m, then the weight of
p, denoted by |p|w, is given by

m m
ol =D Ajuin =) Aji-
n=1 n=1

Let A™ denote the nt* power of A, or, more formally, set A(k) = A, for 1 < k <
n, and

A 48 = (R A(K), (1.5)
k=1

where A® = E. With these definitions it can be shown that A7F; is equal to the
maximal weight of paths of length n (that is, consisting of n arcs) from node ¢
to node j, and A7; = € refers to the fact that there is no path of length n from
i to j, see [10] or [37].

Some remarks on the particularities of max-plus algebra seem to be in order
here. Idempotency of & implies that @ has no inverse. Indeed, if ¢ # ¢ had an
inverse element, say b, w.r.t. ®, then a ® b = £ would imply a ®a®b=a D e.
By idempotency, the left-hand side equals a @ b, whereas the right-hand side
is equal to a. Hence, we have a @ b = a, which contradicts a ® b = ¢. For
more details on idempotency, see [43]. For this reason, R,ax is by no means an
algebra in the classical sense. The name ‘max-plus algebra’ is only historically
justified and the correct name for Rpy.x would be ‘idempotent semiring’ or
‘dioid’ (which may explain why the name ‘max-plus algebra’ is still predominant
in the literature). The structure Ruax is richer than that of a dioid since ® is
commutative and has an inverse. However, in what follows we will work with
matrices in Ryax and thereby lose, like in conventional algebra, commutativity
and general invertibility of the product.

In the following we will study matrix-vector recurrence relations defined
over a semiring. With respect to applications this means that we study systems
whose dynamic can be described in such a way that the state-vector of the
system, denoted by z(k), follows the linear recurrence relation

z(k+1) = A(k) @ 2(k) ® B(k), k>0,

with 2(0) = zg, where {A(k)} is a sequence of matrices and {B(k)} a sequence of
vectors of appropriate size. The above recurrence relation is said to be inhomo-
geneous. As we will see below, many systems can be described by homogeneous
recurrence relation of type

zk+1)=Ak)®zk), k>0,

with z(0) = zo, where {A(k)} is a sequence of square matrices. See Section 1.4.3
for more details. As explained above, examples of this kind of systems are con-
ventional linear systems, that is, ® represents conventional matrix-vector multi-
plication and @ conventional addition of vectors, max-plus linear and min-plus
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linear systems. Since max-plus linear systems are of most interest in applica-
tions, we will work with max-plus algebra in the remainder of this book. Hence,
the basic operations @ and ® are defined as in (1.1) and extended to matrix
operations as explained in (1.4) and (1.2).

1.2 Heap of Pieces

In this section, we present a first example of a max-plus linear system. The type
of system studied in this section is called heap models. In a heap model, solid
blocks are piled up according to a ‘Tetris game’ mechanism. More specifically,
consider the blocks, labeled ‘o’, ‘@’ and ‘“y’, in Figure 1.1 to Figure 1.3.

Figure 1.1: Block o

Figure 1.2: Block g

Figure 1.3: Block v

The blocks occupy columns out of a finite set of columns R, in our example
given by the set {1,2,...,5}. When we pile these blocks up according to a
fixed sequence, like, for example, ‘a 3 o v £, this results in the heap shown
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in Figure 1.4. Situations like the one pictured in Figure 1.4 typically arise in
scheduling problems. Here, blocks represent tasks that compete for a limited
number of resources, represented by the columns. The extent of an individual
block over a particular column can be interpreted as the time required by the
task of this resource. See [28, 51, 50] for more on applications of heap models
in scheduling.

[ T T 1 T 1

1 2 3 4 5
Figure 1.4: The heap w = afavyf.

Before we can continue, we have to introduce some notation. Let 4 denote
the finite set of blocks, in our example A = {a,5,v}. We call a sequence of
blocks out of A a heap. For example, w = aBa~v 3 is a heap. We denote the
upper contour of a heap w by a vector z3(w) € R®, where (x4 (w)), is the height
of the heap on column r, for example, zn(afav ) = (3,4,4,3,3), where we
started from ground level. The upper contour of the heap a 5 a v 8 is indicated
by the boldfaced line in Figure 1.4.

A piece a € A is characterized by its lower contour, denoted by I(a), and its
upper contour, denoted by u(a). Denote by R(a) the set of resources required
by a. The upper and lower contour of a piece a enjoy the following properties:
l(a),u(a) € RE,,, l-(a) < u(a) for r € R(a), and I.(a) = u,(a) = —e for
T & R(a). We associate a matrix M (a) with piece a through

0 fors=r,r ¢ R(a),
(M(a))rs =  ur(a) —Ils(a) for r,s € R(a),

—00 otherwise.
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The matrices corresponding to the blocks a, 8 and « are as follows:

1 —o0 —00

1 1
1 1 1 —0 —x
M(a) = | —o0o~00 0 —00 —00 |,
—oo—00—00 0 —o00
—00—00—00 —o0 0
0 —o00 -0 —0 —©
-0 1 1 2 1
MPB) =|-c 1 1 2 1
-0 1 1 2 1
-0 2 2 3 2
and
2 3 3 - —x
1 2 2 —o0 —o0
M(v) = 1 2 2 -0 -
—o0 —o0 —o00 0 —o0

—00 —o0 —o0 —oo 0

For a heap w and a block 7 € A, we write wn for the heap constituted out
of piling block 1 on heap w. It is easily checked that the upper contour follows
the recurrence relation:

(@n(wn)r = max{(M(n))rs + (2n(w))s : s € R},

with initial contour z4 (@) = (0,...,0). Elaborating on the notational power of
the max-plus semiring, the above recurrence relation reads:

(@r(wn))r = DM@))rs ® (@r(w))s, TER,
SER

or, in a more concise way,
zn(wn) = M(n) ® zp(w) .

For a given sequence 7y, k € N, of pieces, set zy (k) = zx{mn2 -+ 7%) and
M(k) = M(ni). The upper contour follows the recursive relation:

zn(k+1) = Mk)®xnlk), k>0,
where z4,(0) = (0,...,0). For given schedule 7, k € N, the asymptotic growth
rate of the heap model, given by

1
lim —zy(k),

k—oo k

provided that the limit exists, describes the speed or efficiency of the schedule.
Limits of the above type are studied in Chapter 2.
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1.3 The Projective Space
On RJ

max We introduce an equivalence relation, denoted by £, as follows: for
Y,ZeRJ Y = Zif and only if there is an o € R so that Y = a ® Z, that is,

max?
Yi=a+2Z;,1<1i<J,or, in a more concise way,

Y27 < 3FacR: Y=a®Z7.

IfY & Z, we say that Y and Z are linear dependent, and if Y % Z, we say
that Y and Z are linear independent. For example, (1,0)7 2 (0,~1)T and the
vectors (1,0)T and (0,—1)T are linear dependent; and (1,0)T % (0,0)7 which
implies that the vectors (1,0)7 and (0, -1)T are linear independent.

For Z € Ry,,, we write Z for the set {Y € R, : Y & Z}. Let PR,

max

denote the quotient space of R,Jnax by equivalence relation £, or, more formally,
PR.,.. = {Z : ZeRL,.}.

PR, is called the projective space of R}, with respect to 2. The bar-operator
is the canonical projection of Ry, onto IPRJ,.. In the same vein, we denote
by IPRY the quotient space of R’ by the above equivalence relation.

For z € R, set z(z) & (0,2 — 21,73 — *1,...,25 — x1) . For example,
2((2,3,1)7) = (0,1, ~1)7. Consider € IPR” with € R’. Then, z(z) lies in 7,
which stems from the fact that 1 ® z(z) = z. Moreover, for any vectors u,v € T
it holds that z(u) = z(v), which can be expressed by saying that z maps T onto
a single element of RY the first component of which is equal to zero. We may
thus disregard the first element and set Z(x) = (z2 — 21,23 — %1,..., 27 —21) .
For example, 2((2,3,1)T) = (1, —1) 7. Hence, Z(') identifies any element in IPR”
with an element in R7—1,

1.4 Petri Nets

In this section, we study discrete event systems whose sample path dynamic
can be modeled by max-plus algebra. Section 1.4.1 introduces the modeling tool
of Petri nets. In Section 1.4.2, we discuss max-plus linear recurrence relations
for so called autonomous and non-autonomous Petri nets. In Section 1.4.3, we
explain the relation between autonomous and non-autonomous representations
of a discrete event system, such as, for example, a queueing network, and an
algebraic property, called irreducibility, of the max-plus model. Eventually, Sec-
tion 1.4.4 discusses some particular issues that arise when dealing with waiting
times in non-autonomous systems.

1.4.1 Basic Definitions

Max-Plus algebra allows one to describe the dynamics of a class of networks,
called stochastic event graphs, via vectorial equations. Before we are able to
give a precise definition of an event graph, we have to provide a brief intro-
duction to Petri nets. A Petri net is denoted by ¢ = (P, Q,F, Mg), where
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P = {p1,...,pp|} is the set of places, Q = {q1,...,9g|} is the set of transi-
tions (also called nodes for event graphs), F C @ x PUP x Q is the set of arcs
and Mg : P — {0,1,..., M}P! is the initial number of tokens in each place,
called initial marking; M is called the maximal marking. For (p;,q;) € F we
say that p; is an upstream place for g;, and for (g;,p;) € F we say that p; is
a downstream place for ¢; and call ¢; an upstream transition of p;. We denote
the set of all upstream places of transition § by 7?(5), i.e., ¢ € 79(5) if and only
if (p;,q;) € F, and the set of all upstream transitions of place ¢ by #?(i), ie.,
j € wP(3) if and only if (g;,p;) € F. We denote by 77! the set of places having
downstream transition ¢; and upstream transition g;.

Roughly speaking, places represent conditions and transitions represent
events. A certain transition (that is, event) has a certain number of input and
output places representing the pre-conditions and post-conditions of the event.
The presence of a token in a place is interpreted as the condition associated with
the place being fulfilled. In another interpretation, m; tokens are put into a place
p; to indicate that m; data items or resources are available. If a token represents
data, then a typical example of transitions is a computation step for which these
data are needed as an input. The marking of a Petri net is identified with the
state. Changes occur according to the following rules: (1) a transition is said to
be enabled if each upstream place contains at least one token, (2) a firing of an
enabled transition removes one token from each of its upstream places and adds
one token to each of its downstream places. A transition without predecessor(s)
is called source transition or simply source. Similarly, a transition which does
not have successor(s) is called sink transition or simply sink. A source transition
is an input of the network, a sink transition is an output of the network. If there
are no sources in the network, then we talk about an autonomous network and
we call it nonautonomous otherwise. It is assumed that only transitions can
be sources or sinks (which is no loss of generality, since one can always add a
transition upstream or downstream to a place if necessary).

A Petri net is called an event graph if each place has exactly one upstream
and one downstream transition, that is, for all ¢ € P it holds |a”(¢)] = 1 and
[{j € @:4€n%(j)}| = 1. Event graphs are sometimes also referred to as marked
graphs or decision free Petri nets. Typical examples are the G/G/1-queue, net-
works of (finite) queues in tandem, Kanban systems, flexible manufacturing
systems, fork/join queues or any parallel and/or series composition made by
these elements.

The original theory of Petri nets deals with the ordering of events, and
questions pertaining to when events take place are not addressed. However, for
questions related to performance evaluation it is necessary to introduce time.
This can be done in two basic ways by associating durations with either transi-
tion firings or with the sojourn times of tokens in places.

The firing time of a transition is the time that elapses between the starting
and the completion of the firing of the transition. We adopt the convention that
the tokens that are to be consumed by the transition remain in the preceding
places during the firing time. Such tokens are called reserved tokens. Firing times
can be used to represent production times in a manufacturing environment,
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where transitions represent machines, the length of a code in a computer science
setting etc.

The holding time of a place is the time a token must spend in the place
before contributing to the enabling of the downstream transitions. Firing times
represent the actual time it takes to fire a transition, whereas holding times
can be viewed as minimal time tokens have to spend in places. In practical
situations, both types of durations may be present. However, it can be shown
that for event graphs one can disregard durations associated with transitions
without loss of generality (or vice versa). In what follows we associate durations
with places and assume that the firing of transitions consumes no time.

A Petri net is said to be timed if such durations are given as data associated
with the network. If these times are random variables defined on a common
probability space, then we call the Petri net a stochastic Petri net.

A place p; is said to be first in first out (FIFO) if the k** token to enter this
place is also the k** token which becomes available in this place. In the same
way, we call a transition ¢; FIFO if the k** firing of g; to start is also the kth
firing to complete. If all places and transitions are FIFO, then the Petri net is
said to be FIFO.

1.4.2 The Max-Plus Recursion for Firing Times

In what follows we study (stochastic) FIFO event graphs. We discuss the au-
tonomous case in Section 1.4.2.1 and the non-autonomous case in Section 1.4.2.2.

1.4.2.1 The Autonomous Case

Let o;(k) denote the k** holding time incurred by place p; and let X;(k) denote
the time when transition j fires for the k** time. We take the vector X (k) =
(X1(k),..., X|gi(k)) as state of the system.

To any stochastic event graph, we can associate matrices
A(0,k),..., A(M, k), all of size |Q| x |Q], given by

(A(m, k) = b oi(k), (1.6)

{iemdt|Mo(é)=m}

for 4,1 € Q, and in case the set on the right-hand side is empty, we set
(A(m,k));i = €. In other words, to obtain (A(m,k)); we consider all places
with downstream transition q; and upstream transition ¢; with initially m to-
kens, and we take as (A(m, k)); the maximum of the k** holding time of these
places.

If we consider the state variables X;(k), which denote the k** time transi-
tion i initiates firing, then the vector X (k) = (X1(k),..., X|g|(k)) satisfies the
following (linear) equation:

X(k) = A0 ®X(K)O ALK ®X(k-1) & (7
@AM E)Q X (k— M),
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see Corollary 2.62 in [10].

A Petri net is said to be live (for the initial marking M) if for each marking
M reachable from Mj and for each transition g, there exists a marking N
which is reachable from M such that g is enabled in V. For a live Petri net,
any arbitrary transition can be fired an infinite number of times. A Petri net
that is not live is called deadlocked. An event graph is live if and only if there
exists a permutation P of the coordinates so that the matrix PT @ A(0,k) ® P
is strictly lower triangular for all k.

We define the formal power series of A(0, k) by

A*(0,k) E P A0, k) .
=0

If the event graph is live, then A(0, k) is (up to a permutation) a lower triangular
matrix, and a finite number p exists, such that

A*(0,k) = éAi(o,k). (1.8)
i=0
Set
M
b(k) = €D A(i, k) ® X (k — 1),
=1
then (1.7) reduces to
X(k) = A(0,k) ® X(k) @ b(k) . (1.9)

For fixed k, the above equation is of type x = A ® z ® b. It is well-known that
A* ® b solves this equation, see Theorem 3.17 in [10] or Theorem 2.10 in [65].
Therefore, X (k) can be written

X(k) = A*(0,k) @ b(k) ,
or, more explicitly,

X(k) = A*(0,k)®A(1, k)®X (k—1)- - -®A™(0,k)®A(M, k)X (k—M). (1.10)
The difference between (1.7) and (1.10) is that the latter contains no 0** or-
der recurrence relation, that is, X (k) occurs only on the left-hand side of the
equation.

As a next step we transform (1.10) into a first-order recurrence relation. In
order to do so, we take as new state vector the (|Q| X M)-dimensional vector

zw(k) = (X(k), X(k-=1),...,.X(k~M+1))T (1.11)
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and (|]Q| x M) x (|Q| x M)-dimensional matrices

A*(0,k) ® A1, k) A*(0,k) ® A(2,k) -+ -+~ A*(0,k) ® A(M, k)
E E o £
Alk-1) = & E &
¢ e B ¢
(1.12)

Then (1.10) can be written as
zk) = Ak-1)®zk-1), k=1,

or, equivalently,

zk+1) = Ak)®z(k), k=0.

We call the above equation the standard autonomous equation. Any live FIFO
autonomous event graph can be modeled by a standard autonomous equation.

1.4.2.2 The Non-Autonomous Case

Let Z C @ denote the set of input transitions, set @' = 9\ Z, and denote the
maximal initial marking of the input places by M’. We let a;(k) denote the kt"

firing time of input transition g;. We now define |Q’| x |Z| dimensional matrices
B(0,k),...,B(M', k), so that

(B(m, k) = &P oi(k),

{ienxi | Mo(i)=m}

for j € @ and ! € Z, and in case the set on the right-hand side is empty,
we set (B(m, k));1 = €. In words, to obtain (B(m,k));; we consider all places
with downstream transition g; (being not an input transition) and upstream
transition ¢; (being an input transition) with initially m tokens. We take as
(B(m, k)) ;i the maximum of the k" holding time of these places. Furthermore,
we let U(k) be a |Z]-dimensional vector, where U;(k) denotes the time of the
k" firing of input transition 4.
The vector of the k** firing times satisfies the following (linear) equation:

X(k)=A(0,k) ® X(k) ® A(LK)® X(k—1) ® ---® AM, k) ® X (k — M)
@B, k)@ U(k)® B(L,k)oU(k—1) & -
- @®@B(M,k)®@U(k- M), (1.13)

where X;(k) and U;(k) are ¢ if k& < 0, see Theorem 2.80 in [10]. Note that X (k)
is the vector of k** firing times of transitions ¢; with ¢ € Q’. Put differently,
X (k) models the firing times of all transitions which are not input transitions.

In what follows, we say that the non-autonomous event graph is live if the
associated autonomous event graph is live (that is, if the event graph obtained
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from the non-autonomous one through deleting all input transitions is live).
From now on we restrict ourselves to non-autonomous event graphs that are
live.

Equation (1.13) is equivalent to

®A*(0,k)® BO,k)QU (k) ® ---
e @AY0,k) 9 BM' kE)@U(k— M), (1.14)

compare recurrence relation (1.10) for the autonomous case; and we define z (k)
like in (1.11).
Define the (|Z] x (M’ + 1))-dimensional vector
u(k) = (Uk), Uk = 1),...,U(k = M"))T
and the (|Q'| x M) x (|Z] x (M' + 1)) maitrix
A*(0,k) ® B(0,k) A*(0,k) ® B(1,k) --- A*(0,k) ® B(M', k)
& & e £
B(k—1)= : :
& & - &
Then (1.14) can be written as
zk) =Ak-1)®zk-1)®Bk-1)@uk), k>1,
with A(k — 1) as defined in (1.12) or, equivalently,
z(k+1) =Ak)Qz(k)® Blk)Qu(k+1), k=>0. (1.15)

We call the above equation the standard non-autonomous equation. Any live
FIFO non-autonomous event graph can be modeled by a standard non-
autonomous equation.

1.4.3 Autonomous Systems and Irreducible Matrices

So far we have distinguished two types of max-plus recurrence relations for firing
times in event graphs: homogeneous recurrence relations of type

2k +1) = A(k) ® z(k) (1.16)

that describe the firing times in an autonomous event graph and inhomogeneous
recurrence relations of type

2(k+1) = A(k) ® z(k) ® B(k) ® u(k +1) (1.17)

that describe the firing times in a non-autonomous event graph.
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In principle, the sample dynamic of a max-plus linear discrete event system
can be modeled either by a homogeneous or an inhomogeneous recurrence rela-~
tion. Indeed, recurrence relation (1.17) is easily transformed into a recurrence
relation of type (1.16). To see this, assume, for the sake of simplicity, that there
is only one input transition, i.e., |I| = 1, and that the initial marking of this
input place is one, i.e., M’ = 1. This implies, that u(k) is a scalar, and denocting
the k" firing time of the source transition by oo(k) it holds that

k
u(k) =Y o03).
i=1
In order to do transform (1.17) into an inhomogeneous equation, set
. ~ {u(k)
) = (5{p)

5 oolk +1) g
Alk) = (B(k)0® ook +1) A(k)) '

Then, it is immediate that (1.17) can be rewritten as

and

k+1) = Ak) @ #(k) . (1.18)

This transformation is tantamount to viewing the input transition as a recycled
transition where the holding times of the recycling place are given by the se-
quence g¢(k). In the following we study the difference between (1.17) and (1.18)
more closely, which leads to the important notion of érreducibility.

We call a matrix A € RLY/ irreducible if its communication graph G(A) is
strongly connected, that is, if for any two nodes ¢, j there is a sequence of arcs
((in, Jn) : 1 £ n < m) so that i = 4y, jn = ip4+1 for 1 < n <m and j,, = j. This
definition is equivalent to the definition of irreducibility that is predominant in
algebra, namely, that a matrix is called irreducible if no permutation matrix P
exists, such that PT ® A ® P has an upper triangular block structure, see [10]
for more details. If a matrix is not irreducible, it is called reducible.

Remark 1.4.1 If A is irreducible, then every row of A contains at least one
finite element. In other words, an irreducible matriz is regular.

The relation between the (algebraic) type of recurrence relation (1.18) and
the type of system modeled can now be phrased as follows: If A(k) is irreducible,
then Z(k) models the sample path dynamic of an autonomous system, or, in
terms of queueing, that of a closed network; see Section 1.5 for a description of
closed queueing systems. If, on the other hand, A(k) is of the above particular
form (and thus not irreducible), then #(k) models the sample path dynamic of
an non-autonomous systems, or, in terms of queueing, that of an open queueing
system; see Section 1.5 for a description of open queueing systems. Hence, a
homogeneous equation can model either an autonomous or a non-autonomous
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system. However, given that A(k) is irreducible, homogeneous equations are
related to non-autonomous systems.

In order to define irreducibility for random matrices, we introduce the con-
cept of fixed support of a matrix.

Definition 1.4.1 We say that A(k) has fized support if the probability that
(A(k))i; equals € is either 0 or 1 and does not depend on k.

With the definition of fixed support at hand, we say that a random matrix A
is irreducible if (a) it has fixed support and (b) it is irreducible with probability
one. For random matrices, irreducibility thus implies fixed support.

The following lemma, establishes an important consequence of the irreducibil-
ity of a (random) matrix: there exists a power of the matrix such that all entries
are different from e.

Lemma 1.4.1 Let A(k) € R1XJ, for k > 0, be irreducible such that (i) all finite
elements are bounded from below by some finite constant § and (i) all diagonal

elements are different from €. Then,

k-1
Gk = @ AG), fork>J,
j=k—J

satisfies (G(k))i; = J -8 for all (i,5) € J x J.

Proof: Without loss of generality assume that § = 0. Let A;; = 0 if 4;;(k) #
€ with probability one and A;; = ¢ otherwise. For the proof of the lemma it
suffices to show that AiJj # ¢ for any 1, 7. Because A(k) is irreducible, so is A.
Hence, for any node 4, j there exists a number m;;, such that there is a path of
length my; from ¢ to j in the communication graph of A. Such a path contains
each arc at most once and is hence of maximal length J. We have thus shown
that for any ¢,j a ms; < J exists such that (A™);; # e. Since all diagonal
elements of A are different from ¢, this yields

Vn Z mij H (A");‘7 7'5 £,

for any %, . Indeed, we can add arbitrarily many recycling loops (¢, 1) to the path.
Using the fact that max(m;; : ¢, j)} < J, completes the proof of the lemma. O

1.4.4 The Max-Plus Recursion for Waiting Times in Non-
Autonomous Event Graphs

We consider a non-autonomous event graph with one source transition denoted
by go. We furthermore assume that the initial marking of this source is equal to
one and that the maximal marking of the input place of the source transition
equals one as well. For each transition ¢ in G we consider the set P(g) of all
paths from go to ¢. We denote by

M(r) =Y Mo(p)

pET
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the total number of all initial tokens on path 7, and set

L{g) = min M(n).
(9) Lin (m)

Lemma 1.4.2 The (k + L(q))** firing of transition q of G consumes a token
produced by the k** firing of transition qo.

Proof: Let s, be the shortest path from gy to ¢ with L(g) tokens. The
length of s, is called the distance from gy to q. The proof holds by induction
w.r.t. the length of s,. If s, = 0, then ¢ = gg and the result is true. Suppose
that the result is true for all transitions with distance k — 1 from gg. Choose
g at distance k, then the transition ¢’ preceding ¢ on path s, is at distance
k — 1 from g and the induction applies to ¢’. Now the place p between ¢’ and
g contains m tokens. By definition of ¢/, L(¢') = L{q) — m, and, by induction,
the (k 4 L(q'))*" firing of transition ¢’ uses token number k. Because the place
between ¢’ and q is FIFO, the (k + L(q))*" firing of ¢ will use that token. (J

For the sake of simplicity we assume that for every transition ¢ in G there
exists a path from gg to ¢ that contains no tokens. For queueing networks this
condition means that the network is initially empty. Note that the queueing
network being empty does not mean that the initial marking in the Petri net
model is zero in all places. This stems from the fact that tokens representing
physical constrains, like limited buffer capacity, are still present in the Petri net
model even though the queueing network is empty. We now set

Wy(k) = z4(k) —u(k), 1<¢< @, (1.19)

for £k > 1. In a queueing network interpretation, let the firing of transition ¢
represent the beginning of service at a particular server j. Then Lemma 1.4.2 jus-
tifies the interpretation of W, (k) as the travel time of the k** customer between
her /his entrance in the system and the beginning of her/his service at node j.
Since we consider a non-autonomous system, the basic recurrence relation for
the firing times is given as

2(k+1) = A(k) ® z(k) ® B(k) ® u(k +1) . (1.20)

We have assumed that there is only one input transition, i.e., |Z| = 1, and
that the initial marking of this input place is one, i.e., M’ = 1. This implies,
that u(k + 1) is a scalar. If we consider only component z4(k), we can subtract
u(k + 1) on both sides of equation (1.20) and get

Wk + 1)=z4(k+1) — u(k+1)
=(A(k) ® z(k))q @ (—u(k + 1)) ® B,(k) .

Let oo(k) denote the k** firing time of the source transition, that is,

k
u(k) = 3 oo(i),
i=1
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then

(A(k) ® 2(k))g ® (—u(k + 1))= D Agr (k) ® (—o0(k + 1)) ® (2, (k) — u(k))
reQ’

=D Awr(k) ® (~00(k + 1)) ® Wa(k) .
reQ’

Let C'(h) denote a diagonal matrix with —h on the diagonal and ¢ else. Then,
we can write the expression on the right-hand side of the above equation as
follows

D Axr(k) ® (—o0(k + 1)) @ Wy (k)=(A® C(oo(k + 1)) ® W(k)), -
reQ@’

Combining the above formulas, we obtain the following vectorial form of the
recurrence relation for W(k + 1):

W(k+1) = A(k) ® Cloo(k + 1)) @ W (k) ® B(k) . (1.21)

Lemma 1.4.3 Let zp = (0,...,0) in (1.20). If W(0) = z¢ in (1.21), then
W (1) = B(0).

Proof: We have assumed that the Petri net is live. There exists thus a path
from the source go to any transition g. The element A,-(0) is the time it takes
for the first firing of transition r to trigger the first firing of transition g, and
Agr(0) = € if transition r has no influence on transition gq. Moreover, the time it
takes for the first firing of the source transition to trigger a firing of transition
q is Bg4(0). Because any transition r that can possibly trigger a firing of ¢ lies
on a path from ¢ to g, it holds that

Apr(0) < By(0), re Q,

or, equivalently,

@ Aqr(o) < B(O),

reQ’
which yields
A(0)®zo < B(0).
The above inequality implies
A(0) ® C(oo(1)) ® 0 < B(0) .

By equation (1.21), it follows W (1) = B(0), which concludes the proof of the
lemma. OJ
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By using elementary matrix operations in the max-plus algebra, Equation
(1.21) can be rewritten as

k
W(k+1) =@ A(i) ® Cao(i+ 1)) ® W(0)

i=0
k k
o@ @ AG)®Cloo(i+1)) ® Bi), (1.22)
i=0 j=i+1

with W(0) = =p.

When it comes to queueing networks, we obtain from (1.22) a closed-form
expression for the vector of (k+ 1)% waiting/sojourn times in an open queueing
network that is initially empty and whose sequence of interarrival times is given
by {o0(k)}. More precisely, depending on whether we mode! beginning of service
or departure times by x(k), W;(k) models the time the k** arriving customer
spends in the system until her/his service at server j starts, or until she/he
departs from server j; see also Section 1.5.3.3. Equation (1.22) is called the
forward construction of waiting times.

1.5 Queueing Systems and Timed Event Graphs

Petri net models of queueing networks heavily depend on the initial population.
In particular, for a given timed event graph we cannot tell whether a token
represents a physical restriction, like a finite buffer capacity, or a moving item,
like a customer. This violates the queueing theorist’s intuition that physical
aspects of the system and items/customers moving through the network re-
present different levels of information. In other words, Petri-net theory is not
(yet) a standard tool for queueing theorists, and the characterization of max-
plus linearity via subclasses of Petri-nets does not contribute to understanding.
We therefore provide a purely queueing theoretic characterization of max-plus
linearity.

As we will explain in Chapter 2, in order to obtain stability results for
queueing networks via Kingman’s subadditive ergodic theorem, a max-plus lin-
ear model has to satisfy structural conditions. The most important of these
conditions is that the matrices, which govern the transitions in a max-plus lin-
ear system, have fixed support. See Definition 1.4.1. In other words, besides
identifying max-plus linear queueing networks, we have to find conditions that
imply that the corresponding max-plus models have fixed support. In order to
do so, we first obtain a recurrence relation for departure times in a general
queueing network, called general sample path formula (GSPF). Using the GSPF
we derive the standard max-plus linear model for the departure times. We then
identify structural conditions guaranteeing that the max-plus linear model has
fixed support. In a last step, we show that these structural limitations can
be summarized in a simple condition. This condition is based on the flow of
items/customers through the network. We introduce the notion of distance of
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customers, where the distance of two customers, say k and k', at a certain node,
say §, measures the difference between the position of ¥ and &’ in the arrival
stream at j: If k triggers the m'® arrival at j whereas k' triggers the n'® one,
then the distance between &k and &’ is [m — n|. We then prove that a queueing
network is max-plus linear with fixed support if and only if distances between
customers are invariant, that is, (1) customers enter nodes in the same order
as they leave them, (2) if k is n ‘customers ahead’ of &’ at j, then k is always
exactly n customers ahead, and (3) if two customers visit the same node, then
they have the same route through the network.

Stability analysis of queueing networks via Kingman’s subadditive ergodic
theorem requires that the matrices, which govern the transitions in a max-plus
linear system, have fixed support. From the above it is clear that this imposes a
severe restriction on the class of queueing systems that can be treated. However,
elaborating on backward coupling arguments, Mairesse developed a different
approach to stability analysis of max-plus linear queueing systems, which does
not require that the system dynamic has fixed support. Here, the key property
is that the max-plus linear system has a pattern, see [84]. A more detailed
description of this approach and a discussion of the modeling issues will be
given in Section 2.5.

The present section is organized as follows. In Section 1.5.1 we describe the
class of queueing networks whose max-plus linearity we will study. Examples of
max-plus models of queueing networks are given in Section 1.5.2. Section 1.5.3
provides an analysis of the sample path behavior of the queueing networks under
consideration. In Section 1.5.4 we derive a simple structural condition for a
queueing network to be max-plus linear. Section 1.5.5 studies possible extensions
of our results to other types of queueing networks. Finally, Section 1.5.6 discusses
modeling issues when the fixed support assumption is dropped. The material
put forward in this section is based on [61].

1.5.1 Queueing Networks

Roughly speaking, a queueing network is a system consisting of nodes, which
are connected through routes. Items circulate through the system via the routes
and are delayed on their way at the nodes. A node consists of two kinds of
places: service and buffer places. On a service place an item is delayed for a
predefined (stochastic) time, called ‘service time.” When an item arrives at a
node and receives no service place, it has to wait for service on a buffer place. In
the following we give a precise description of the dynamics of a generic queueing
network.

We consider a queueing network with J nodes. If items arrive at the network
from the outside and leave the network, we call the network open, otherwise we
call it closed. To facilitate considering both the open and the closed case, we
assume that there is only one stream of arrivals. We include a fictitious node 0,
which is never idle, from which all arrivals to the system originate and to which
all departures from the system go. Typically, items are divided into several
distinct classes. However, in what follows we assume that all items belong to
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one class. As will become clear later, this restriction is necessary to obtain a
max-plus linear model, see Section 1.5.5.1.

The interactions between the nodes, carried out through the items, are gov-
erned by the following phenomena:

e Fork: A departure from a node may generate arrivals at more than one
node, that is, items may split up into several (sub) items. More precisely,
the k" departure from node j generates arrivals at the nodes out of the set
B(4, k). For example, B(j, k) = {41, j2} means that the item which triggers
the k** departure from j splits up into two new items: one moving to node
J1, the other to node jy. We call node j a fork node if |B(j, k)| > 1 for
some k.

e Blocking: Upon service completion, an item finds no place at the next
node. Therefore, the item is forced to stay at the current node and can
only move on if a place becomes available at the next node.

Due to a fork mechanism an item may have to wait for buffer places at
several nodes. In this case we assume that the fork operation takes place
after the item has left the node and before it reaches the next (ones). In
particular, the k*” item departing from j can only be blocked by the nodes
in B(j, k). If the network is open, we assume that the source cannot be
blocked, that is, we assume B(0, k) = @ for all k.

e Join: If a node can only commence service if one item from each of the
upstream nodes has arrived, we call this node a join node. Service of an
item at a join node consumes one item of each of the upstream nodes.
The join operation is tantamount to synchronizing arrival streams. More
precisely, let the k" item departing from j originate from an arrival from
each of the nodes ¢ € A(j, k). For example, A(j,k) = {j1,j2} means
that the k** item departing from j originates from joining two items:
one arriving from j, the other from j;. We say that ;7 is a join node if
| A, k)| > 1 for some k. In particular, we assume that the join mechanism
is applied only to the newly arriving items and that the items initially
present at j have already been ‘joined.’ If the network is open, we set
A(j, k) = 0, which expresses the fact that no arrivals occur at the source.

Another frequently used join mechanism is called batching. Here, several
items originating from one node are grouped together to form one new
item. However, this join mechanism is ruled out by max-plus linearity, as
will be demonstrated in Section 1.5.5.4.

¢ Variable Origins: We say that a node admits variable origins if an arrival
to the node may originate from different nodes. If there are no variable
origins at 7, then A(j, k) = A(j) for all k. In other words, a node j has no
variable origins if j is either (1) a join node, so that for each item present,
exactly one item must arrive from each node out of the set A(j), or, (2)
there is exactly one node from which items can directly reach j.
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e Variable Destinations: After completing service at a node, say j, an
item may split up according to a fork mechanism. If the set of nodes
receiving an (sub) item upon a departure from j varies over time, then
this phenomenon is called wvariable destinations. On the other hand, if
there are no variable destinations, then B(j, k) does not depend on time,
ie., B(j,k) = B(j), for all k. In other words, a node j does not admit
variable destinations if j is either (1) a fork node, so that each departure
at j always leads to an arrival of an item at each node out of the set B(5),
or, (2) there is exactly one node to which all items go directly from j.

A particular node may admit variable origins but no variable destinations,
or the node may admit variable destinations and no variable origins. In
what follows we say that a queueing network admits no routing if all nodes
admit neither variable origins nor variable destinations.

¢ Internal Overtaking: In general, the order in which items leave a node
is different from the order in which they enter the node. Internal overtake
freeness can be forced by a so-called resequencing mechanism. A rese-
quencing queue is such that an item whose service is completed remains
on its service place until the service of all items that entered the node
before this particular item is finished. The resequencing mechanism is of
importance in computer communication systems where the flow of pack-
ets or messages entering a communication system in chronological order
from the same port or from different ports may be disordered, see [9] for
more details. We call a node where items are reordered according to a
resequencing mechanism a resequencing node.

The way in which the items are processed at the nodes is called the queueing
discipline. The most prominent example is the first come, first served (FCFS)
queueing discipline. If one node simultaneously blocks several other nodes, then
the order in which this blocking is resolved is determined via a blocking dis-
cipline, like, for example, first blocked, first unblocked (FBFU). If an item is
blocked, we assume that the item is blocked at the end of service and remains
on its service place until a free place at the next node becomes available. This is
referred to as blocking after service (of manufacturing type), see eg. [31]. To keep
the presentation simple, we postpone the discussion of other possible blocking
schemes to Section 1.5.5.3.

Remark 1.5.1 Internal overtake-freeness at a single-server node implies
FCFS. At multi-server nodes, one can have more sophisticated queueing dis-
ciplines, such as processor sharing or exchangeable items, see [40]. However,
this implies that the service times are state dependent which rules out maz-plus
linearity, see Section 1.5.5.2.

For ease of reference, we summarize our assumptions:

(A) The queueing network under consideration has only one class of items,
no state-dependent service times, all queues are FCFS with blocking af-
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ter service (of manufacturing type) and blocking is resolved according to
FBFU.

Although it seems a bit awkward to reduce our analysis a priori to networks
satisfying (A), it will turn out that (A) identifies the class of networks for
which we can derive necessary and sufficient conditions for max-plus linearity.
In other words, condition (A) actually imposes no restriction with respect to the
generality of our results. This will be discussed in more detail in Section 1.5.5.
The reason for postponing this discussion is that it requires more background
on the modeling of queueing networks via max-plus recurrence relations (which
will be provided in the next sections).

Remark 1.5.2 In the above description we associated fork and join operations
with nodes, that is, a join operation can only take place immediately before a
node (i.e., this particular node is a join node) and a fork operation can only take
place immediately after a node (i.e., this particular node is fork node). However,
one may want to model an isolated fork/join operation that is not attached to a
node. Figure 1.5 shows a sample network with four nodes and an isolated join
operation.

Items arrive from the outside at node 1. After finishing service at node 1, items

~ \

Figure 1.5: A network with an isolated join operation.

are split up into three (sub) items proceeding either to node 4 or to node 2 and
38, respectively. Items finishing their service at node 2 and 3, respectively, are
Jjoined to form a new (super) item and this new item proceeds to node 4. This
Jjoin operation is not attached to a node and, therefore, this network does not
fall into the class of queueing networks we introduced so far. However, we may
include an fictitious node so that the join operation takes place immediately
before this node, that is, the node is a join node. Letting this particular node be
a single-server node with infinite buffer capacity and setting the service times
equal to zero, we obtain a network that is equivalent to that in Figure 1.5 but
that falls into the class of queueing networks introduced above. Figure 1.6 shows
the modified network.

1.5.2 Examples of Max-Plus Linear Systems

This section provides a series of examples of max-plus linear queueing systems.
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Figure 1.6: The network in Figure 1.5 with a fictitious node included.

Example 1.5.1 Consider a closed system of J single-server queues in tandem,
with infinite buffers. In the system, customers have to pass through the queues
consecutively so as to receive service at each server. After service completion at
the Jth server, the customers return to the first queue for a new cycle of service.

We denote the number of customers initially residing at queve j by n;. We
assume that there are J customers circulating through the network and that
initially there is one customer in each queue, that is, n; = 1 for 1 < j < J.
Figure 1.7 shows the initial state of the tandem network, customers are
represented by the symbol ‘o’

1 2 J

Figure 1.7: The closed tandem queueing system at initial state n; = 1 for
1<j<J.

Let 0(k) denote the k** service time at queue j and let z;(k) be the time of
the kt* service completion at node j, then the time evolution of the system can
be described by a J-dimensional vector z(k) = (z1(k),...,zs(k)) following the
homogeneous equation

z(k+1) = A(k) ® z(k), (1.23)
where the matriz A(k) looks like
Ul(k) [ s € 01(’6)
0'2(](?) Uz(k) € £
Alk—1) = : (1.24)

[ O’J._l(k') 0,]_1(k') &€
: e oyk) osk)
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for k > 1. Observe that A(k) is irreducible and that equation (1.23) is noticeably
the standard autonomous equation.

Example 1.5.2 We now consider the open variant of the tandem network in
Example 1.5.1. Let queue 0 represent an external arrival stream of customers.
Each customer who arrives at the system has to pass through queues 1 to J and
then leaves the system. We assume that the system starts empty. Denoting the
number of customers initially present at queue j by n;, we assume n; = 0 for
1< j < J. Figure 1.8 shows the initial state of the tandem network.

2 J

1

Figure 1.8: The open tandem queueing system at initial state n; = 0 for 1 <
jsd.

Again, we let z;(k) denote the time of the k'™ service completion at station
§. In particular, we let xo(k) denote the k** arrival epoch at the system. The
time evolution of the system can then be described by a (J + 1)-dimensional
vector (k) = (zo(k),...,zs(k)) following the homogeneous equation
z(k+1) = A(k) ® z(k), (1.25)
where the matriz A(k — 1) looks like

ao(k) €

g ... &
0'0(/())@0‘1(](}) 0'1(]()) E -+ &
00(k)®01(k)®02(k) 0‘1(]6)@0’2(](}) 0'2(1(1) e E

0'0(]6)@"'@0_](/6) 0’1(’6)@"‘@0’.}(/{5) Uz(k)@"‘@dj(k) 0](/(})

(1.26)
fork > 1.
Alternatively, we could describe the system via a J dimensional vector &(k) =
(Z1(k),...,25(k)) following the inhomogeneous equation
#k+1)= A(k) @ (k) ® B(k) @ 7(k+ 1), (1.27)

where the matriz A(k) looks like ( 1.26), except for the first column and the first
row which are missing, that is, (A(k))iy; = (A(k))it1j4+1 for 1 < 4,5 < J; the
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vector B(k) is given by

01(k+ 1)
o1(k+1) ®oa(k+1)
B(k) = :
o1k +1)®o2(k+1)® - ®oy(k+1)
for k> 0; and

k
(k) = Y oo(d)
i=1

denotes the k™ arrival time. Notice that matrices A(k) and A(k) are reducible
and that (1.27) is the standard non-autonomous equation. Notice that B;(0),
for 1 < § < J, denotes the time it takes the first customer from entering the
system until departing from station j, c.f. Lemma 1.4.3.

The transformation from the homogenuous equation (1.25) to the in-
homogenuous equation (1.27) is the inverse transformation to the one described
in Section 1.4.3.

Example 1.5.3 (Ezample 1.5.2 revisited) We consider the system as described
in the above example. However, in contrast to Example 1.5.2, we let x;(k) denote
the time of the k" beginning of service at station j, with 1 < j < J. The standard
non-autonomous equation now reads

z(k+1)= Ak) @ z(k)® B(k)®1(k+1), (1.28)
with A(k) given by

€ fori < g,

(A(k))ij = {aj(,f)®®;'z—=1j on(k+1) forixj,

for1<4,5 < J, where we set 6;(0) =0, and

0
0'1(]()+ 1)
B(k) = o1(k+1)®oa(k +1)

o1k +1)®oa(k+1)® - ®as_1(k+1)

for k > 0. An element B;(0) denotes the time it takes the first customer from
entering the system until reaching station j, c.f. Lemma 1.4.3. Notice that A(k)
is reducible.

Example 1.5.1 and Example 1.5.2 model sequences of departure times from
the queues via a max-plus recurrence relation and a model for beginning of
service times is given in Example 1.5.3. We now turn to another important
application of max-plus linear models: waiting times.
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Example 1.5.4 Consider the open tandem network described in Example 1.5.3.
Let W;(k) be the time the k** customer arriving at the network spends in the
system until the beginning of her/his service at station j. Then, the vector of
wasting times W (k) = (Wy(k),...,W;(k)) follows the recurrence relation

Wk+1) = Ak)®Cloo(k+1))®W(k)® B(k), k=0,

with W(0) = (0,...,0) and C(r) a matriz with diagonal entries —r and all other
entries equal to €, see Section 1.4.4.
Taking J = 1, the above recurrence relation for the waiting times reads

Wk+1)=01(k)® (~op(k+ 1) @ W(k) ®0
=max(o1(k) — ook +1)+W(k),0), k=0,

with 01(0) = 0, which is Lindley’s equation for the actual waiting time in a
G/G/1 queue.

If we had let (k) describe departure times at the stations, c.f. Example 1.5.2,
then W (k) would yield the vector of sojourn times of the k** customer. In other
words, W;(k) would model the time the kt* customer arriving at the network
spends in the system until leaving station j.

In the above examples the positions which are equal to ¢ are fixed and
the randomness is generated by letting the entries different from £ be random
variables. The next example is of a different kind. Here, the matrix as a whole is
random, that is, the values of the elements are completely random in the sense
that an element can with positive probability be equal to € or finite.

Example 1.5.5 (Baccelli & Hong, [7]) Consider a cyclic tandem gqueueing net-
work consisting of a single server and a multi server, each with deterministic
service time. Service times at the single-server station equal o, whereas service
times at the multi-server station equal o’. Three customers circulate in the net-
work. Initially, one customer is in service at station 1, the single server, one
customer is in service at station 2, the multi-server, and the third customer is
just about to enter station 2. The time evolution of this network is described
by @ maz-plus linear sequence z(k) = (x1(k),...,z4(k)), where z1(k) is the kth
beginning of service at the single-server station and zo(k) is the k** departure
epoch at the single-server station; x3(k) is the k** beginning of service at the
multi-server station and z4(k) is the k** departure epoch from the multi-server
station. The system then follows

z(k+1) = Dy ® x(k),

where

ceo ¢
ocE € ¢
Eec e
ceo ¢

Dy

)
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Figure 1.9: The initial state of the multi-server system (three customers).

with £(0) = (0,0,0,0). For a detailed discussion of the above model, see Sec-
tion B in the Appendiz. Figure 1.9 shows the initial state of this system.

Consider the cyclic tandem network again, but one of the servers of the multi-
server station has broken down. The system is thus a tandem network with two
single server stations. Initially one customer is in service at station 1, one cus-
tomer is in service at station 2, and the third customer is waiting at station 2
for service. This system follows

z(k+1) =D, @ z(k),

where

ceo €
o€ €€
ceed €
ceo €

with (0) = (0,0,0,0), see Section B in the Appendiz for details. Figure 1.10
shows the initial state of the system with breakdown.

Dy =

3

Assume that whenever a customer enters station 2, the second server of the
multi server station breaks down with probability 0. Let Ag(k) have distribution

P(Ag(k)y=Dy) =0
and
P(A(k) = Dy) =1-10,

then
zg(k + 1) = Ap(k) ® zo(k)

describes the time evolution of the system with breakdowns. That the above recur-
rence relation indeed models the sample path dynamic of the system with break-
downs is not obvious and a proof can be found in [7]. See also Section 1.5.3.3.
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Figure 1.10: The initial state of the multi-server system with breakdown (three
customers).

1.5.3 Sample Path Dynamics

This section provides the analysis of the sample path dynamic of a queueing
network. Section 1.5.3.1 introduces a recursive formula describing the departure
times from queues. From this sample path recurrence relation, we derive in
Section 1.5.3.2 a max-plus linear model of the departure times in a queueing
network. The relation between max-plus models for departure times and for
begin of service times are discussed in Section 1.5.3.3. Finally, in Section 1.5.3.4,
we study max-plus linear queueing networks for which the structure of the max-
plus model is time independent.

1.5.3.1 The General Sample Path Recursion

Consider a queueing network satisfying condition (A). Let B; denote the buffer

size of node j and S; the number of service places, respectively, i.e., node j has

P def B; + 8; places, where we adopt the convention co 4+n = 0o = n + oo for

n € N. The number of items initially present at node j is n;, with n; < P;. We
denote the k** service time at node j by o;(k) and the k** departure epoch at
J by z;(k). In particular, for k¥ < min(n;, S;), o;(k) is the residual service time
of an item initially in service at j. For technical reasons, we set z;(k) = ¢ for
k <0.

At node j initially n; items are present. Therefore, the item that is the first
to arrive at j only finds a service place if the (max(1 + n; — 5;, 0))t* departure
from j has taken place. Indeed, if n; — S; < 0, then the first arriving item finds
a service place upon arrival. If n; — §; > 0, the arriving item has to wait for a
service place. From FCFS follows that this place only becomes available if the
(1 +n; — S;)th departure has taken place. More general, the m** item arriving
at j cannot be served before the (max(m + n; — ;,0))*" departure has taken
place. We now let d(j, k) denote the arrival number of the k* item departing
from j, where we set d(j, k) = 0 if the k** item departing from j is initially
present at 7. Then, the k** item departing from j can only be served at j if
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departure
c(j k) = d(j, k) +n; - S; (1.29)

has taken place. If the k** item departing from j initially resides at a service
place at j (where we assume n; > S;), we set ¢(j, k) = 0, and if this item was
in position m in the initial queue at j, we set c(j, k) = m — ;. We call ¢(j, k)
the service index. For example, if j is an infinite server, ie., §; = oo, then
c(4, k) = —oo for all k such that the k** item departing from j was not initially
present at j; which means that all items find a service place upon arrival. If the
network is open, we set ¢(0,k) = k — 1 for all k, in words: the k** interarrival
time is initiated by the (k — 1)%t arrival.

We now consider the arrival process at j more closely. Let the k** item
departing from j be constituted out of the items which triggered the (a;(34, k))**
departure from ¢ € A(j, k). If the item was initially present at j, set a;(j,k) =0
and A(j,k) = {j}. Then, the item that constitutes the k*" departure from j
arrives at j at time

a; (k) =max(z;(a;(5,k)) : i € A(4, k))
= P wi(a k) (1.30)

1€A(4,k)

and we call a;(j, k) the arrival indez. If the network is open, we set a;(0,k) = ¢
for all ¢ and all k, which is tantamount to assuming that the source does not
have to wait for arrivals.

FCFS queueing discipline implies that the service of the k** item departing
from j starts at

Bi(k) = max(a;(k),z;(c(j;k)))

a;(k) & z;(c(4, k))

(1.30) @ zi(a:(j, k) © z;(c(j, k) . (1.31)
i€ A(4,k)

Let the item triggering the k** departure from j receive the (s(j,k))™" ser-
vice time at j. We call s(j,k) the service-time index. For example, if j is a
single-server node, then the FCFS queueing discipline implies s(j, k) = k. If the
network is open, we assume s(0, k) = k, that is, the k*h arrival occurs upon the
completion of the k** interarrival time. Utilising (1.31), the service completion
time of the k** item departing from j is given by

vi(k) = Bj(k) + o5(s(4, k))
Bi(k) ® a;(s(4,k))

i

1.31 , , )
(13 Dzl k) ®z;(cG k) | ®i(s(, k). (1.32)
i€ A(4,k)

In order to determine the departure epochs at j, we have to study the resequen-
cing and the blocking mechanism.
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First, we consider the resequencing mechanism. If j is a resequencing node,
then finished items can only leave the node when all items that arrived at the
node before have been served completely. Let p;(k) be the time when the k**
item departing from j is ready to leave the node. Furthermore, let a(j, k) be
the arrival number of the item that triggers the k** departure at j. For k < n;,
we associated numbers 1...n; to the n; items initially present, so that a{j, k)
is defined for all k > 1. The index a(j, k) counts the arrivals after possible join
operations. The set of all items arriving prior to the k** item departing from j
is given by

{K' : a(j k') <als,k)}

and the k** item departing from node j is ready to leave node j at

pi(k) = (k) & b (k) .

k'e{l:a(jl)<a(sk)}

We now set
R(J’ k) - {kl : a(jv k"l) < a(j? k)}

and call R(j,k) the resequencing domain. Note that k € R(j, k). If j is no
resequencing node, then R(j,k) = {k}. The resequencing mechanism can then
be expressed through

pik) = P k)

k' €R(5,k)

2 N P zi(aill, k) & z;(c(G, k)| ® 05(s(5, k'))- (1.33)

k'€R(j,k) \i€ A(5,k")

We now turn to the blocking mechanism. At node j' there are initially n;.
items present. Therefore, the first Pj» — njs items arriving at j' certainly find a
place at node j'. However, in general, the m** arriving item finds only a place
at j/ if the (m — (Pj — nj))*" departure from j’ has taken place. Let the k"
departure from j trigger the (d;/(j, k))" arrival at j'. Then, the k** departure
from j can only take place if the (d;/ (j, k) — (P —nj))*" departure from j' has
taken place. We call

bj (4, k) = dj (4, k) — (Pyr —ny)

the blocking indez. If the right-hand side of the above equation is smaller than
zero, then the k" departing item from j will never be blocked. For example, if
4’ has infinitely many places, then b;: (j, k) = —oo for all j and k. Therefore, the
k** departure epoch at j satisfies

(k) < max (pg(k) , max (i(bi(5, K)) : i € B, )))
=pik)® D x:(bil, k) (1.34)

i1€B(4,k)
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If the network is open, we set b;(0, k) = ¢ for all 1 and all &k, which is tantamount
to assuming that the source cannot be blocked.

Combining (1.34) with (1.32) yields the k** departure time from j; and we
obtain the following general recurrence relation for the departure times in a
queueing network:

z; (k)= @ zi(bi (4, k))

i€B(4,k)
o P ( D mlalK) @ z5(c(iK)) |© 055, k), (1.35)
k' €R(j,k) \i€A(j k')

for j < J. We call the above recurrence relation the general sample-path formula
(GSPF). It will provide the basis of our further analysis.

Definition 1.5.1 We say that the GSPF is of order M (k) if the right-hand side
of (1.85) contains at most the values z(k),x(k —1),...,z(k — M(k)). Further-
more, we say that the GSPF is of finite order if

M =sup{M(k) : ke N} <o0.

The next lemma provides structural conditions for finiteness of the order of
the GSPF.

Lemma 1.5.1 Consider a queueing network satisfying condition (A). If the
network admits no routing and no internal overtaking, and if all resequencing
queues have only finitely many service places, then the associated GSPF is of
finite order. Moreover, for all § < J, we obtain for the arrival index

ai(jyk) = (k_nj)1k>nj ’ fOTZEA(])y

for the service index
(g k) = (k~85)1s;<k

Jor the service-time index
S(j? k) =k,

for the resequencing domain
R{j,k)=1{k,....k—S;+1}NN
and for the blocking indez
bi(j,k)=k— (P —n;), forieB(j).
If the network is open, we obtain for all k and alli < J

c(0,k)=k—-1, s(0,k)=k and ;(0,k)=-¢e=0;(0,k).



34 Max-Plus Linear Stochastic Systems

Proof: Internal overtake-freeness implies that items leave the nodes in the same
order as they arrive at them. In particular, the first n; departures from j are
triggered by the n; items initially present at j, which implies a;(j, k) = 0 for
k < nj;. Consider the case k£ > n;. Under FCFS items are served in the order of
their arrival. Therefore, the k** item departing from j triggered the (k — n;)t"
arrival at j. Under ‘no routing’ each departure from the nodes 7 € A(j) causes
an arrival at j. Therefore, the (k—n;)*" arrival at j corresponds to the (k—n;)t
departure from ¢ € A(j), which gives

az(]vk) - (k—nj)1k>nj .

FCFS implies that the items are served in the order of their arrival which is, by
internal overtake freeness, the order in which the items depart. Therefore, the
first S; items departing from j can immediately receive a service place, which
gives

c{j k) =0, fork<S;.

If n; > S;, then for nj; > k > S, the k" item departing from j is initially at a
waiting place k — S; at j. The definition of ¢(j, k) therefore implies

C(j,k:)zk—sj', forSj<k§nj.

For k > max(n;, S;), the k*® item departing from j constitutes the (k — n;)t"
arrival at j, that is, d(4, k) = k& — n; in the defining relation (1.29). This yields

c(s, k) = k—-5; forn; <k.
Combining these results yields
(4 k) = (k—Sj)ls;<k -

Internal overtake-freeness together with FCFS implies that the k%" item de-
parting from j is also the item that initiated the k** service time at j, that is,
s(j, k) = k.

We now turn to the resequencing domain. The items leave the node in the
same order as they arrive at it. For k& < S;, the k" item departing from j can
only leave the node if the items with departure number &’ < k are completely
serviced, that is,

R k) ={K|k' <k}, k<S;.

Consider the item that triggers the (S; + 1)°* departure from j. This item could
only be serviced at j because a free service place was available. We assumed
that there is no internal overtaking, so this departure was triggered by the first
departure from j. Hence, the (S; + 1)*¢ item can only be delayed by the items
that arrived before and are still in service, that is, by the items with departure
numbers 2, ...,S5;. This gives

R(G,Sj+1)={2<k <S;+1}.
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Induction with respect to & completes the proof.

Eventually, we deal with the blocking index. The k%" item departing from
J might possibly split up and require a free place at each node ¢ € B(j). ‘No
routing’ implies that the k** departure from j constitutes the k** arrival at
i € B(j). Therefore, d;(j, k) in the definition of b;(4, k) equals k.

From the particular form of the indices follows that the GSPF is of finite
order, which completes the proof. 3

Example 1.5.6 (Example 1.5.1 cont.) Consider the closed tandem queueing
system, that is, all nodes have infinite capacity P; = oo and initially one item
resides at each node, that is, n; = 1 for j < J. This network satisfies condition
(A) and Lemma 1.5.1 implies a;(k, §) = c(4,k) = k=1, fork > 2, and a;(k,j) =
c(j4, k) = 0, for k = 1. Furthermore, R(j, k) = {k}, s(j, k) = k and b;(j, k) =
—o0 for all j and k. In particular, for nodes j, with 2 < j < J, we obtain
A(j) = {j — 1}, whereas for node 1 we have A(1) = {J}. The GSPF now reads

zj(k)=zj—1(k - 1)@ z;(k - 1) ®0;(k), (1.36)

for j < J and k € N, where we let zo(k) = zy(k). We can write (1.36) in
vectorial notation. In order to do so, we set

o;(k) fori=j orie A(j),
€ else.

(k- )y = {
This yields the matriz given in (1.24). Consequently, (1.36) reads
z(k+1) = A(k) @ z(k),
fork e N.

Example 1.5.7 Consider a GI/G/2/> resequencing queue, that is, S1 = 2
and Py = co. Let the system be initially empty. This system satisfies condition
(A) and Lemma 1.5.1 implies ¢(1,k) = k — 2, for k = 3, and ¢(1,k) = 0, for
k = 1,2. Furthermore, s(1,k) = a;(1,k) = k, bj(1,k) = —oo for all j and k.
The resequencing domain is given by R(j, k) = {k,k — 1} for k > 2. Then the
GSPF reads

21 (k) = ((:vo(k ~ D@z (k-3)) ®or(k— 1))
o((zo(k) @21k~ 2)) ®a(k)) |
forj < J.

Example 1.5.8 (Example 1.5.2 cont.) Consider the open tandem queueing
system again, that is, all nodes have infinite capacity P; = co and the system
starts empty, that is, n; = 0 for j < J. This network satisfies condition (A) and
Lemma 1.5.1 implies a;(k,j) = k and ¢(j, k) = k — 1, for k > 1. Furthermore,
R4, k) = {k}, s(j, k) = k and b;(j,k) = —oo for all j and k. In particular, for
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Figure 1.11: The initial state of an open tandem system with a multi-server
station.

nodes j, with 1 < § < J, we obtain A(j) = {j — 1}, where node 0 represents the
source. The GSPF now reads

z;(k)=z;-1(k) ® z;(k — 1) ® 0;(k) (1.37)

for 3 < J and k € N. Note that (k) occurs on both sides of the above recurrence
relation. This is different from the situation in Ezample 1.5.6, where in the
corresponding recurrence relation (1.36) z(k) occurs only on the right-hand side.
However, in the following section we provide the means for transforming (1.87)
into a vectorial form.

Example 1.5.9 Consider the following open queueing system. Let queue O re-
present an external arrival stream of customers. Fach customer who arrives at
the system has to pass through station 1 and 2, where station 1 is a single-server
station with unlimited buffer space and station 2 is multi-server station with 3
identical servers and unlimited buffer space. We assume that the system starts
empty, t.e., n; = 0= ny. Figure 1.11 shows the initial state of the network.

Provided that the service times at station 2 are deterministic, this network
satisfies condition (A) and Lemma 1.5.1 implies a;(k,5) = k, for k > 1. Fur-
thermore, R(j, k) = {k}, s(4,k) = k and b;(j,k) = —oo for all § and k. Fur-
thermore, ¢(1,k) = k — 1 and ¢(2,k) = k — 3. In particular, for nodes 7, with
1<j < J, we obtain A(j) = {j — 1}, where node 0 represents the source. The
GSPF now reads

zo(k)=zo(k - 1) @ 0o (k) ,
21(k)=(w0(k) ® 21(k — 1)) ® 01(k),
2a(k)=(21(k) @ w2k - 3)) ® 0y, (1.38)

for k € N, where o2 denotes the service time at station 2. Note that, like in the
previous example, z(k) occurs on both sides of the above recurrence relation.



1.5 Queueing Systems 37

In the subsequent section we will show how a GSPF of finite order can be
algebraically simplified by means of max-plus algebra.

1.5.3.2 The Standard Max-Plus Linear Model

In this section we transform (1.35) into a standard max-plus linear model. In
particular, we will show how a GSPF of finite order can be transformed into a
first-order GSPF.
In what follows we assume that the GSPF is of finite order. We now define
J x J dimensional matrices A,,(k), where 0 < m < M, with
o;(s(4, k")) if a;(§,&') =k —m, fori € A(j, k") VK € R(j, k),
(A (k)i = or, if ¢(4,k') = k —m, for k' € R(j, k),
mAR gt 0 if b;(j,k) =k —m, for i € B(j, k),
€ else,
(1.39)
cf. equation (1.6) which is the Petri net counterpart of the above definition.
Then, recurrence relation (1.35) reads

@A ) ® z(k —m). (1.40)

In what follows, we will transform (1.40) into a recurrence relation of type
z(k + 1) = A(k) ® z(k), where we follow the line of argument in Section 1.4.2.
If Ag(k) is a lower triangular matrix, then a finite number p exists, such that

As(k) = €D Ab(k)
=0

where A} (k) denotes the 5** power of Ag(k), see (1.5) for a definition. We now
turn to the algebraic manipulation of (1.40). Set

@A yz(k—m),

then (1.40) reduces to
z(k) = Ao(k) ® z(k) ® b(k). (1.41)

For fixed k, the above equation can be written = A ® = @ b. It is well known
that x = A* ® b solves this equation, see Theorem 3.17 in [10]. Therefore, (1.9)
can be written

z(k) = Aj(k) ® b(k) ,

or, more explicitly,

M
z(k) = Ay(k) ® €D Am(k) @ z(k —m). (1.42)

m=1
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The difference between (1.40) and (1.42) is that the latter contains no 0**-
order recurrence relation, that is, z(k) occurs only on the left-hand side of the
equation.

As a next step we transform (1.42) into a first-order recurrence relation. In
order to do so, we set

#(k) = (z(k),z(k - 1),...,z(k = M +1))T

and
Aj(k) ® Ai(k) Aj(k) ® Aa(k) -+ - Ap (k) ® A (k)
E E o £
& ot o B £

Then, (1.40) (and therefore (1.35)) can be written
ik) = Ak-1) @3k 1),

or, in standard form,
Fk+1) = A(k) @ Z(k) . (1.43)

The above recurrence relation is the standard max-plus linear representation
of the departure times in a queueing network.

Definition 1.5.2 We call a queueing network max-plus linear if the departure
times from the queues admit a representation like in (1.43).

Example 1.5.10 (Example 1.5.6 cont.) For the closed tandem network, we
obtain M =1 and Ag(k) = £. Hence, A}(k) = E and the standard maz-plus
linear model reads xz(k + 1) = A1(k) ® x(k), where A;(k) is the same as the
matriz A(k) as defined in (1.24).

Example 1.5.11 (Example 1.5.8 cont.) The open tandem queueing system
is of order M = 1 and we obtain

e € £
o1(k) € €

Ag(k) =
e oj-1(k) € ¢

£ O'J(k) £



1.5 Queueing Systems 39

Figure 1.12: The open tandem queueing system at initial state n; = 1 for
1<j<J.

and

e oj1(k) €
€ e oy(k)

For this particular example, p, cf. (1.8), turns out to be J + 1, which gives

J+1

A3(k) = € A5(k) .
i=0

Let A(k) be defined as in (1.26), then it is easily checked that
Ak = 1) = @5 Aj(k) ® A (k).

Example 1.5.12 We now consider the open tandem gqueueing system in Ex-
ample 1.5.2 but with initial population n; =1 for 1 < j < J. Figure 1.12 shows
the initial state of the tandem network, where customers are represented by the
symbol ‘e’

This yields Ao(k) = &, which implies Aj(k) = E and

oo(k) € €
ool(k) o1(k) € €

Ar(k) = (1.44)

£ O"J_g(k}) O'J_l(k) &€
e oy-1(k) o4(k)

for k > 1. Therefore, we obtain z(k+ 1) = A(k) ® z(k) as our maz-plus model,
with A(k) = A1(k+ 1). Comparing (1.44) with (1.26) illustrates the sensitivity
of the max-plus model with respect to the initial population.
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Example 1.5.13 (Example 1.5.9 cont.) For the open tandem system with
multi-server station we obtain

A1= £ J](k)é‘ y
£ & £
AZ:(‘;, and
g€ ¢
Az =) e¢c ¢
€ & Og

We compute A}(k) as follows

e € €
Af(k) = o1(k) e e
o1(k)®ag 02 €

We now set

&(k) = (x(k),x(k ~ 1), 2(k — 2))7

and
: AL(k) @ A1(k) € AY(k) ® As(k)
Ak -1)= FE & &
& E £
ao(k) € € ce ¢
oo(k) ® o1(k) oi(k) ¢ & ce €
Uo(k)@Ul(k)®02 0'1(](1)@02 € € € 09
E & £
& E £
and obtain

Fk+1) = Ak) ® 3(k)

as maz-plus model for the system, which recovers recurrence relation (1.88).

Example 1.5.14 We consider the system in Example 1.5.9 again, but with ini-
tially one customer in service at station 1 and 3 customers in service at station
2. Figure 1.13 shows the initial state of the tandem network, where customers
are represented by the symbol ‘e’

Computing like in the previous example, this system follows

B(k+1) = A(k) ® &(k),
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Figure 1.13: The initial state of the open tandem system with a multi-server
station and 4 initial customers.

with
oolk) € ¢ €€ €
o1(k) o1(k) & €€ ¢
. € £ & £ 09 09
Ak -1)=
E & &
& E £
and obtain

Fk+1) = A(k) ® 3(k)
as maz-plus model for the system. The above recurrence relations reads in ex-
plicit form
zo(k)=2o(k — 1) ® oo(k) ,
xl(k)z(xo(k — 1) @ :L‘l(k —_ 1)) %) 0’1(](7) ,
xg(k)=(w1(lc ~3) @ ok — 3)) ®0s,

for k € N. Comparing A(k) with A(k) in Ezample 1.5.9 (respectively, the above
set of equations and (1.88)), illustrates the influence of the initial population on
the maz-plus model.

We obtain the following characterization of the max-plus linearity of a queue-
ing network.

Theorem 1.5.1 Consider a queueing network satisfying (A). The queueing
network is maz-plus linear if and only if the associated GSPF is of finite order.

Proof: The GSPF can be transformed into matrix form of fixed dimension if
and only if the GSPF is of finite order. O

The following example shows that Markovian routing implies that the GSPF
is not of finite order and thereby rules out max-plus linearity.
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Example 1.5.15 Consider a queueing network with three nodes. Upon leaving
node 1 items move independently of everything else with probability p > 0 to node
2 and with probability 1 —p > 0 to node 3. For the sake of simplicity, assume that
initially no item is present at node 2. The k" departure from node 2 depends
on the (k + m)th departure from node 1 if exactly m items have been directed
to node 2, that is, a1(2,k) = k + m; and the probability that ay(2,k) = k+m
is equal to p*(1 — p)™. Hence, all numbers m have positive probability, which
implies that with positive probability a1(2,k) = k +m for all m € N. Therefore,
the GSPF is not of finite order.

1.5.3.3 Departure Times vs. Beginning of Service Times

We developed max-plus linear models for departure times from queues. Fol-
lowing the same line of argument one can derive a similar recurrence relation
for the beginning of service times at queues. Using such a beginning of service
time based approach, a queueing network would be called max-plus linear if
the beginning of service times at the queues admitted a representation like in
(1.43), cf. Definition 1.5.2. The difference between a max-plus linear recurrence
relation for departure times and beginning of service times is illustrated by
Example 1.5.2 together with Example 1.5.3.

Apart from modeling beginning of service times rather than departure times
one might include both, beginning of service times and departure times, into
the state-vector; see Example 1.5.5. In the following we provide our standard
max-plus model for the system in Example 1.5.5. Recall that z3(k) denotes the
k*" departure time from the single-server station and that z4(k) denotes the k**
departure time from the multi-server station. Applying Lemma 1.5.1, the GSPF
for the system with no breakdown reads:

za(k+1) = (z2(k) ® z4(k)) ® o
za(k+1)=(z2(k ~ 1) B 24(k — 1)) ® ',
for k > 0, where we set
22(0) =24(0) =0 and =zo(-1)=1z4(~1)=¢. (1.45)
The GSPF for the system with breakdown reads:
2ok + 1) = (z2(k) D z4(k)) ® 0
z4(k +1)=(z2(k — 1) ® z4(k)) ® 0’

for k > 0, and (1.45). Both GSPF’s are of order M = 2. In order to obtain the
standard max-plus linear model, we therefore have to enlarge the state-space.
This leads for the system with no breakdown to the following standard max-plus
linear model:

za(k +1) oo e ¢ za (k)

z4(k + 1) eeo o z4(k)
z2(k) ceee|® zo(k—1) )
za(k) €ec€ ¢ za(k - 1)



1.5 Queueing Systems 43

for k > 0. The standard model for the system with breakdown reads:

z2(k+1) oo €€ zo(k)

zalk+1)| | eo o ¢ o z4(k)
z2(k) e e €¢ zo(k=1) ]
z4(k) Ee¢€c¢ z4(k = 1)

for k > 0. Note that the qualitative aspects of the model have not been altered:
the matrix for the system with no breakdown is still irreducible, whereas the
matrix for the system with breakdown is reducible.

The main difference between the models in Example 1.5.5 and the one above
is that the above state-vectors comprise k** and (k + 1)** departure times,
whereas in the original models the state-vectors only contained k** departure
and beginning of service times. However, to model a randomly occurring break-
down, we require a model whose state space only contains time variables refer-
ring to the same transition, which is achieved by the original model. Hence, the
standard max-plus linear model is not always appropriate and providing a good
model remains an art.

1.5.3.4 Models with Fixed Support

For stability or ergodicity results the mere existence of a max-plus linear model
is not sufficient. For this type of analysis one requires a certain structural insen-
sitivity of the transition matrix A(K) of the standard max-plus model, namely,
that A(k) has fixed support; see Definition 1.4.1.

As we will explain in Chapter 2, if a queueing network is max-plus linear,
then Kingman’s subadditive ergodic theorem applies, and we obtain the ergod-
icity of the maximal growth rate max(z1(k),...,zs(k))/k. If A(k) has fixed
support, then the ergodicity of the maximal growth rate implies that of the in-
dividual growth rates x;(k)/k (which are related to the inverse throughput of a
station in a queueing networks). With respect to applications, ergodicity of the
individual growth rate is of key importance. Unfortunately, the fixed-support
condition imposes strong restrictions on the class of queueing networks for which
ergodicity and stability results can be obtained. More specifically, a max-plus
linear representation of departure times via a matrix with fixed support has the
following interpretation: The k" beginning of service at § is always triggered by
the (k — 1)t departure(s) of the same set of nodes, that is, these nodes do not
vary over time.

In what follows we will give a necessary and sufficient condition for a queue-
ing system to be max-plus linear with fixed support.

Theorem 1.5.2 Consider a queueing network satisfying (A). The network is
maz-plus linear with fized support if and only if the network admits no routing,
no internal overtaking and all resequencing nodes have only finitely many service
places.

Proof: If the network admits no routing, no internal overtaking and if all re-
sequencing nodes have finitely many service places, then Lemma 1.5.1 implies
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that the corresponding GSPF is of finite order. Hence, Theorem 1.5.1 applies
and max-plus linearity follows. The position of the service times as well as that
of the zeros in the matrices in recurrence relation (1.39) only depends on the
arrival, service and blocking indices and the resequencing domain. The special
form of these indicators, as stated in Lemma 1.5.1, implies that the resulting
matrix has fixed support.

Now suppose that the queueing network is max-plus linear with fixed sup-
port. Then the interactions between departure epochs are time invariant, which
rules out routing, internal overtaking and a resequencing node with infinitely
many service places. [

Example 1.5.16 Consider o GI/G/s/oo system satisfying (A) with s > 1. If
the system is a resequencing queue, then it is internal overtake-free and a maz-
plus linear model exists, see Example 1.5.7. On the other hand, if the system
does not operate with resequencing, then, in general, this system is not maz-plus
linear because it admits internal overtaking. However, if the service times are
deterministic, then internal overtaking is ruled out and a maz-plus linear model
exists.

In the following section we will give a simple characterization of networks
with fixed support.

1.5.4 Invariant Queueing Networks

Let K be the countable set of items moving through the network, that is, we
count the items present in the network. The items initially present in the network
can be easily counted. Furthermore, if, during the operation of the network,
items are generated via a fork mechanism, we count them as new ones, as we
do for items arriving from the outside.

In what follows we describe the path of an item through the network. There
are two kinds of new items: those created by the external source, and those that
result when an existing item splits up into (sub) items. In the latter case, the
original item ceases to exist. On the other hand, items also vanish if they leave
the network or if they are consumed by a join mechanism in order to generate
a new (super) item. The route of item k € K is given by

w(k) = (w(kv 1)a v 7w(k)5(k)) ,

where S(k) € N U {oo} is called the length of w(k). The elements w(k,n) €
{1,...,J} are called stages of route w(k). If an item k that is created by a
fork operation is immediately afterwards consumed by an join operation, we set
w(k) = (0) and take S(k) = 0 as the length of the route of k.

All nodes out of the set J(k) = {w(k,n) : n < S(k)} are visited by item k.
More precisely, the first visit of k& at node j € J(k) is represented by

vi(k,1) = (k,m) with m=inf{neN: wlk,n)=j}.
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In a similar way, we find the pair v;(k,2) which represents k’s second visit at
j. In total, k visits § v;(k) times and we set v;(k,m) = —1 for all m > v;(k).
Furthermore, we set v;(k,m) = —1 for all m > 1 and j € J(k).

We denote the number of the arrival triggered by k at node w(k,n) by
A(k,n). In the same way, we let D{k,n) denote the number of the departure
triggered by item k at node w(k,n). Then, k’s first visit to node j triggers the
(A(v;(k,1)))th arrival at § and the (D(v;(k,1)))** departure from j. Consider
two items: k and k', and a node j with j € J(k)NJ(k'). We say that the distance
between k and k' upon their first arrival at j is given by

|A(v;(k, 1)) — A(v; (K, 1) .
Let A(—-1) = oo, then

d;j(k,k'sm) = |A(vj(k,m)) — A(v;(K',m))|

is the distance between k and k' upon their m* visit at node j. If k visits
node j at least m times but &' does not, then d;(k, k';m) = co. On the other
hand, if k£ and k' both visit § less than m times, then d;(k,k’;m) = 0. For
0 < dj(k, k';m) < oo, there are exactly d;(k, k';m) arrivals between the arrival
of k and k' on their mt" visit at j.

‘We can now easily detect whether two items overtake each other at a certain
node j: for k, k' with j € J(k) N J(k') we set

Fi(k, k'5m) = | A(w;(k,m)) = D(v; (k,m)) = (Alw; (¥, m)) = Dlvs (K, m)) |

and otherwise zero. Then, f;(k, k’; m) is greater than zero if k and k&’ do overtake
each other during their m*”* visit. We now call

61'(/6,]{:,;7”) = dj(kak’;m) +001fj(k,k';m)>0

the distance between k and k' at j. The distance equals oo if either only one of
the items visits j m times or if the items overtake each other during their m**
visit. If the distances between all items visiting a node j are finite, then the
items arrive at the node in exactly the same order in which they departed from
it.

Definition 1.5.3 We call a queueing network invariant if for all k, k' € K,
méeN and forallj < J

S(k, k') = 6;(k, K';m) .

The invariance of a queueing network is tantamount to viewing the distances
between items as constant. For example, if item k and &’ both visit node j and
k' is three places ahead of k, that is, there are two items between k' and k, then
there are exactly two items between k and k' at every node these two items
visit. On the other hand, if k visits a node &’ does not visit, then they have no
common node on their route. This gives rise to the following:
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Theorem 1.5.3 Provided the queueing network satisfies (A), then the queueing
network s invariant if and only if it admits no routing, no internal overtaking
and all resequencing nodes have only finitely many service places.

Combining the above theorem with Theorem 1.5.2, we can summarize our
analysis as follows.

Corollary 1.5.1 A queueing network satisfying (A) is maz-plus linear with
fized support if and only if it is invariant.

Remark 1.5.3 Consider the network shown in Figure 1.5. Formally, this net-
work s invariant and satisfies condition (A). Hence, Corollary 1.5.1 implies
that the network is maz-plus linear. However, this reasoning is not correct! To
see this, recall that we assumed for our analysis that the networks contain no
isolated fork or join operations, see Remark 1.5.2. Since the network in Fig-
ure 1.5 contains an isolated join operation, Corollary 1.5.1 does not apply to
this network. However, we may consider the equivalent network, as shown in
Figure 1.6, that falls into our framework. This network is not invaerient and
applying Corollary 1.5.1 we (correctly) conclude that the networks in Figure 1.6
and Figure 1.5, respectively, are not maz-plus linear.

1.5.5 Condition (A) Revisited

This section provides a detailed discussion of assumption (A). Section 1.5.5.1
discusses the assumption that the routing is state independent. Section 1.5.5.2
discusses queueing disciplines other than FCFS. Blocking schemes other than
blocking-after-service are addressed in Section 1.5.5.3. Finally, Section 1.5.5.4
treats batch processing.

1.5.5.1 State-Dependent Dynamics

In max-plus linear models we have no information about the physical state of
the system in terms of queue lengths. Therefore, any dependence of the service
times on the physical state cannot be covered by a max-plus linear model.
For example, in many situations items are divided into classes. These classes
determine the route and/or the service time distribution of items along their
route. Due to lack of information about the actual queue-length vector at a
node, we cannot determine the class of the item being served, that is, classes
may not influence the service time or the routing decisions. Hence, a queueing
network is only max-plus linear if there is only one class of items present. For
the same reasons, state-dependent queueing disciplines, like processor sharing,
cannot be incorporated into a max-plus linear model.

For the sake of completeness we remark that in some cases class-dependent
service times can be incorporated into a max-plus linear model. For example,
in a GI/G/1/00 system with two customer classes where Fj is the service time
distribution of class 1 customers and F3 is the service time distribution of class
2 customers, and where an arriving customer is of class 1 with probability p,
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we can consider a new service time distribution G which is the mixture of F}
and F, with weights p and (1 — p), respectively. Then the resulting single-class
model mimics the dynamic of the queue with two classes and is max-plus linear.
However, apart from such model isomorphisms, multi-class queueing systems
are not max-plus linear.

Another example of such a model isomorphism is the round robin routing
discipline: A node j sends items to nodes ij,...,1,; the first item is sent to
node 11, the second to node i3 and so on; once n items have left the node, the
cycle starts again. As Krivulin shows in [78], a node with ‘round robin’ routing
discipline can be modeled by a max-plus linear model if this particular node is
replaced by a subnetwork of n nodes.

1.5.5.2 Queueing Disciplines

State-dependent queueing disciplines like processor sharing are ruled out by
max-plus linearity as explained in Section 1.5.5.1. This extends to queueing
disciplines that require information on the physical state of the system, like the
last come, first served rule.

For the sake of completeness, we remark that Baccelli et al. discuss in Sec-
tion 1.2.3 of [10] a production network where three types of parts, called p; to
ps3, are produced on three machines. It is assumed that the sequencing of part
types on the machines is known and fixed. Put another way, the machines do not
operate according to FCFS but process the parts according to a fixed sequence.
Consider machine M; which is visited by, say, parts of type p; and po. If the
sequencing of parts at machine M; is (p1, p2), then machine M; synchronizes the
p1 and p. arrival stream in such a way that it always first produces on a p; part
and then on a py part. Hence, the k** beginning of service on a p; part equals
the maximum of the (k—1)*t departure time of a p; part and the k** arrival time
of a py part. This system is max-plus linear even though the machines do not
operate according to FCFS and there are several types of customers. However,
it should be clear from the model that the fact that this system is max-plus
linear stems from the particular combination of priority service discipline and
classes of customers (parts).

1.5.5.3 Blocking Schemes

We have already considered blocking after service of manufacturing type. An-
other frequently used blocking scheme is blocking before service, that is, an item
is only processed if a place is available at the next station. Under blocking before
service, the basic recurrence relation (1.35) reads

zj(k)= P z:®:(,k)®0;(s(, k) & P wilaili, k) ® 0;(s(, k)
i€B(j,k) i€Ax,k)
®z;(c(j, k) ® 0;(s(4, k)) , (1.46)

for j < J and k € N. The standard (max+)-model follows just as easily. We
remark that blocking schemes considered here can be extended by including
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transportation time between nodes, see [14].

Another extension of the blocking mechanism is the so-called general blocking
mechanism: items that have been successfully processed are put in an output
buffer; they leave the output buffer when they find a free place at the next node.
This scheme allows the server to process items even though the node is blocked.
See [54] for more details.

For max-plus linear systems with fixed support, variable origins are ruled
out, that is, each arrival originates from the same node or, if j is a join node,
from the same set of nodes. Therefore, it is not necessary to assume a particular
blocking discipline like FBFU for systems without variable origins.

1.5.5.4 Batching

Consider a GI/G/1/00 system with batch arrivals. For the sake of simplicity,
assume that the batch size equals two. Hence, the first batch is constituted out
of the first two arriving items. More generally, the k** batch is constituted out
of the items that triggered the (2k)*" and (2k — 1) arrival at the queue. This
implies that the arrival index ag(k, j) equals 2k and is therefore not bounded.
In other words, the order of the GSPF is not bounded for the above system.
Therefore, no standard max-plus linear model exists.

1.5.6 Beyond Fixed Support: Patterns

In this section we explain how new max-plus linear models can be obtained from
existing ones through a kind of stochastic mixing.

So far, we considered the initial population and the physical layout of the
queueing network as given. Consider, for the sake of simplicity, the GSPF of a
queueing network with fixed support as given in (1.36). The GSPF depends via
the arrival and blocking index on the initial population (n1,...,n ). There is no
mathematical reason why n; should not depend on k. For example, Baccelli and
Hong [7] consider a window flow control model where the initial population is
non-unique. In particular, they consider two versions of the system, one started
with initial population n! = (n},...,n}) and the other with n? = (n?,...,n?%).
The idea behind this is that the version with n' is the window flow system
under normal load whereas the n? version represents the window flow control
under reduced load, that is, with fewer items circulating through the system.
Both versions of the system are max-plus linear with fixed support, that is,
there exists A!(k) and A2%(k), so that #'(k + 1) = A'(k) ® Z!(k) represents
the time evolution under n! and #2(k + 1) = A%(k) ® #2(k) that under n2.
Now assume that after the k" departure epoch the system runs under normal
load with probability p and under reduced load with probability 1 — p. Define
A(k) so that P(A(k) = A'(k)) = p and P(A(k) = A%(k)) = 1 — p, then
#(k + 1) = A(k) ® (k) models the window flow control scheme with stochastic
change of load. In particular, A(k) fails to have fixed support, which stems from
the fact that the support of A'(k) and A%(k) doesn’t coincide.
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Another example of this kind is the multi-server queue with a variable num-
ber of servers modeling breakdowns of servers. See Example 1.5.5. Observe that
the multi-server queue with breakdowns fails to have fixed support.

Consider a sequence {A(k) : k € N}, like in the above example, and assume
for the sake of simplicity that A(k) has only finitely many outcomes. Put another
way, {A(k) : k € N} is a stochastic mixture of finitely many deterministic max-
plus linear systems. We say that { A( k):keN } admits a pattern if N > 1 exists
such that with positive probability A = A(k + N)® --- ® A(k + 1), where A
is an irreducible matrix of cyclicity one and its eigenspace is of dimension one.
As we will explain in Section 2.5, if {A(k) : k € N} admits a pattern, then &(k)
converges in total variation towards a unique stationary regime. Moreover, it
can be shown that Z(k) couples in almost surely finite time with the stationary
version. In other words, the concept of a pattern plays an important role for the
stability theory of systems that fail to have fixed support.

This approach extends the class of systems that can be analyzed via max-
plus stability theory. However, mixing max-plus linear systems in the above
way is not straightforward and for a particular system we have to prove that
the way in which we combine the elementary systems reflects the dynamic of
the compound system. See Section B in the Appendix where the correctness of
the multi-server model with breakdowns is shown. Furthermore, the existence
of a pattern requires that a finite product of possible outcomes of the transition
dynamic of the system results in a matrix which satisfies certain conditions.
Unfortunately, this property is analytic and cannot be expressed in terms of the
model alone.

We conclude with the remark that, even though the fixed support condition
can be relaxed, we still need a GSPF that is of finite order to obtain a max-plus
linear model. In other words, we are still limited to systems satisfying condition
(A), that is, the discussion in Section 1.5.5 remains valid.

1.6 Bounds and Metrics

Our study is devoted to max-plus linear systems. Specifically, we are interested
in the asymptotic growth rate of a max-plus linear system. A prerequisite for
this type of analysis is that we provide bounds and metrics, respectively, on
Rmax- Section 1.6.1 discusses bounds, which serve as substitutes for norms,
for semirings. In Section 1.6.2, we turn to the particular case of the max-plus
semiring. In Section 1.6.3, we illustrate how Ryax can be made a metric space.

1.6.1 Real-Valued Upper Bounds for Semirings

To set the stage, we state the definition of an upper bound on a semiring.

Definition 1.6.1 Let R be a non-empty set. Any mapping ||-|| : R — [0,00) is
called an upper bound on set R, or, an upper bound on R for short. We write
[| - g for such an upper bound when we want to indicate the set on which the
upper bound is defined.
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Let R = (R, ®,®, ¢,¢) be a semiring. If || - || is an upper bound on the set R
such that for any r,s € R it holds that

lIr@sl| < |lrll + [ls]| and |lr @ s]] < |irl] + llsli,

then |} - || is called an upper bound on semiring R, or, an upper bound on R for
short.

On Rpax we introduce the following upper bound

lrllg = Jr| for r € (—o0,00),
® 0 otherwise.

That || - ||g is indeed an upper bound on Ry, follows easily from the fact that
for any z,y € Ryax it holds

20y < [lzoylle <llzlle + llvllo, ©=0,®. (1.47)

The upper bound ||-||g is extended to matrices in the obvious way: for 4 € RIXJ

let

|Alle = max{||Aijlle : 1 < i< T, 1< 5 < J}

1 J
=D D 4ille -

i=1 j=1

Note that ||€]]e = ||E|le = 0 and || - ||@ thus fails to be a norm on RZXJ.
Let A be a random element in R} %7 defined on a probability space (2, A, P).
We call A integrable if

E[||Alle] < o0.

Hence, A is integrable if
E[lag>eldil] <00, 1<i<I,1<5<J.

In words, integrability of a matrix is defined through integrability of its non-¢
elements. If A is integrable, then the expected value of A is given by the matrix
E[A] with
E[1l4,,>e A5 f ij ,
(E[A]);; = [1a,;5¢Ai5] for P(Asj #¢€) >0
€ for P(Aj; =€) = 1,

for 1<i<1I,1<j<J. Notethat if z € R/ and 4 € R]XJ are integrable and
A is a.s. regular, then A ® z is integrable.
We show that || - ||g is indeed an upper bound.

Lemma 1.6.1 For A € RIXE gnd B ¢ REXJ

max max ?

|A®Blle < [|Alle+IIBlle -

Purthermore, for A € RIXJ and B € RIXJ

max max?

lA®Bllo < ||Alle + I Bllo -
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Proof: Observe that A;; < || A||lg. Making use of the fact that & is idem-
potent, we calculate as follows:

g
D DPl4eB)lle

146 Bllo =

i=1 j=1

- @@H@AW%H
i=1 j=

‘””@EB|1@||Amu@®an||@H
i=1 j=1 k=

< @@ly@nAn@@an@H
i=1 j=1

= llAlle || Bllo

= llAllo+1Bllo

The proof of the second part of the lemma follows from the same line of argument
and is therefore omitted. [

An immediate consequence of the definition of || ||g is that the || - ||g-value
of a matrix A is always bounded by the sum of all possible sub-matrices of A.
The following corollary gives a precise statement.

Corollary 1.6.1 For A € RI%J, B € REXL and C = (A, B) € RIXJ x REXL
it holds that

liClle < llAlle + [|Blle -

1.6.2 General Upper Bounds over the Max-Plus Semiring

In the previous section, we required that an upper-bound maps the elements
of a given semiring on [0, 00). We now extend the usual order relation on R to
Rmax by setting € < z for all z € Ry,ax. Recalling that € is the zero-element of
Rax, the natural extension of Definition 1.6.1 to the max-plus semiring is as
follows.

Definition 1.6.2 A mapping || - || : Rmax — Rmax s called a maz-plus upper
bound if

o for any 7 € Ryax it holds ||r|| > ¢,
o for any r,s € Runax s holds
[[rosll<lirll @ lIsl] and [lr&s|| < |[Ir|] ® ||s]] .

IxJ

We introduce on R; X the following max-plus upper bounds:

def
Alloin = 22, , 22, A
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and

I J

def = @A-'

1 4llmax = max max A;; ?l? ) Ay
- J:

IxJ

A direct consequence of the above definitions is that for any A € R[5

”A”min < ||A||max < ”A”@ '
The main difference between || A|min, ||4||max and ||A]|g is that || A||min, || Al max
can have negative values whereas the definition of || - || implies that for any A
it holds that ||A||g > 0. More precisely, if A;; € [—00,0) for all elements (i, 5),
then [|A|lmax < ||Al|g- Hence, ||A||min, ||A||max and ||A]|e are max-plus upper
bounds but only ||A||e is an upper bound. For example, let

(54 5)

“A“max =-1<4= ”A“EB-

A

then

On the other hand, if all finite elements of A are greater than or equal to 0 and
if A has at least one finite element, then ||Allmax = ||A||l@. For example, let

1le¢
4= (13)

1Allmax = 4 = [|Alle -

then

Lemma 1.6.2 For A € RIX¥ gnd B € REXJ

max max

| A® Bllmax < [[A]lmax @ || Blmax »

and

|A® Bllmin 2 || Allmin @ || B |lmin -

Furthermore, for A € RIXJ and B ¢ RI%J

max max’

|A® Bllmax < | Allmax @ || B |lmax

and

|A® Bllmin 2 || Allmin @ || B |lmin -
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Proof: Observe that A;; < || A||max. Calculation yields

1A ® Bllmax= EB EB(A ® B)ij

S| A[lmax ® II B Ilmax :
For || ||min we elaborate on the fact that A;; > ||A||min and calculate as follows
[|A ® B||min= mlnl g}lg (A® B)y;
K
=202, 22, D Aw® By

= Lnlg]@ I A [|min ® By

= Allmin ® 121],I£Jk€_913kj

Z“AHmin & HB Hmin .

The proof of the second part of the lemma follows from the same line of argument
and is therefore omitted. [J

For A,B € RI%J let A — B denote the component-wise difference, that is,
(A - B)” = A;; — Bij, where we set (A — B)y; = ¢ if both A;; and B;; are
equal to €. Recall that the positions of finite elements of a matrix A € RI*7 is
given by set of edges of the communication graph of A, denoted by D(A). More
precisely, A;; is finite if (j,4) € D(A).

Lemma 1.6.3 Let A, B € RIXJ be regular and let z,y be J dimensional vectors

with finite entries. If D(A) = D(B), then it holds that
HA ®x—B® y”max < “A - B”max + Hx - y”max-

Proof: Let j4(¢) be such that
J
(A®x)i = Ayjagy +zja0) = D Aij ® 5.
Jj=1
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and 55 (i) be such that

J
(B®y); = By +yjpay = @ B;; ® y;.
i=1
Regularity of A and B implies that A;;a(;) and By;s(;) are finite. Moreover, the

fact that the positions of finite entries of A and B coincide implies that A;;s(;)
and B;;a;) are finite as well. This yields

Bijawy +yja0) < Bijsg) + Yj5()-
Hence,
Agjagy +xja) — (Bypa) + Ys5(0) < Agjagy + Tja0) — (Biag) + Yja0))
Note that for any 4

(A®z)i — (B ®y)iSAijaq) — Bijagy + Tja) = Yja0)
S“A - B”max + ||.’E - y”max-

Taking the maximum with respect to ¢ on the left-hand side of the above formula
proves the claim. O

1.6.3 The Max-Plus Semiring as a Metric Space

If we want to equip Rpyax with a metric, then a natural first choice would be
d(A,B) = ||A — Bl|g. Such a definition is to no avail, since Ryax is & semiring,
and we cannot give meaning to the ‘-’ operation. However, we may equip Rpax
with a metric through embedding Rmax into [0,00). We will illustrate this in
Section 1.6.3.1.

Elaborating on the projective space, a metric can be introduced that is
most helpful in studying max-plus linear recurrence relations. This approach is
presented in Section 1.6.3.2.

1.6.3.1 Exponential Lifting

Rpmax can be embedded into [0,00) in the following way. We map z € Ryax,
where z is different from €, onto e® and for x = ¢, we set e® = ¢~ = (0. With

the help of the mapping e® we are able to introduce the following metric on
RIX J

max

d(A,B)dzefmax (em“x(A”’B“) — eminl4iiBi) 1 <<, 1<5< J)

=max (IeA“ — eBii

11<i<I,1<5<J).

For A € RIXJ let e € RT*7 be given through (e?);; = e4is, for 1 < i < I,
1 < j < J. With this notation, we obtain

lle#|l = d(4,€). (1.48)
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Consider the metric space (RIXJ, d(,-)). A sequence {A(k)} of matrices in R1XJ

IxJ
max

converges to a matrix A in RZX:, in symbols A(k) 4 A, if and only if for any

element (%, 5) it holds that
lim d(A”(k), Aij) =0,
k—o0

Hence, if A;; € R, then
k—o0

and if A;; = ¢, then A;;(k) tends to —oo for & towards oo.

Example 1.6.1 The mapping |||lmax : RLXJ — Rumax s continuous with respect
to the topology induced by the metric d(-,-). To see this consider A(k) € RIXS,
for k € N, with

Alk) S A

IXJ  Continuity 'of the maximum operation then yields

for some matriz A € Ry

that
kILIIZ:o HA(k')”max = ||A||ma>¢1

which implies continuity of || - ||max- More specifically, recall that D(A) is the set
of edges of the communication graph of A indicating the positions of the finite

elements of A. Hence, A(k) 4 A implies
V(], ’L) (S D(A) : klim Ai]’ (k:) == Aij eR,
whereas for (j,1) € D(A) we have
lim Azj(k) = —00.
k—o0

Provided that D(A) contains at least one element, continuity of the mazimum
operation yields that

Jim [|AK) e = Jim €D Aig (k) = [ Allmax-
(4,5)€D(A)

In case D(A) = 0, we obtain again by continuity of the mazimum operation that

klivngo ”A(k)Hmax =—00= ||A||€B

Apart from the || ||max upper bound, what kind of mappings are continuous
with respect to the metric d(-,+) on Ryax? In the following we give a partial
answer by showing that any continuous mapping from R to R that satisfies
a certain technical condition can be continuously extended to Ruyax. Let g be
a continuous real-valued mapping defined on R. We extend g to a mapping
G : Ryax — Rpyax by setting

g(x) =g(z), zeR, (1.49)
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and
gle) = lim g(z), (1.50)

provided that the limit exists. In particular, we set §(z) = ¢ if

lim sup g(z(k)) = hknigfg(m(k)) = —00.

k—o00

The following lemma shows that § is again a continuous mapping.

Lemma 1.6.4 Let g : R — R be continuous and let § be defined as in (1.49)
and (1.50). Then § is continuous with respect to the topology induced by the
metric d(-; ).

Proof: Let (k) € Rpyax be a sequence such that z(k) 2 % for z € Rpax. If
z # g, then

~ d . ~ ~
§(z(k)) = §(z) = lim d(g(z(k)),§(=))
= lm (emax(g<x(k)),g<w>) _ 6min(@(m<k>>,g(w>>)
= lim <emax(g(m(k)).9(m)) _ emin(g(z(k)),g(z))) i
Since, g(-), €*, max and min are continuous as mappings on R, the above equality
implies that g(z(k)) 4 g{z), which shows the continuity of §(-) on R.

Now let z = € and assume that z(k) € R for k¥ € N. Convergence of z(k)
towards ¢ implies that z(k) tends to —oo for k towards oco. By (1.50), it follows

Jim gz (k))=lim g(z(k))
=4(e)
=3 (im o).

which yields continuity of §(-) in €. O

We conclude this section with some thoughts on the definition of the upper
bound || - [|g. In the light of the above analysis, one might be tempted to
introduce the bound

(1.48)
lAlll=1le*le "=" d(A,€).
Unfortunately, ||| - ||| is not an upper bound on Ryax. To see this, consider the

matrix
11
A= (11) .

For this particular matrix one obtains

llAlle =1 and [|JAlll = ¢,
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22
AR A = (22>

IA® Alle = 2 = ||Alle + [|Alle
IA® Alll = €® > 2¢" = |I1Alll + [llA]ll -

Hence, ||| ||| fails to be an upper bound on Ruax (that ||-||@ is indeed an upper
bound on R;,,x has been shown in Lemma 1.6.1).

and

implies that

1.6.3.2 A Metric on the Projective Space
On IPRY we define the projective norm by

~ def —
HXHIP = IIXIImax_ IIX“mmy XeX.

It is easy to check that ||7||1p_ does not depend on the representative X. Fur-
thermore, || X||p > 0 for any X € IPRY and

I X||p =0 ifandonlyif X =0,

that is, ||X||p = 0 if and only if for any X € X it holds that all components
are equal. For p € R, let p - X be deﬁned as the component-wise conventional
multiplication of X by p. Thus g+ X = X, which implies

o -Xllp = |ul- [ X|lp, peR,X eIPR’.

In the same vein, for X,Y € R7, let X 4 Y be defined as the component-wise
conventional addition of X and Y, then ||- || satisfies the triangular inequality.
To see this, let X,Y € IPR”, then, forany X € X and Y €Y,

IIX +Y|lp = max(X; + ¥;) ~ min(X; + ;)
< max(max(X;) +Y;) — min(min(X;) +Y;)
K J K 2

=max X; — min X; + max(¥;) — min(Y;)
J J ¢ i

=Xl + |[Yle -
Hence, || - || is indeed a norm on IPR’. We extend the definition of || - {|p to
PR .. by adopting the convention that 2 — ¢ = co for z # € and ¢ — ¢ =
€ + 00 = 0. However, || - || fails to be a norm on IPRJ, : for any X € Rmax

with at least one finite element and at least one element equal to € it holds that
||X||p = oo, whereas a norm is by definition a mapping onto R.

On IPRY, we define X — Y as the component-wise conventional difference
of X and Y. With this definition, we obtain a metric dp(-,-) on IPR’ in the
natural way: for X € X and Y € Y set
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or, more explicitly,

d]P(_.X-,?) :”-X - Y”max - ”Y - Xllmin
=max(X; — Y;) — min(X; - Yj)
J j

=max(Yj — X;) — min(Y; - X;),
2 M

where for the last equality we have used that max;(X; —Y;) = —min;(Y; - Xj).
The metric dip (-, -) is called projective metric. We extend the definition of dp (-, )
to IPR/ .. by adopting the convention that e~z = ¢, for = # ¢. Note that dp (-, -)
fails to be a metric on PR, . To see this, let ¥ be such that for Y € Y it holds
that all components of Y are equal to ¢. Then, for any X € IPRY, it follows
that dp(X,Y) = 0.



Chapter 2

Ergodic Theory

Ergodic theory for stochastic max-plus linear systems studies the asymptotic
behavior of the sequence

s(k+1) = Ak)®@az(k), k>0,

where {A(k)} is a sequence of regular matrices in R7%J and 2(0) = o € RZ ..
One distinguishes between two types of asymptotic results:

(Type 1) first-order limits
z(k)

lim —=~
kooo k]

(Type II) second-order limits of type
(@  lim (wm(k)-=;k) and () lim (w5064 1)~ (k).

A first-order limit of departure times is an inverse throughput in a queu-
ing network. For example, the throughput of the tandem queuing network in
Example 1.5.2 can be obtained from

k

klon,olo .’L"](k) !
provided that the limit exists.

Second-order limits are related to steady-state waiting times and cycle times.
Consider the closed tandem network in Example 1.5.1. There are J customers
circulating through the system. Thus, the k" and the (k 4+ J)** departure from
queue j refers to the same (physical) customer and the cycle time of this cus-
tomer equals

.’ITJ(IC +J) - (L‘J(k) .
Hence, the existence of the second-order limit z;(k+ 1) — z;(k) implies limit re-
sults on steady-state cycle times of customers. For more examples of the model-
ing of performance characteristics of queuing systems via first-order and second-
order expressions we refer to [10, 77, 84].
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The chapter is organized as follows. Section 2.1 and Section 2.2 are devoted
to limits of type I. Section 2.1 presents background material from the theory of
deterministic max-plus systems. In Section 2.2 we present Kingman’s celebrated
subadditive ergodic theorem. We will show that max-plus recurrence relations
constitute in a quite natural way subadditive sequences and we will apply the
subadditive ergodic theorem in order to obtain a first ergodic theorem for max-
plus linear systems. Limits of type Ila will be addressed in Section 2.3, where
the stability theorem for waiting times in max-plus linear networks is addressed.
In Section 2.4, limits of type I and type ITa will be discussed. This section is
devoted to the study of max-plus linear systems {z(k)} such that the relative
difference between the components of z(k) constitutes a Harris recurrent Markov
chain. Section 2.5 and Section 2.6 are devoted to limits of type IIb and type L.
In Section 2.5, we study ergodic theorems in the so called projective space. In
Section 2.6, we show how the type I limit can be represented as a second-order
limit.

2.1 Deterministic Limit Theory (Type I)

This section provides results from the theory of deterministic max-plus linear
systems that will be needed for ergodic theory of max-plus linear stochastic sys-
tems. This monograph is devoted to stochastic systems and we state the results
presented in this section without proof. To begin with, we state the celebrated
cyclicity theorem for deterministic matrices, which is of key importance for our
analysis.

Let A € RIXJ, if z € R, with at least one finite element and A € Rypax
satisfy

AQzr = A®«z,

then we call X an eigenvalue of A and = an eigenvector associated with A. Note
that the set of all eigenvectors associated with an eigenvalue is a vector space.
We denote the set of eigenvectors of A by V(A). The following theorem states
a key result from the theory of deterministic max-plus linear systems, namely,
that any irreducible square matrix in the max-plus semiring possesses a unique
eigenvalue. Recall that 28" denotes the n* power of € Ryayx, see equation
(1.5).

Theorem 2.1.1 (Cohen et al. [33, 34] and Heidergott et al. [65]) For any irre-
ducible matriz A € RIXY, uniquely defined integers c(A), o(A) and a uniquely
defined real number A = A(A) exist such that for all n > c¢(A):

An+¢7(A) — )\®O'(A) ® A™ .

In the above equation, A(A) is the eigenvalue of A; the number c(A) is called
the coupling time of A and o(A) is called the cyclicity of A.
Moreover, for any finite initial vector x(0) the sequence z(k+1) = A® z(k),
k > 0, satisfies
z;(k)

i = <.< .
Icl—l-»ngo k A, 1sisd
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The above theorem can be seen as the max-plus analog of the Perron-
Frobenius theorem in conventional linear algebra and it is for this reason that it
is sometimes referred to as ‘max-plus Perron-Frobenius theorem.” We illustrate
the above definition with a numerical example.

Example 2.1.1 Matriz
le2e
lece
ceece
cee2e

has eigenvalue A(A) = 1 and coupling time c(A) = 4. The critical graph of A
consists of the circuits (1,1) and ((1,2),(2,3),(3,1)), and A is thus of cyclicity
o(A) = 1. In accordance with Theorem 2.1.1, A" = 1® A", forn > 4 and

lim —(Ak ® 20);
k— o0

=1, 1<j<4,

for any finite initial condition xg. For matriz

le2e
lece
eele
ge€2e¢

we obtain A(B) = 2, coupling time ¢(B) = 4. The critical graph of B consists of
the selfloop (3,3), which implies that 0(B) = 1. Theorem 2.1.1 yields B*t! =
2® B™, forn >4 and

lim

=2, 1<j<4,
k—o0 k ==

for any finite initial condition xg. Matriz

ceeTe
Jeeec
eEece
eeTle

has eigenvalue A\(C) = 3.5, coupling time ¢(C') = 4. The critical graph of C
consists of the circuit ((3,4), (4,3)), which implies that 6(C) = 2. Theorem 2.1.1
yields C"t? =3.5%2@ C" =7Q@ C™, forn > 4 and

" ‘
gmfgi%@ﬁ=3a 1<j<4,

for any finite initial condition xy.
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Let A € RJXJ and recall that the communication graph of A is denoted

by G(A). For each circuit £ = ((¢ = 41,142), ({2,%3), - . . ; (n,tns1 = %)), with arcs
(tmy tm+1) in G(A) for 1 < m < n, we define the average weight of £ by

n

1 1 ¢
w(é) = n ® imt1im T n Z tmtlim *

m=1

Let C(A) denote the set of all circuits in G(A). One of the main results of
deterministic max-plus theory is that for any irreducible square matrix A its
eigenvalue can be obtained from

e

In words, the eigenvalue is equal to the maximal average circuit weight in G(A).

A circuit ¢ in G(A) is called eritical if its average weight is maximal, that is,
if w(&) = A. The critical graph of A, denoted by G¢(A), is the graph consisting
of those nodes and arcs that belong to a critical circuit in G(A). Eigenvectors of
A are characterized through the critical graph. However, before we are able to
present the precise statement we have to introduce the necessary concepts from
graph theory.

Let (E,V) denote a graph with set of nodes F and edges V. A graph is
called strongly connected if for any two different nodes { € E and j € E there
exists a path from 7 to j. For ¢,j € E, we say that {Rj if either ¢ = j or there
exists a path from ¢ to j and from j to ¢. We split (£, V) up into equivalence
classes (E1,V1),...,(Eq, V) with respect to the relation R. Any equivalence
class (E;, Vi), 1 €1 < g, constitutes a strongly connected graph. Moreover,
(E;,V;) is maximal in the sense that we cannot add a node from (E,V) to
(E;, V;) such that the resulting graph would still be strongly connected. For
this reason we call (Ey,V1),...,(E,, V,) mazimal strongly connected subgraphs
(m.s.c.s.) of (E,V). Note that this definition implies that an isolated node or a
node with just incoming or outgoing arcs constitutes a m.s.c.s. with an empty
arc set. We define the reduced graph, denoted by (E,V), by E = {1,...,¢}
and (i,5) € V if there exists (k,l) € V with k € E; and [ € E;. The cyclicity
of a strongly connected graph is the greatest common divisor of the lengths
of all circuits, whereas the cyclicity of a graph is the least common multiple of
the cyclicities of the maximal strongly connected sub-graphs. As shown in [10],
the cyclicity of a square matrix A (that is, o(A) in Theorem 2.1.1) is given by
the cyclicity of the critical graph of A. A class of matrices that is of importance
in applications are irreducible square matrices whose critical graph has a single
m.s.c.s. of cyclicity one. Following [65], we call such matrices primitive. In the
literature, primitive matrices are also referred to as scsl-cycl matrices. For
example, matrices A and B in Example 2.1.1 are primitive whereas matrix C
in Example 2.1.1 is not.

Example 2.1.2 We revisit the open tandem queuing system with initially one
customer present at each server. The maz-plus model for this system is given in
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Ezample 1.5.12. Suppose that the service times are deterministic, that is, o; =
o;(k) fork € N and 0 < j < J. The communication graph of A = A, (k) consists
of the circuit ((0,1),(1,2),...,(J,0)) and the recycling loops (0,0), (1,1) to
(J,J). Set

L={j:o;=max{0;:0<i<J}}.

We distinguish between three cases.

o If1=|L|, then the critical graph of A consists of the node j € L and the
arc (4,7). The critical graph has thus a single m.s.c.s. of cyclicity one, A
s therefore primitive.

o If1 < |L| < J, then the critical graph of A consists of the nodes j € L
and the arcs (4,7), 7 € L. The critical graph has thus |L| m.s.c.s. each of
which has cyclicity one and A fails to be primitive.

e If|L| = J, then the critical graph and the communication graph coincide
and A. The critical graph has a single m.s.c.s. of cyclicity one, and A is
primitive.

Let A € RJ%/ be irreducible. Denote by Ay the normalized matrix, that
is, the matrix which is obtained by subtracting (in conventional algebra) the
eigenvalue of A from all components, in formula: (Ay)i; = Ai; — A, for 1 <
3, < J. The eigenvalue of a normalized matrix is e. For a normalized matrix of
dimension J x J we set

At E PNk, (2.1)

k>1

It can be shown that A* = Ay ® (A\)?® - ® (Ax)”. See, for example, Lemma
2.2 in [65]. The eigenspaces of A and Ay are equal. To see this, let e denote the
vector with all components equal to e; for z € V(A), it then holds that

ARzr = ARz & 2= ARz — ARe & e®r =A\Qx.

The following theorem is an adaptation of Theorem 3.101 in [10] which charac-
terizes the eigenspace of Ay. We write A.; to indicate the i** column of A.

Theorem 2.1.2 (Baccelli et al. [10]) Let A be irreducible and let At be defined
as in (2.1).

(3) If i belongs to the critical graph, then AT is an eigenvector of A.
(i) For1,j belonging to the critical graph, there exists a € R such that
+

if and only if 1,7 belong to the same m.s.c.s.
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(i) Every eigenvector of A can be written as a linear combination of critical
columns, that is, for every x € V(A) it holds that

T = @ a; ® Af'; ,
i€ Ge(A)

where G¢(A) denotes the set of nodes belonging to the critical graph, and a; €

R .. such that
@ Qa; 76 E.
ieGe(A)

Example 2.1.3 Consider the matriz

0 -2
a=(17)
A is irreducible with eigenvalue 0 and the critical graph of A consists of the
nodes {1, 2} and recycling loops (1,1) and (2,2). The critical graph has thus two
m.s.c.s., namely, the recycling loops (1,1} and (2,2), and o(A) = 1. For A it
holds that
A=A"= A, =AY, neN.

Theorem 2.1.2 yields the following representation of the eigenspace of A: A
vector x € R2,, belongs to V(A) if and only if numbers a1, az € Ryax exist with
a1 ® ag # £ (in words: at least one of two numbers is finite) such that

(5)=e(2) oe(y).

see (1.8) for the definition of scalar multiplication of vectors.

Let A € R{X/ be irreducible with cyclicity one. Recall that we call v,w €
RJ .. linear dependent if an o € R exists such that v = o ® w. We say that the
eigenvector of A is unique if any two eigenvectors of A are linear dependent, or,

equivalently, if there exists v € RY such that
V(4) = {a®v : a €R}.

This can conveniently be expressed by saying that the eigenspace of A reduces
to a single point in R, .

An important consequence of Theorem 2.1.2 is that eigenvectors of prim-
itive matrices are unique. Primitive matrices enjoy the additional properties
that, for sufficiently large k, A* ®  becomes an eigenvector of A for any finite
vector . These properties of primitive matrices will be of use in Section 2.5 and

Section 2.6. The precise statement is as follows.

Corollary 2.1.1 If A € R]XJ is a primitive matriz, then the eigenvector of A
1§ unique.
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Let z(k+1) = AQ® z(k), for k > 0, and let z(0) be a finite vector. Then, it
holds that x(k) € V(A) for k > c(A). Specifically, it holds that

s(k+1) = A z(k), k> cA),

where A denotes the eigenvalue of A, and consequently, for k > c(A), it holds
that ||z(k)||p = a for some finite constant a.

Proof: Because A4 is primitive, the critical graph has only one m.s.c.s. Thus, by
Theorem 2.1.2 (ii), there exists ip in the critical graph such that

Al = ;@ Ay, i€ G(A).
Hence, by Theorem 2.1.2 (iii), any eigenvector v of A can be written

= @ ai ® AY

i€Ge(A)

= EB a; ® (ai®A.J§O)

i€Ge(A)

@ ;i Ro; | @ A'-'i-o
i€Go(A)
y® A%

dg

where
Y= @ a; ® a; € Ryax ,
1€G<(A)
which establishes uniqueness of the eigenvector.

We now turn to the proof of the second part of the corollary. Since A is
primitive, o(A) in Theorem 2.1.1 is equal to one. This yields for k > c(A):
ARl = A ® A* for any k > ¢(A). Multiplying both sides of the above equation
with the initial vector zp concludes the proof. O

Eigenvalues and eigenvectors of matrices over the max-plus semi-ring can be
computed in an iterative way. A classical reference is [73]. For more methods
for computing max-plus eigenvalues and eigenvectors we refer to {10, 65]. A
recent alternative method based on policy iteration is given in [32], see also
[65] for a detailed discussion. A general approach for computing cycle times
(gives eigenvalues only) for so-called min-max-plus systems (an extension of
max-plus linear systems) is established in [57, 56, 49]. Algorithms for computing
eigenvalues and eigenvectors of both max-plus and min-max-plus systems can
be found in [98, 101]. In particular, the algorithm given in [98] yields an upper
bound for the cyclicity of a matrix in the max-plus semiring. Computing the
eigenvalue of a matrix A can be achieved in polynomial time. In contrast to
this, computing the coupling time is NP-hard (in the number of circuits of the
critical graph), see [25]. Feasible upper bounds for the coupling time can be
found in [60] and [25].
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2.2 Subadditive Ergodic Theory (Type I)

Subadditive ergodic theory is based on Kingman’s subadditive ergodic theorem
[74, 75] and its application to generalized products of random matrices. We
start with an elementary result which appears as an exercise in [91]. A sequence
a = {a, : n € N} of real numbers is called subadditive if

Umtn < p +am, forn,m>=>1.

If a is subadditive, then a,/n has a limit as n — oo, which may be —c0. To
see this, note that for given m, any n can be written as n = k,m + l,, where
ln, < m and k, is a multiplier that depends on n. The subadditivity of a implies

Un = Okymil, S Knam +ay, .
Dividing both sides by n yields

an kn 1
= = Zay + —a, .
n n n

Noticing that k./n < 1/m and k,/n — 1/m, we have
lim sup 4n < dm .
n n m

Since m is arbitrary, we may take the infimum w.r.t. m over the right-hand side
and get

. a . a
limsup = < liminf —= .
n n m m

Therefore, the limit a,/n exists (and is equal to liminf, a,/n).

Kingman’s [75] result is formulated in terms of subadditive processes. These
are double indexed processes X = {X,,, : m,n € N} satisfying the following
conditions:

(S1) Ifi < j < k, then Xy < Xi; + Xk a.s.
(S2) For m > 0, the joint distributions of the process {Xm41n+1 : M < n} are

the same as those of { X, : m < n}.

(83) The expected value g, = E[Xy,| exists and satisfies g, > —cn for some
finite constant ¢ > 0 and all n > 1.

A consequence of (S1), (S8) and the elementary result given above is that

A= lim &
n—oo 7N

exists and is finite. We can now state Kingman’s subadditive ergodic theorem:
if X is a subadditive process (that is, (S1), (S2) and (S3) hold), then the limit

. Xon
=T
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exists almost surely, and E[¢] = A. Condition (S2), on the shift {X,,,} —
{Xm+1n+1}, i8 a stationarity condition. If all events defined in terms of X that
are invariant under this shift have probability zero or one, then X is ergodic. In
this case, as discussed in Kingman [75], the limiting random variable £ is almost
surely constant and equal to A. Note that the limit also holds when expected
values are considered.

We now turn to homogeneous equations, that is, to max-plus linear systems
whose dynamic can be described via

2(k+1) = A(k) ® z(k) ,

for k > 0, with z(0) = z¢ given. In particular, we write

w(n+1,m0)=®A(k)®wo, n>0, (2.2)
k=0

to indicate the initial value of the sequence. Recall that e denotes the vector
with all components equal to e. We set

m—1

From this we recover z(k + 1, e) through zox+1 = z(k + 1,€).

Lemma 2.2.1 Let {A(k)} be a stationary sequence of a.s. regular and integrable
matrices in RIXJ. Then {~||Tnm||min : m > n = 0} and {||Znm||max : m >n >

max °

0} are subadditive ergodic processes.

Proof: For z,y € RJ, ., let x < y denote the component-wise order. Note

that £ < y implies ||2||max < ||[Yllmax; in particular, < }|z||max ® €, where

e denotes the vector whose components are equal to e (we refer to (1.3) for
a definition of the ®-product of a scalar and a vector). Furthermore, for any
A € R{%/ it holds that z < y implies A®2 < A®y. Combining these statements
it follows for # € R, and A € RJ%:

[|A® Z||max < [[A® (||z]lmax ® €)llmax - (2.3)
In the same vein, for z € R}, and A € R2Y):
14 ® Zllmin 2 |A® (||]|min © €)l|min - (2:4)

We now show the subadditive property of ||Znm|lmax- For 0 < n < p < m,
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we obtain
m—1
H&nmllmax = A ®e
t=n max
m—1
= A(@) ® Tpp
i=p max
2. m—1
| ® 46)© (Ienpllmos 2¢)
i:p max
m~-1
= ”m?w”max@ A(Z) ®e
izp max
m=—1
= ”mnP”max + ® A(l) ®e
i=p

max
= ||Znpllmax + [|Tpm!Imax ,

which establishes (S1) for ||Znm||max- The proof that (S1) holds for —||Znm||min
as well follows the same line of argument: for 0 < n < p < m,

m-1
Hznmllmin = ® Ay ®e
t=n min
m~—1
= || A(i) ® znp
i=p min
m—1
2| ® 466 (iwapllosn o )
i=p min
m—1
= [|||%np!|min ® ® Ali)®e
i=p min
m—1
=@npllmin + || &) AD) ® €
i=p min

= |Znpllmin + “xpmnmin ,

which establishes (81) for —||Znm||min-
The stationarity condition (S2) follows immediately from the stationarity of

{A(K)}-



2.2 Subadditive Ergodic Theory 69

We now turn to condition (S3). We have assumed that each row of A(k)
contains at least one non-¢ element, which implies z(k,e) € R” for any k. We
may now prove by induction that z(k,e) is absolutely integrable where we use
the fact that (i) | min(a,b)|,| max(a,b)| < |a| + |b], (ii) A(k) is integrable, and
that (iil) the initial condition e of z(k, e) is integrable. From

E[l|zok|lmax] = E[||z(k, €)|lmax] (2.5)

it follows that xox is integrable for any k. Let {||4|]| denote the smallest non-¢
element of A (note that (i) and (ii) above imply that E[{{]A(k)|||] is finite). With
this definition it is immediate that

k-1
D EIIAGIN < Elllz(k, €)llmax] - (2.6)
7=0

Stationarity of {A(k)} implies that E[|||A(k)]||]] = ¢ for any k. Integrability of

A(k) together with the fact that there are at least J finite elements in A(k)
yields ¢ > —oo. We obtain from (2.6):

—kle| < E[||z(k, )] lmax]
2.5
@ B ||wok|lmax ] »

which establishes (83) for {||znm||max : m = 1;m > n > 0}.
We now turn t0 {—||Zpm||min : m = 1;m > n > 0}. Following the above line
of argument it holds that, for £ € N,

E[[{zok|lmin] = E[||z(k, €)|lmin] < 00

and -
> ElIAG) lmax] 2 E|lwox|lmin] -
=0
Hence,
k-1
> —E[AG) Imax] < E[~|lzoklmin]
j=0

for k € N, and for & = E[||A(1)|/max], we obtain
—l&lk < E[~||zok|lmin] ,

which concludes the proof of the lemma. [J

The above lemma provides the means of applying Kingman’s subadditive er-
godic theorem t0 ||£(k)||min and ||z(k)||max, respectively. The precise statement
is given in the following theorem.
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Theorem 2.2.1 Let {A(k)} be a stationary sequence of a.s. regular, integrable
square matrices. Then, finite constants A\*P and A*°* exist, so that for all (non-
random) finite initial conditions xg:

l-lm “x(k)llmln S )\top déf im l

k—oo k—o0

ot def lw(k)umax
A= r—

and

i - bot i 1 to
— . — ot 2 — P
lexEo k]E[”m(k)”mm] A kl_l_.ngo kIE[Hm(k)Hmax] AtoP

The above limits also hold for random initial conditions provided that the initial
condition is a.8. finite and integrable.

Proof: Lemma 2.2.1 applies and subadditivity of ||z(k, €)||min and ||z(k, €)||max>
respectively, follows. Therefore, Kingman’s subadditive ergodic theorem applies
and the proof with respect to the limit of ||z(k, €)||min as k tends to co and the
limit of ||z(k, €)||max as k tends to oo follows.

It remains to be shown that the limit exists for any finite initial condition.
To see this note that for any finite initial condition y it holds that:

[Yllmin + [12(k; €)||max 1z (K, ||y]lmin ® €)][max

2 (K, ¥)|Imax
< (ks l[yllmax ® €)llmax
= ||yllmax + |lz(K, €)||max

(for a proof use the fact that z < y implies A®z < A®y). Thus,
Hyllmin + {1z(k, €)llmax < [l2(k, ¥)|lmax < |[Yllmax + |Jz(k, €)llmax
and, by similar arguments,
Yllmin + |l2(k, €)llmin < [l2(5, v)|lmin < |2k, €)[lmin + [[Y]lmax -
Therefore, for k > 0,

Il

IA

Fllullnin + £l1205 ©llmax < 1205, 1)llmax < £112 05, llmas + 23l
@2.7)
and
1 1 1 1 1
E”y”min + E”x(kve)“min < Ellx(kvy)”min < k‘”m(k” €)||min + EH:‘/”ma(xZS)

Letting k tend to infinity, it follows from (2.7) that the limits of ||[z(k, €)||max/k
and |[|z(k, ¥)||max/k coincide. In the same vein, (2.8) implies that the limits of
l|z(k, €)]|min/k and ||z(k, y)||min/k coincide. If, in addition, xz is integrable, we
first prove by induction that x(k,zg) is integrable for any k > 0. Then, we take
expected values in (2.7) and (2.8). Using the fact that, by Kingman’s subadditive
ergodic theorem, the limits of E[)lz(k,e)||max)/k and E[||z(k, e)llmin]/k as k
tends to oo exist, the proof follows from letting &k tend to co. O

The constant A*°P is called the top or mazimal Lyapunov exponent of {A(k)}
and AP is called the bottom Lyapunov exponent.
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Remark 2.2.1 Irreducibility is a sufficient condition for A(k) to be a.s. regular,
see Remark 1.4.1. Therefore, in the literature, Theorem 2.2.1 is often stated with
trreducibility as a condition.

Remark 2.2.2 Note that integrablity of {A(k)} is a necessary condition for
applying Kingman’s subadditive ergodic theorem in the proof of the path-wise
statement in Theorem 2.2.1.

Remark 2.2.3 Provided that (i) any finite element of A(k) is positive, (i)
A(k) is a.s. regular, and (iii) the initial state xo is positive, the statement in
Theorem 2.2.1 holds for || ||@ as well. This stems from the fact that under con-
ditions (i) to (%) it holds that ||A(k)|Imax = ||A(k)||le- In particular, following
the line of argument in the proof of Lemma 2.2.1, one can show that under the
conditions of the lemma the sequence ||Tnm||@ constitutes a subadditive process.

2.2.1 The Irreducible Case

In this section, we consider stationary sequences {A(k)} of integrable and irre-
ducible matrices in RZX7 with the additional property that all finite elements
are non-negative and that all diagonal elements are non-negative. We consider
z(k +1) = A(k) ® z(k), k > 0, and recall that z(k) may model an autonomous
system (for example, a closed queuing network). See Section 1.4.3. Indeed, A(k)
for the closed tandem queuing system in Example 1.5.1 is irreducible. As we
will show in the following theorem, the setting of this section implies that
AP = AP9% ‘which in particular implies convergence of x;(k)/k, 1 <4 < J. The
condition that all finite elements of A(k) are non-negative is not very restrictive
when working with queuing networks. Here the non-¢ elements of A(k) represent
sums of service times at the stations, which are by definition non-negative. In
contrast, the assumption that all diagonal elements are non-negative (and thus
different from ¢) is indeed a restriction as illustrated by Example 1.5.5. The
following theorem goes back to Cohen {35] and Baccelli et al. [10].

Theorem 2.2.2 Let {A(k)} be a stationary sequence of integrable and irre-
ducible matrices in RLX] such that all finite elements are non-negative and all
diagonal elements are different from €. Then, a finite constant \ exists, so that
for any non-random finite initial condition xy:

cozgk) o EE i o [@(R)]lmax
klgxolo . = klllvgo A = kh_{lgo A =\ as (2.9)
and
lim +Efz; (k)] = lim TElllo(t)]lnin = lim ~E(la()llmes] = A
5, g el = i ZEle W) lninl = Jim pElle®llned = A,

for 1 < j < J. The above limits also hold true for random initial conditions
provided that the initial condition is a.s. finite and integrable.
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Proof: The existence of the limits (except that for z;(k)/k) is guaranteed
by Theorem 2.2.1 and in order to prove the theorem we have to show that
the component-wise limits (that is, the limit of z;(k)/k as k tends to oo, for
1< j < J) equal the limits of || + ||min and || - ||max-

Irreducibility of A(k) implies that A(k) has fixed support and the commu-
nication graph of A(k) is thus non-random. We have assumed that all elements
different from € are non-negative and all diagonal elements are non-negative.
Hence, Lemma, 1.4.1 applies and

k-1
Gky= Q) A@), k>,

j=k—J

has all elements larger than or equal to zero for all k. This implies for any
component j

zj(k,e)= @ (k)i ® zi(k — J,e)

Z@O@mi(k - J,e)

i=1
=||z(k — J,e)|max »
for k > J, which yields
llz(k, e)llmin = |z(k = J, €)||max - (2.10)

By (2.10),

\%

1 1
Ellw(k,e)llmm Z E”m(k ~ J, €)||max »
which implies

||z(k, €)||min > lim llz(k, €)|max — )top

Abot = fim

k—o0

a.s.
k—o0

By Theorem 2.2.1, it holds that APot < At°P and we have thus shown APt = \foP,
In other words, setting A % Ab%® = At we have shown

lim UM = lim M’i = A as. (2.11)
k—o0 k— o0 k
and from
Hm(kye)“max > mj(kae) > Hx(k)e)llmina 1 SJ < ']7
follows:

lim H\5¢) (k)

Jim == =X as (2.12)
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for1<j<J.

Like for the proof of Theorem 2.2.1, we show that the limits in (2.11) and
(2.12) are independent of the initial condition. This concludes the proof of the
first part of the theorem.

‘We now turn to the proof of the second part of the theorem. Let A, as defined
in the first part of Theorem 2.2.2, exist. Then Theorem 2.2.1 yields,

1 1
A= tim CEl||lz(k)lmax] = Jim —E[][2(k)llmin]

and ] 1 )
TE[|z(k)|lmin] < ZE[z; (k)] < ZE[l|z(k)l|max]
k k k
implies
.1
A= lim SEz;(k)],

for1<j<J.0

The constant A, as defined in (2.9) in Theorem 2.2.2, is called maz-plus
Lyapunov exponent of the sequence of random matrices {A(k)}. There is no
ambiguity in denoting the Lyapunov exponent of {A(k)} and the eigenvalue of
a matrix A by the same symbol, since for A(k) = A, for all k, the Lyapunov
exponent of {A(k)} is just the eigenvalue of A.

Remark 2.2.4 Depending on the sequence {A(k)}, it is sometimes possible to
replace an element of xg that is equal to € by a finite element without changing
the value of z(k), for k > 1. In these cases, Theorem 2.2.2 applies even though
not all elements of xy are finite.

Remark 2.2.5 We say that A, B € R1XJ have the same structure if any ele-
ment (ij) is either finite in A and B, or, is equal to € (that is, the arc sets of
communication graph of A and B coincide). The irreducibility condition in the
above theorem can be replaced by the following weaker condition. There exists
a.5. a sequence {m,} with lim,_,o m, = 00, such that A(k+my,), 1 <k < J,
have the same structure and are irreducible.

Remark 2.2.6 If the initial condition xy is positive, then the statement in
Theorem 2.2.2 holds for || - ||@ as well. See Remark 2.2.3 for details.

Computing exactly, or approximating the Lyapunov exponent of products
of matrices over the max-plus semiring is a long standing problem [35, 96, 93,
10, 36, 46, 11, 50, 21, 8, 7, 42]. Ouly for special cases exact formulae are known.
Upper and lower bounds can be found in [14, 18, 53, 28, 29]. In [12] approaches
are described which use parallel simulation to estimate the ratio z;(k)/k for
large k. When it comes to discrete event systems, Lyapunov exponents measure
the cycle time, i.e., the average time between two events. A classical reference on
Lyapunov exponents of products of random matrices is [24] and a more recent
one, dedicated to non-negative matrices, is [66].
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Consider the system in Example 1.5.1. If we assume that (i) the service
times o;(k) are i.i.d. with finite mean for each j and (ii) the sequences {o;(k)}
(1 € j £ J) are mutually independent, then Theorem 2.2.2 applies (indeed,
{A(k)} is an i.i.d. sequence of irreducible matrices with fixed support).

Comparing the conditions in Theorem 2.2.2 with those in Theorem 2.2.1,
Theorem 2.2.2 imposes the additional conditions that (i) the matrices are ir-
reducible (and have thus fixed support), (ii) all elements different from ¢ are
non-negative and that (iii) all diagonal elements are non-negative. However,
conditions (i)-(ili) are only needed to establish the pathwise statement in Theo-
rem 2.2.2. Hence, the second part of Theorem 2.2.2 is valid under weaker con-
ditions. The exact statement is as follows:

Corollary 2.2.1 Let {A(k)} be a stationary sequence of a.s. regular and inte-

grable matrices in RIXJ. If

o APt > \toP gng
o the initial condition is integrable,
then
lim ZE[z;(R)] = A,
for all components 1 < 5 < J of (k).

Proof: By assumption,

i 2l

k—o00 k k—o0

[z (k)| max .
T oM

with A = AP%* = \*P and Theorem 2.2.1 yields

2k |min o 1 B
dm = = A pEla®) il = A,
|z lmax .1 -
Jim = = lim B2k llmad = A

ForanykeNand1<j<J,

FEl(8) lmin] < TEL5 (0] S L8]l

and taking limits yields

.1
A= lim CElz;(k)],

which concludes the proof. O
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2.2.2 The Reducible Case

The setup is as in the previous section except that we now suppose that A(k)
has fixed support and drop the assumption that it is irreducible. An example
of a model that has fixed support but fails to be irreducible is the open tandem
queuing system in Example 1.5.2. We study the homogeneous equation

z(k+1) = A(k) ® z(k), k> 0.

Notice that this setup comprises inhomogeneous equations, such as the standard
autonomous equation as well, see Section 1.4.3 for details.

To deal with reducible matrices A(k), we decompose A(k) into its ‘irre-
ducible’ components. The ergodic theorem, to be proved presently, then states
that the Lyapunov exponent of the overall matrix is given by the maximal top
Lyapunov exponent of its irreducible components. However, before we are able
to present the ergodic theorem and give the proof, we need to introduce some
concepts from graph theory. For the basic definitions we refer to Section 2.1.

Let {A(k)} be a sequence of matrices in RZXJ with fixed support. If we
replace any element of A(k) that is different from ¢ by e, then the resulting
communication graph of A(k), denoted by G.(A), is independent of k (and thus
non-random). Let G/ (A) denote the reduced graph of G.(A). We denote by
[¢] e {j€{1,...,J}:iRj} the set of nodes of the m.s.c.s. that contains ¢. The

set of all nodes j such that there exists a path from j to ¢ in G.(A) is denoted
by n* (). Furthermore, we set 7*(i) = {i} U n"(i); and we define predecessor

sets
[<d= U Ul
jem*(i)
and [< 1] = [< 9]\ [i]. We denote by )\mp the top Lyapunov exponent associated
with the matrix obtained by restricting A(k) to the nodes in [¢]. In case ¢ is an
isolated node or node with only incoming or outgoing arcs, we set )\E}p =¢. The
following theorem goes back to [6].

Theorem 2.2.3 Let {A(k)} be a stationary sequence of integrable matrices in
RIXJ with fized support such that with probability one all finite elements are non-
negative and the diagonal elements are different from e. For any (non-random)

finite initial value zo it holds true that

with
— top
= @ A
ien*(j)
and 1
Jim ZElz; (k)] = A,
for1 < j < J. The above limits also hold for random initial conditions provided
that the initial condition is a.s. finite and integrable.
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Proof: Under the conditions of the theorem, it a.s. holds, for any k, that
[lz(k)||lmax = |lz(k)|l@, see Remark 2.2.3. In the following proof we will only
work with upper bounds on the growth rate |{z(k)||max/k and thus adopt the
notation || - || for the maximal element of a vector/matrix.

Let App;1(k) denote the matrix that is obtained from A(k) by restricting
A(k) to the nodes in [i] and write zy;(k) for z(k) restricted to the nodes in [4].
To understand the difficulty that arises when proving the theorem, it is worth
noting that in general

. 1 top
Jim E”x[i](k)”@ # Ay as.

This stems from the fact that )\L'.’]p is the top Lyapunov exponent of the matrix
restricted to the nodes in [i], whereas x;)(k) is also influenced by nodes others
than those in [i] namely those in [< 4] \ [i].

We now turn to the proof. In the same way as we have defined Ay (; (k) and
xy) (k), we write A[<q(<q (k) for the restriction of A(k) to the nodes in {< i] and
#[<i(k) for z(k) restricted to the nodes in [< 4]. By Theorem 2.2.1, the maximal
Lyapunov exponent of A< (< (k), given by /\'[;;‘:], exists (indeed, Theorem 2.2.1

applies to reducible matrices). Note that

1 1
Fle®lle < Flleci*lle
and thus
. 1 . 1
hlfcn sup E’lx[i](k)llea < lllrcn sup E“x[Si](k)“G)
=\ - (2.13)

Fixed support of A(k) implies that G.(A) is non-random. Node ¢ can be reached
from any node h € 7*(4) and since A(k) is of dimension J x JJ such a path is at
most of length J. We have assumed that the diagonal elements of A(k) are all
different from e. Hence, if there is a path of length [ from h to i, then there is
for any p > [ a path of length p from h to i (just add sufficiently many loops of
length one at k). Any finite element of A(k) is positive and paths have therefore
positive weights. We thus obtain for any j € [i]

zj(k)> @ anlk—J)
hemr* (i)
=l|lzi<qg(k = Dlle , (2.14)
for k > J. Therefore,
llz(Blle = llz<q(k— Dlle ,
for k > J, which implies that

ool ool
lllcrrlzréf E”II}[i](k)“@ 2 hkfit‘.}f E”x[si](k)”ea

= bop

=A<y a.s.
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Together with (2.13) we obtain
: 1 to
kh_r'go EHw{i](k)H@ = ’\[531 a.s. (2.15)

By (2.14), it holds a.s. for any j € [i] that

1 1 1
E”Im(MH@ > Emﬂk)z Enxgq“““Jﬂb7 (2.16)
and by (2.15) it follows that
. 1 . 1 to
Jim o (Rlle = Bm Hlloga(h~lle = Ny, (217)

which yields
k—o0

1
lim —z;(k) = NGy as, jeli.

In the integrable case, (2.16) implies

FEllogg(Rllal 2 Tz (8] 2 TEllogq(k - )le]

By Theorem 2.2.1, the expected values on the right-hand side and on the left-

hand side in the above inequality converge to /\'["Z‘Z] as k tends to co. Hence,

. 1 o . .
Jim —Elz; (k) = Ny, el

It remains to be shown that
N = D (2.18)
JE™*(3)
The reduced graph G7(A) is acyclic and we obtain
:L‘[i](k: +1) = A[i] [i](k) ® :L'[i](k) @ s(i,k+1), (2.19)

where dof
. €]
s(i,k+1) = Apji<q(k) ® z<q(k)
and A [<q(k) is defined in the obvious way. By definition,

1s(i, k + Dlle < ||Ap < (B)lle ® l|2z<i(k)]lo
<N AE) e ® ||z (K)o - (2.20)

Note that ]
lim E||A(k)|[@ =0 a.s. (2.21)

k—oo
Indeed, integrability of {A(k)} together with stationarity and ergodicity implies
that

k
.1
klggo;;ll-‘l(k)lle = E[[JA(D)lle] < oo as.
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(integrability of ||A(1)]|g is guaranteed by integrability of A(1)), which gives

k
Bl AW)llo] = im 3 3" Al

k-1 1 &t
= Jim, g 4l + Jim, HIAG)l

k—oo
=E[|AQ)lls] + Jim ZlAB)le a5

and thus establishes (2.21).
We obtain from (2.20) together with (2.21)

1
limsup ~||s(¢, k + 1)l]le < )\fz*;] a.s.
k—o0 k

At the same time, following the line of argument that has lead to (2.14), we
obtain

llsG, &+ Dlle = llz<i(k - Ille  as.,
which implies

P 1 s top
hkrrigéf Ells(z, k+Dlle 2 Ay  as

and thus

a.8.

. 1 . top
kli{lr}o EIIS(Zyk""l)”@ - )‘[<z]

It is clear from the definition of s(¢, k) that
llz<i (M)lle 2 lls(i, k)lle ,
so that 1 1
zlleizaB)lle 2 £lls(@ klle ,

which in turn implies

& to
AN = N (2.22)

Now suppose that /\fgg] > /\EZ‘Z]. The existence of the individual limits implies

that for sufficiently large K € N it holds that
A (k) @ zp (k) > s(i,k+1), k> K.
Accordingly, equation (2.19) reads
z(k+1) = Ay k) @z (k) 2 s(i,k+1), k2K,

which, by Theorem 2.2.1, yields

. top
lem ||w[,] e = Awp @S
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and, by (2.17), this implies
/\I;op _ /\top

[ 7 ) -
‘We have thus shown that
N > NG = NG = (2.23)

Combining (2.22) and (2.23) we reach at:

Ay = NG @A
Any node i € G.(A) belongs to a m.s.c.s. that is represented in GJ(A) by the
single node [i]. Let w([¢]) denote the set of direct predecessors of [i] in G (A)
and set w([¢]) = 0 if there is no predecessor. Each element of w([7]) represents a
m.s.c.s. in G.(A) and we denote by 7(¢) the set of nodes in G.(A) that belong to
the m.s.c.s. corresponding to the elements of 7 ([i]). If n([¢]) = @, we set 7(z) = §.

Then
top __ top
A= D g
JeT(4)

and inserting this into the above equation yields

top __ ytop top
Ny =M e D g

Jjer(i)

We now repeat the argument until applying 7 yields no more nodes. In partic-
ular, going from 7(%) to {r(j) : j € 7(¢)} and so forth, we will eventually cover
the set 7*(z). This concludes the proof of (2.18). O

Remark 2.2.7 Suppose that the conditions in Theorem 2.2.3 are satisfied. Con-
tinuity of the operators max and min yields that it holds with probability one that

AP = min()\; 11 <5< J)

and
AP = max(A;: 1< <J).

The vector A = (A1, A2,..., Ay), with A; defined in Theorem 2.2.3, is called
the Lyapunov vector of {A(k)}. In the light of Theorem 2.2.2 we can state that
irreducibility of {A(k)} is a sufficient condition for the components of X to be
equal.

Recalling that limg_,oc z;(k)/k is the (asymptotic) speed with which transi-
tion j operates, the above theorem matches our intuition that the (asymptotic)
speed with which the system operates is determined by the slowest component
of the system. In terms of queuing networks, the throughput of a system is de-
termined by the smallest throughput of one of its components. Moreover, if the
queuing network is irreducible in the max-plus sense, then the throughput is
the same at any station.
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The key conditions on A(k) are that any element of A(k) is either equal to €
or non-negative, that the elements on the diagonal are non-negative and that it
has fixed support. As we have already explained, the condition that any element
different from e has only non-negative values is a natural condition for queuing
systems, and all examples presented in this monograph enjoy this property. The
fixed support condition is satisfied by the queuing systems in Example 1.5.1 and
Example 1.5.2. An example of a system that fails to have fixed support is given
in Example 1.5.5. Such a system cannot be analyzed via the subadditive ergodic
theory developed so far.

2.2.3 Variations and Extensions

One of the marvels of max-plus theory is that the existence of the top and bot-
tom Lyapunov exponent follows so easily from Kingman’s subadditive ergodic
theorem. See the proof of Theorem 2.2.1. However, the conditions in Theo-
rem 2.2.1 are too weak to guarantee that the top and bottom Lyapunov expo-
nents are equal, or, in other words, that the individual growth rates (that is,
limg—oo zi(k)/k, 1 € § < J) have the same limit. In this section, we discuss
approaches to establish equality of the top and bottom Lyapunov exponent
without imposing conditions on the elements of A(k).

2.2.3.1 The ‘Up-Crossing’ Property

In order to show that the individual growth rates coincide we had to impose
the assumption that (i) any non-e element of A(k) is non-negative, that (ii)
all diagonal elements are non-negative, and that (iii) A(k) has fixed support.
The ‘non-negativity’ condition on the finite elements causes no restriction for
queuing systems. Therefore, we focus in this section on a relaxation of the ‘fixed
support’ and the ‘diagonal’ condition.

Inspecting the proof of Theorem 2.2.2 one sees that what is actually needed
is the following ‘up-crossing’ property: a subsequence {z(k,)} and a constant
M exist, such that for any n > 1

[|z(kn + M)|lmin = n + bullz(kn)||max 2.,

with “

lim — =0 and lim b, =1,

n—oo N n—oo
see (2.10) on page 72 in the proof of Theorem 2.2.2, where a, = 0 and b, = 1 for
all n. Indeed, Vincent uses in [102] this type of condition to show that the top
and bottom Lyapunov exponent coincide. Provided that finite elements of A(k)
are positive, the diagonal condition together with fixed support are sufficient
for the above ‘up-crossing’ property to hold, see Lemma 1.4.1.

2.2.3.2 The ‘Memory Loss’ Property

In this section we present an alternative approach to finding sufficient conditions
for AP = APt This approach goes back to [48, 84] and applies to sequences



2.2 Subadditive Ergodic Theory 81

with countable state-space.
The key observation for this approach is the following. Let A € RJX/ be
such that any two columns of A are linear dependent. Then, a finite number a

exists such that
I|A® | lmax — ||A ® 2||min = a, xR’ (2.24)

(for a proof use the argument put forward in the proof of Corollary 2.1.1). A
matrix with the property that any two columns are linear dependent is said
to be of rank 1. While the notation of rank 1 is undisputed, there are several
notions of rank in the literature, see [37] and [103].

Definition 2.2.1 A sequence {A(k)} of square matrices is said to have memory
loss property (MLP) if there ezists an N such that A(N—1)® A(N-2)®---®A(0)
with positive probability has only mutually linear dependent columns, i.e., is of
rank 1.

Let A be a matrix with mutually linear dependent columns and assume that
{A(k)} has MLP with respect to A and N, that is, assume that a finite number
N exists such that P(A(N - 1)@ A(N -2)® - ® A(0) = A) > 0 and A is of
rank 1. Let

To=inf{k>N—-1:Ak)®A(k—1)® - @ A(k — N +1) = A}

denote the first time a partial product of the series of matrix generates A. This
gives
To—N

z(Ty) = A® (X) Alk)® 0,
k=0

where we set the product to E for Ty = N — 1 and we assume that zy € R’. By
(2.24) a finite number a exists such that

”x(TO)Hmax - ”x(TO)”min = a,

for any finite initial value zo. For n > 0, introduce the time of the (n + 1)
occurrence of the event that a partial product of {A(k)} generates A by

Topr=inf{k>N+T,: Ak)®A(k—1)® - @ A(k— N +1) = A} (2.25)

and we obtain
[|(Tie) Imax = 12(Ti)|lmin = @, k>0. (2.26)

If {A(k)} is stationary and ergodic, then limy,—oc T, = oo and T, < oo with
probability one; for details see Section E.3 in the Appendix. Specifically, by
equation (2.26),

1 1
1 — T; —_—— T; min = 3. .
k—l-{r;o Tk”x( k)| lmax Tk”x( il 0 as (2.27)
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If, in addition, {A(k)} is a sequence of a.s. regular and integrable matrices,
Theorem 2.2.1 yields

.1 .1
Jim T_k“x(Tk)Hmax = AP and lim ﬁllw(Tk)llmin = Abet
with probability one, and equality of A*P and AP°* follows from (2.27). We
summarize our analysis in the following theorem:

Theorem 2.2.4 Let {A(k)} be a stationary and ergodic sequence of integrable
and a.s. regular matrices in RIXJ. If {A(k)} has MLP, then a finite constant A

max

exists such that, for any (non-random) finite initial conditions xo:
tm B8 gy 18 g o)y
k—oo k k—00 k ko0 k
and
lim ~E[e;(k)] = lim ~E[jz(8)/lmn] = lim ~E[2(k)]lmax] = A
k—oo kU7 k—oo k T koo k max ’

for1 <4 < J. The above limits also hold for random initial conditions provided
that the initial condition is a.s. finite and integrable.

It is worth noting that, in contrast to Theorem 2.2.3, the Lyapunov expo-
nent is unique, or, in other words, the components of the Lyapunov vector are
equal. In view of Theorem 2.2.2 the above theorem can be phrased as follows:
Theorem 2.2.2 remains valid in the presence of reducible matrices if MLP is
satisfied.

MLP is a technical condition and typically impossible to verify directly. A
sufficient condition for {A(k)} to have MLP is the following:

(C) There exists a primitive matrix C and N € N such that

P(A(N—1)®A(N—2)®-~-®A(0) =C)>o0.

The following lemma illustrates the close relationship between primitive ma-
trices and matrices of rank 1.

Lemma 2.2.2 If A is primitive with coupling time ¢, then A° has only finite
entries and is of rank 1. Moreover, for any matriz A that has only finite entries
it holds that A is of rank 1 if and only if the projective image of A is a single
point in the projective space.

Proof: We first prove the second part of the lemma. ‘=>": Let 4 € R!%J be such
that all elements are finite and that it is of rank 1. Denote the j** column of A
by A.;. Since A is of rank 1, there exits finite numbers a;, with 2 < j < J, such

that A.; = a; ® A for 2 < j < J. Hence, for z € R’ it holds that

J
A9z =QQa;®z;® Aa, (2.28)
i=1
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with a; = 0. Let v, ef ®j:1 a; ® z;. Let y € R’, with z # y. By (2.28),

AQr =7, ® A, and A®y = v, ® A1, which implies that AQ 2z and A®y
are linear dependent. Hence, the projective image of A contains only the single
point A.7.

‘<= We give a proof by contradiction. Suppose that A is not of rank 1, then
there exist at least two columns A.; and A,; of A such that A; and A.; are
linear independent. Then z*,z7 € RY can be chosen such that A®z* = #*® 4,
and A® 2! = 7 ® A.; for finite constants 3%, 37. Since A.; and A.; are linear
independent, the projective image of A contains at least the two distinct points
A and A__7

We now turn to the proof of the first part of the lemma. For 1 < 5 < J, let
e; be the vector with £ entries except for element j which is equal to e. Hence,
A° @ e; = AT, where Af; denotes the 4t column of A°. By Theorem 2.1.1,

ARAL=ARA°B®e; =A@ A°®e; = A® AT,

with A the unique eigenvector of A, and the columns of A¢ are thus eigenvectors
of A. Using the fact that eigenvectors of irreducible matrices have only finite
entries (see, for example, Lemma 2.8 in [65]), it follows that A° has only finite
elements. On the one hand, by Corollary 2.1.1, the eigenvector of A is unique.
On the other hand, by Theorem 2.1.1, A°® z is an eigenvector of A for any z.
Hence, the projective image of A is a single point (in formula: 3v € IPR’ Vz €
R : A¢® x = v). Applying the second part of the lemma then proves the claim.
O

We present a version of Theorem 2.2.4 with a condition that can be directly
verified.

Lemma 2.2.3 Let {A(k)} be an i.i.d. sequence of a.s. reqular integrable matri-

ces in RIXJ with countable state space. If condition (C) holds, then the state-

ment put forward in Theorem 2.2.4 holds.

Proof: Let C be as given as in (C) and denote the coupling time of C' by
¢. Because {A(k)} is i.1.d. with countable state-space,

P(AN-1)=A(N-2) == A(0)=C) >0,
implies
P(A(cN—1)®A(cN—2)®---®A(O)=C°) > 0.

Since C is primitive, Lemma 2.2.2 implies that C° is of rank 1 and {A(k)} has
thus MLP. Hence, Theorem 2.2.4 applies. [

Example 2.2.1 Consider Example 1.5.5. Matriz Dq is primitive. Hence, ap-
plying Lemma 2.2.3 shows that the Lyapunov exponent of the system exists.

Remark 2.2.8 In principle, MLP and condition (C) restrict the class of se-
quences {A(k)} that can be analyzed to those with countable state-space. A
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possible generalization is the following. Suppose that the distribution of A(k)
is a mixture of a discrete distribution on a countable state-space, say AS,
and a general distribution on an arbitrary state-space, say A9. If we require
PAN-1)® AN -2)® - - ® A(0) € A°) > 0 in Definition 2.2.1 and C € A°
in condition (C), respectively, then the results in this section hold for {A(k)}
with state space A°U A9 as well.

We conclude this section by presenting a generalization of Theorem 2.2.4.
As Baccelli and Mairesse show in [11], using the arguments put forward in this
section, a limit result can be obtained under a slightly weaker condition than
MLP.

Theorem 2.2.5 Let {A(k)} be a stationary and ergodic sequence of integrable

and a.s. regular square matrices in RLXJ. If there exists N € N such that with

positive probability AN —1) ® A(N —2)® --- ® A(0) has a bounded projective
image, then the statement put forward in Theorem 2.2.4 holds.

Proof: By assumption, there exist finite numbers a,b € R such that
veeR: |[AN-1)Q®AN-2)® - Q@ A0)® z||p € [a,b].

In analogy to (2.25), let Ty denote the time index such that for the k¥ time
a product A(Ty) ® A(Tx — 1) ® --- ® A(Tx — N + 1) has been observed whose
projective image lies within the interval [a, b]; in formula:

a < 2Tkl max ~ ”x(Tk)”min <b

for all k. We have assumed that {A(k)} is stationary and ergodic, which implies
limy, 00 Tk == 00 and Ty < 0o with probability one; for details see Section E.3 in
the Appendix. Since [a, b] is compact, the Bolzano-Weierstrass Theorem yields
the existence of a subsequence {7y, } of {T%} such that

i 2Tl — l12(Tilenin =
for some finite constant ¢, which implies
. 1 . 1
lim —|z(Tk,)llmax = lim —|{|z(Tk,)|lmin- (2.29)

By Theorem 2.2.1, convergence of the sequences ||z(k)||max/k and ||z(k)||max/k
as k tends to infinity is guaranteed. Hence,

1 1

Jim. E”w(k)”max = lim —knllm(Tkn)”max
2.20) . 1
(22 ’nlggo 7= 12T llmin

!
= kl_l..n;o E”x(k)nmim

which proves the claim. [J
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2.2.3.3 Weak Irreducibility

An approach relaxing the concept of fixed support can be found in [69, 70].
This approach is based on an interpretation of the concept of ‘irreducibility’ for
random matrices which we will explain in the following.

Irreducibility of a matrix A is defined via the communication graph of A,
denoted by G(A). Specifically, A is called irreducible if for any two nodes in G(A)
a path from ¢ to j exists in G(A). Let {A(k)} be a random sequence of J x J
dimensional matrices. The communication graph of a random sequence is itself a
random variable and we extend the definition of a path to the sequence G(A(k))
as follows. For any two nodes 1, j, a sequence of arcs p = ((in,Jn) : 1 < n < m),
with i = 41, j = jm and j, = i,41 for 1 < n < m, is called a path of length m
from ¢ to j in {A(k)} if (in,Jn) is an arc in G(A(k+n — 1)) for 1 < n < m, for
some k € N. We say that p is a path in G(A(k+n—-1):1 <n <m).

The weight of a path in G(A) is defined by the sum of the weights of all arcs
constituting the path; more formally: let p = ((in,Jn) : 1 < n < m) be a path
from 7 to j of length m, then the weight of p, denoted by |p|., is given by

m

lolw = @Ak + 1= 1)),

n=1

with ¢ = 4y and j = j,,, for some k.

We now are able to introduce the concept of weak irreducibility: A sequence
{A(k)} of square matrices is said to be weakly irreducible if for any pair of nodes
i,7 € {1,...,J} a finite number m;; exists such that there is with positive
probability a path of length m;; from i to j; in formula: for any 4,7, with
1<4,5 < J, my; €N exists such that

myj—1
P (@ A(k)) >e| >0
k=0 ‘0

Theorem 2.2.6 Let {A(k)} be an i.i.d. sequence of regular, integrable matrices
in RIXJ with countable state-space. Assume that {A(k)} s weakly irreducible.
If there exists at least one node j such that j lies with positive probability on a
circuit of length one, then the Lyapunov exponent of {A(k)} exists.

Proof: Consider the collection of numbers m;; for 1 < 4,5 < J. We have
assumed that there exits at least one node j* such that mj«;« = 1 and the
greatest common divisor of the collection of numbers m;;, with 1 < 4,5 < J,
is thus equal to one. This implies that a finite number N exists such that each
m > N can be written as a linear combination of m;;’s, see [26]. Weak analyticity
thus implies that for any m > N there exists with positive probability a path
from any node to any other node; in formula: for any m > N

m—1
Vi,je{l,...,J}: P (@A(k)) >e| >0
k=0 i

7
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Let h > N. Since J is finite, we can choose j,i € {1,...,J} such that a
sequence {my}, with lim,,_,. m, = 00, exists for which it holds that

[lz(mn + B)|lmin = Zi(mn +h)  and  ||z(mn)|lmax = z;(ma) ,

for n € N. By assumption, {A(k)} is a weakly irreducible i.i.d. sequence. Hence,
we may select a subsequence {my, } of {m,} such that there is (at least) a fixed
path p from j to 4 of length h in G(A(mp,4+x) : 0 < k < h) for any [ and
My, +h—1
def
Wi; = ® A(m)

M=y, i

is finite. With slight abuse of notation we will identify {m,} and {my,}. This
yields

ll2(mn + h)llmin = zi(mn + h)

J Ma+h—1
=@( ® A<m>) & aumn)
k=1 M=y, ik

2 —|wi ;| ® z;(mn)
= ~|wi ;| + [[2(mn)lmax ,

which establishes the up-crossing property with M = h. O

Theorem 2.2.6 provides a sufficient condition for the existence of the Lya-
punov exponent completely avoiding the concept of fixed support. The following
example illustrates this. Consider 41, A; € A, with

Alz(il ;4) and A2=<;3 };2),

for some finite integrable random variables Y;, 1 < i < 4. Let {A(k)} be an
i.i.d. sequence such that P(A(k) = A1) =p > 0and P(A(k) = A2)=1-p >0,
for k > 0. Then {A(k)} satisfies the condition put forward in Theorem 2.2.6.
However, neither does { A(k)} have fixed support nor does it satisfy the diagonal
condition. Note that the situation in Example 1.5.5 is covered by Theorem 2.2.6,
which follows from the fact that Dy is irreducible and contains one finite element
on its diagonal.

As Hong shows in [69, 70], the condition that there is at least one node
that lies with positive probability on a circuit of length one is not necessary for
Theorem 2.2.6 to hold. Without this simplifying assumption the proof of the
theorem becomes however rather technical and the interested reader is referred
to [69, 70] for details.

2.3 Stability Analysis of Waiting Times (Type
IIa)

A classical result in queuing theory states that if in a G/G/1 queue the expected
interarrival time is larger than the expected service time, then the sequence
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of waiting times converges, independent of the initial condition, to a unique
stationary regime. The proof of this result goes back to [81]. In this section, we
generalize the classical result on stability of waiting times in the GI/G/1 queue
to that of stability of waiting times in open max-plus linear networks. It is worth
noting that by virtue of the max-plus formalism we can almost literally copy
the proof of the classical result in [81].

We consider the following situation. An open queuing network with J sta-
tions is given such that the vector of departure times from the stations, denoted
by z(k), follows the recurrence relation

2k +1) = Ak) ® z(k) ® T(k +1) ® B(k) (2.30)

with £(0) = e, where 7(k) denotes the time of the k** arrival to the system.
See, equation (1.15) in Section 1.4.2.2 and equation (1.27) in Example 1.5.2,
respectively. As usually, we denote by oq(k) the k*" interarrival time, so that
the k** arrival of a customer at the network happens at time

k
(k)= oo(i), k21,
=1

with 7(0) = 0. Then, W;(k) = z,(k) — 7(k) denotes the time the k** customer
arriving to the system spends in the system until completion of service at server
4. The vector of k™ sojourn times, denoted by W (k) = (Wy(k),..., W;(k)),
follows the recurrence relation

W(k+1) = A(k) ® Cloo(k + 1)) @ W(k) ® B(k), k>0,

with W(0) = e, where C'(h) denotes a diagonal matrix with —A on the diagonal
and e elsewhere. See Section 1.4.4 for details. Alternatively, z;(k) in (2.30)
may model the times of the k** beginning of service at station j. With this
interpretation of xz(k), W;(k) defined above represents the time spent by the
k" customer arriving to the system until beginning of her/his service at j. For
example, in the G/G/1 queue W (k) models the waiting time.

In the following we will establish sufficient conditions for W (k) to converge
to a unique stationary regime. The main technical assumptions are:

(W1) Fork € Z,let A(k) € RIY/ be a.s. regular and assume that the maximal

max

Lyapunov exponent of {A(k)} exists.

(W2) There exists a fixed number , with 1 < « < J, such that the vector
B*(k) = (Bj(k) : 1 < j € ) has finite elements for any k, and B;{k) = ¢,
for < j € J and any k.

(W3) The sequence {(A(k), B*(k))} is stationary and ergodic, and independent
of {r(k)}, where 7(k) is given by

k

(k) = Y o(i), k21,

i=1
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with 7(0) = 0 and {o(k) : ¥ € Z} a stationary and ergodic sequence of
positive random variables with mean v € (0, 00).

In what follows, we establish sufficient conditions for {W(k)}, with
W(k+1) = Ak)®Co(k+ 1))@ W(k)® B(k), k=0, (2.31)

to have a unique stationary solution.

Provided that {A(k)} is a.s. regular and stationary, integrability of A(k) is a
sufficient condition for (W1), see Theorem 2.2.1. In terms of queuing networks,
the main restriction imposed by these conditions stems from the non-negativity
of the diagonal of A(k), see Section 2.2 for a detailed discussion and possible
relaxations. The part of condition (W3) that concerns the arrival stream of the
network is, for example, satisfied for Poisson arrival streams.

The proof goes back to [19] and has three main steps. First, we introduce
Loynes’ scheme for sojourn times. In a second step we show that the Loynes
variable converges a.s. to a finite limit. Finally, we show that this limit is the
unique stationary solution of equations of type (2.31).

Step 1 (the Loynes’s scheme): Let M (k) denote the vector of sojourn times
at time zero provided that the sequence of waiting time vectors was started at
time —k in B(—(k + 1)). For & > 0, we set

k-1
T(—k) = — ga(—i) .
By recurrence relation (2.31),
M(1) = A(-1)® C(c(0)) ® B(—2) @ B(—1).
For M(2) we have to replace B(—2) by
A(-2) ® C(o(-1)) ® B(—3) ® B(-2), (2.32)
which yields

M(2)=A(-1)® C(e(0)) ® A(-2) @ C(c(-1)) ® B(-3)
DA(-1) ® C(o(0)) ® B(—2) & B(-1). (2.33)

By finite induction, we obtain for M (k)
kE J
M) =P QR A(-i) @ C(o(~i+1)) ® B(~(j + 1)), (2.34)
7=0 i=1

where we set the product
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to E for j =0.

The sequence {M(k)} is called Loynes sequence. The above construction
implies that {M(k)} is monotone increasing in k. To see this, denote for z,y €
RJ.. the component-wise ordering of x and y by z < y. By calculation,

x

M(k) @(é)A (-3) ® C(o(—~i+1))® B(—(j + 1))
=0 i=1

k+1

<) A(=i) @ C(o(~i +1)) ® B(—(k + 1))

i=1

[N

kg

@@@A ) ® Clo(—i+ 1)) ® B(~(j + 1))
= ®A 1) ®Clo(-i+1)) @ B(-(j +1))
3=0 i=1

=M(k+1),

.

for k > 0, which proves that M (k) is monotone increasing in k.

The matrix C(-) has the following properties. For any y € R, C(y) commutes

with any matrix A € RJXJ:

Clyy @ A=A Cy).
Furthermore, for y, z € R, it holds that

Cly) ®C(2) =C(2)@Cy) = Cly+2).

Specifically,
J J

QR Cle(-i+1) =C <®a(—i+ 1)) = C(-1(-%)).

i=1 i=1
Elaborating on these rules of computation, we obtain

J J
&) A(=i) ® Clo(-1)) ® B(~(j + 1)) = C(-7(~)) ® Q) A(—i) ® B(~(j + 1)) .
=1 i=1
Set
k
®A (—(k+1)), k>1,
=1

and, for k = 0, set D(0) = B(—1). Note that 7(0) = 0 implies that C(—7(0)) =

E. Equation (2.34) now reads

EBC'(— (=4)) ® D(5) .
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Step 2 (pathwise limit): We now show that the limit of M (k) as k tends to
oo exists and establish a sufficient condition for the limit to be a.s. finite.

Because M (k) is monotone increasing in &, the random variable M, defined
by

Jim M(k) = €D C(-7(~4)) @ D(j)
j20

def
=M,

is either equal to co or finite. The variable M is called Loynes variable. In what
follows we will derive a sufficient condition for M to be a.s. finite. As a first step
towards this result, we study three individual limits.

(i) Under condition (W1), a number a € R exists such that, for any z € R/,

k
1 .
lerroloE §A(—j)®$ =a a.8.
max

(ii) Under condition (W3), the strong law of large numbers (which is a special
case of Theorem 2.2.3) implies

.1 1
Jim = [1C(=7(=k))|lmax = Jim_27(=k)
0

1
= — 1‘ — E 3
koo K X 4
i=—k+1
= -V a.s.

(iii} Ergodicity of {B*(k)} (condition (W3)) implies that, for 1 < j < a, a
b; € R exists such that

which implies that it holds with probability one that

k

1
b= lim - > Bj(—i)

i=1

1 E—-1 1 =
= Jim 2Bj(=k) + Jim === > Bi(~9)

!
=kllnf)1° EBj(—k) + b5,
and thus

1 1 _
kli)n;o EB]'(—-]C) = kllxgo EBJ(_(k+ ) =0 a.s.,
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for j < a. From the above we conclude that

. 1
Jim S IB(K)ll =0 a5

From Lemma 1.6.2 it follows that

IC(=7(=k)) © D(E) s = IIC(—T(~k)) ®§A(—z’) ® B(~(k+1))
<Nk + ® A=) @ e
S Bt Dl - -
Combining the individual limits (i)-(i41), we obtain
tim 2 [O(~7(~£) @ D(k)llpay < 2= s,
and v > a implies
Jim [[C(—r(~K) © D(R)llppy = —00 a8 (2.35)

Hence, for k sufficiently large, the vector C(—7(—k)) ® D(k) has only negative
elements and thus doesn’t contribute to M (k) (note that M (k) > 0 by defi-
nition). Consequently, M (k) is dominated by the maximum over finitely many
vectors C'(—7(—k)) ® D(k) whose elements are all finite. We have thus shown
that v > a implies that M is an a.s. finite random variable. In the same vein,
one can show that v < a implies M = oo with probability one.

Step 3 (stationarity and uniqueness): We revisit the construction of {M(k)}.
Under assumption (W3), let 6 denote an ergodic shift operator such that A(k) =
Aof* B(k) = Bo@* and (k) = o o 6%, for appropriately defined random
variables A, B, g, see Section E.3 in the Appendix. Equation (2.33) thus reads

M(2) = Aob™' ® C(0) ® M(1)o0™ ' & Bof™!

(to see this, note that the expression in (2.32) is equivalent to M(1) 0 §~1). By
finite induction,

Mk+1) = Ao @ Clo) ® M(k)of™' @ Bof™?
and letting k tend to oo in the above equation shows that
M=A00"'®C(c) ® M ® Bo0™!.

In other words, M is the stationary solution of (2.31).
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It remains to be shown that M is the unique limit. Let M (k,w) denote the
vector of sojourn times at time O provided that the sequence is started at time
—k with initial vector w € R”, or, more formally, set

k
M(k,w) = ® A=) ® Clo(-i+1)®w
@ EB C(-7(=4)) ® D(j) -

[~

j=

Because w has only finite elements, we have ||w||max < 0. Following the line of
argument in step 2 above, it readily follows that

k
kll.n;o §A(—z) ®Clo(—i+1))®w = —00 a.s.,
for v > a, and
k k-1
kgrgo(%)A(—i)®0(a(_i+ ))ow & @OC(—T(—j)) ®D(j) =M as.
i= j=

Hence, for any finite initial value w, M (k, w) has the same limit as M (k), which
establishes uniqueness. We have thus shown that M (k,w) converges a.s. to a
unique stationary limit M, independent of the initial value w.

For w € RY, write W (k,w) for the vector of k** system times, initiated
at 0 to w. Assumption (W3) implies that M (k,w) and W (k,w) are equal in
distribution. Hence, M is the unique weak limit of {W(k,w)} for arbitrary
w € RY. We summarize our analysis in the following theorem.

Theorem 2.3.1 Assume that assumptions (W1), (W2) and (W3) are satisfied
and denote the mazimal Lyapunov exponent of {A(k)} by a. If v > a, then the
sequence

W(k+1) = Ak)®@ Co(k+ 1)) @ W(k) @ B(k)

converges with strong coupling to an unique stationary regime W, with

W = D(0)& P C(-7(-4)) ® D),

j21

where D(0) = Bo 8! and

J
D(j) = @A) ®B(-(j+1)), j=1.
i=1

Proof: It remains to be shown that the convergence of {W(k)} towards W
happens with strong coupling. For w € RY, let W (k, w) denote the vector of k**
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sojourn times, initiated at 0 to w. From the forward construction, see (1.22) on
page 20, we obtain

k
W(k+1,w) =) A(#) @ Clo(i +1)) @ w
i=0

ko k&
o Q AG)®Cle(i +1) ® B(i).
i=0 j=i+1
From the arguments provided in step 2 of the above analysis it follows that

lim

= —00 a.8.,
k—o0

k
R AG)®Clo(i+1)) ®w
1=0

max

provided that v > a. Hence, there exists an a.s. finite random variable 8(w),
such that

k
R A @ Clei+1)@w
=0

Vk > f(w) : <0.

max

In words, after B(w) transitions the influence of the initial vector w dies out.
We now compare two versions of {W(k)}. One version is initialized to W, the
stationary regime, and the other version is initialized to an arbitrary finite vector
w. We obtain that

vk > max(B(w), B(W)) : W(k,w) = W(k,W).

Hence, {W (k,w)} couples after a.s. finitely many transitions with the stationary
version {W(k,W)}. O

It is worth noting that 3{w), defined in the proof of Theorem 2.3.1, fails to be
a stopping time adapted to the natural filtration of {(A(k), B(k)) : k > 0}. More
precisely, S(w) is measurable with respect to the o-field o((A(k), B(k)) : k£ > 0)
but, in general, {#(w) = m} € o((A(k), B(k)) :m = k = 0), for m € N.

Due to the max-plus formalism, the proof of Theorem 2.3.1 is a rather
straightforward extension of the proof of the classical result for the G/G/1
queue. To fully appreciate the conceptual advantage offered by the max-plus
formalism, we refer to [6, 13] where the above theorem is shown without using
max-plus formalism.

2.4 Harris Recurrent Max-Plus Linear Systems
(Type I and Type IIa)

The Markov chain approach to stability analysis of max-plus linear systems
presented in this section goes back to [93, 41]. Consider the recurrence relation
z(k+1) = A(k) ® z(k), k > 0, and let

Zj_1(k) =z;(k) —21(k), 722, (2.36)
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denote the discrepancy between component z1(k) and z;(k) in z(k). The se-
quence {Z(k)} constitutes a Markov chain, as the following theorem shows.

Theorem 2.4.1 The process {Z(k) : k = 0} is a Markov chain. Suppose
Z(k) = (21,...,27-1) for fixzed z; € R. Then the conditional distribution of
Zi(k+1) given Z(k) = (21,...,25-1), 18 equal to the distribution of the random
variable

J J
Ajr(k) @ @ Ajp1:(k) ® ziy — Aun(k) @ @ Ap(k)® 21,

=2 =2

for1<j<J-1.

Proof: Note that

a®r®b®y—r=max(a+2z,b+y)—x
=max(a,b+ (y — z))
=aHbR (y—2z).
Using the above equality, we obtain for 2 < j < J:
Zia(k+ 1D)=x;(k+1) —z1(k+1)
=(A(k) ® z(k)); — (A(k) ® z(k))1
=A;1(k) ® z1(k) ® Ajo(k) @ z2(k) ® - -+ @ Ajs (k) @ ws(k) —
A (k) @ z1(k) @ Ar2(k) ® z(k) ® -+ - @ Ay (k) ® (k)
=A;1(k) @ z1(k) D Aje (k) @ z2 (k) @ - ® Ay (k) ® x5(k) — z1 (k) —
(A11(k) @ z1(k) ® A12(k) ® z2(k) @ - - & Ay (k) ® z5(k) — 21(K))
'——Ajl(k') ] Ajg(k:) ® (zalk) —z1(k))® - & Aj](k;) ® (zg(k) — z1(k)) -
Ap1 (k) ® Ar2(k) @ (za(k) — z1(k)) ® -+ - & A1 5(k) ® (xy(k) — z1(k))
=Aj1(k) o Ajg(k) ®Z1k)Dd - P A k)® Z5-1(k) —
Ank)® Ank)® Z1(k)® - ® A1y (k) ® Z;-1(k) .
From this expression it follows that the conditional distribution of Z(k + 1)
given Z(0), ..., Z(k) equals the conditional distribution of Z(k + 1) given Z(k)

and hence the process {Z(k) : k > 0} is a Markov chain. O
Now define

D(k) = z1(k) —z1(k~1), k>1.
Then, we have
k
z1(k) =21(0)+ Y D(n), k>1, (2.37)
n=1
and

k
zj(k) = 2;(0) + (Zj-1(k) = Z;-1(0)) + D D(n), k21,j>2. (238)

n=1
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Theorem 2.4.2 For any k > 0, the distribution of (D(k + 1),Z(k +
1)) given (Z(0),D(1),Z(1),...,D(k),Z(k)) depends only on Z(k). If
Z(k) = (za,...,21), then the conditional distribution of D(k + 1) given
(Z(0),D(1),Z(1),...,D(k), Z(k)) is equal to the distribution of the random var-

iable
J

Au(k) &3] @ Alj(k}) ® 251

=2
Proof: We have

Dk + )=z1(k + 1) — z1(k)
=A11(k) @ z1(k) ® A12(k) @ z2(k) @ - ® A1y (k) ® zs(k) — z1(k)
=A11(k) ® A12(k) ® (z2(k) —z1(k)) @ -+ ® A1y (k) ® (z(k) — z1(k))
=Ank)® Ank) @ Z1(k) @ - ® A1y(k) ® Z;_1(k),

which, together with the previous theorem, yields the desired result. J

If {Z(k)} is uniformly ¢-recurrent and aperiodic (for a definition we refer to
the Appendix), then it is ergodic and, as will be shown in the following theorem,
a type Ila limit holds. Elaborating on a result from Markov theory for so-called

chain dependent processes, ergodicity of {Z(k)} yields existence of the type I
limit and thus of the Lyapunov exponent.

Theorem 2.4.3 Suppose that the Markov chain {Z(k) : k > 1} 4s aperiodic
and uniformly ¢-recurrent, and denote its unique invariant probability measure
by w. Then the following holds:

(i) For1<14,5 < J, xi(k) — z;{k) converges weakly to the unique stationary
regime .

(i1) If the elements of A(k) have finite first moments, then a finite number A
exists such that

almost surely for any finite initial value, and
A =E.[D(1}],

where E. indicates that the expected value is taken with Z(0) distributed
according to w.

Proof: For the proof of the first part of the theorem note that
xl(k) - .’1}](]6) = Zi._l(k) - Zj...l(k}) )
for 2 <4,5 <J, and

zi(k) — x1(k) = Zi—1(k), z1(k) — zi(k) = —Z;—1(k) ,
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for 2 <14 < J. Hence, weak convergence of Z(k) to a unique stationary regime
implies weak convergence of z;(k) — ;(k) to a unique stationary regime. Weak
convergence of Z(k) to a unique stationary regime follows from uniform ¢-
recurrence and aperiodicity of Z(k), see Section F in the Appendix, and we
have thus shown the first part of the theorem.

We now turn to the second part. The process {D(k) : k > 1} is a so-called
chain dependent process and the limit theorem of Griggorescu and Oprisan [55]
implies

1E
lim =" D(n) = A =E,[D(1)] as.,

k— o0 k
n=1

for all initial values xp. This yields for the limit of z1(k)/k as k tends to oo:

k—oo k

lim ~a, (k)22 37)k_4m (—m1(0)+ ZD )

]
5
| =
™
™
2

It remains to be shown that, for j > 2, the limit of x;(k)/k as k tends to oo
equals A. Suppose that for 7 > 2:

.1 o1
Jim 2Z;1(k) = lim E(Zj_l(k) - Z1(0)) = 0 as. (2.39)
With (2.39) it follows from (2.38) that

Jim (k)= lim +(Z;1 (k) ~ Z1(0)) + A

=)\ a.s. ,

for j > 2. In what follows we show that (2.39) indeed holds under the conditions
of the theorem.

Uniform ¢-recurrence and aperiodicity of the Markov chain {Z(k) : k > 1}
implies Harris ergodicity. Hence, for J — 1 > j > 1, finite constants ¢; exists,
such that

hm EZZ(n =¢; as.
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This implies

(k)+ ZZ )
hm —ZZ

.1 . k-
SRS i
.1
=ler§o EZj(k) + ¢,

which yields, for J—12> 35 > 1,

lim kz (k) = lim 1(Z‘(k) - Zj(o)) =0 as.

k—oo k—oo k

O

Remark 2.4.1 Let the conditions in Theorem 2.4.8 be satisfied. If, in addition,
the elements of A(k) and the initial vector have finite second moments, then

0< 0 ¥ S EL(DA) - A)(D(n) - A)] < o0,
n=1
and if 0% > 0, the sequence

(z1(k), ..., 25(k)) — (KA,..., k))
ovk ’

converges in distribution to the random vector (N,...,N), where N is a stan-
dard normal distributed random variable. For details and proof we refer to [93].

Remark 2.4.2 If the state space of Z(k) is finite, then the convergence in part
(i) of Theorem 2.4.3 happens in strong coupling.

The computational formula for A put forward in Theorem 2.4.3 is also known
as ‘Furstenberg’s cocycle representation of the Lyapunov exponent;’ see [45].

Example 2.4.1 Consider z(k) as defined in Example 1.5.5, and let 0 = 1 and
o' = 2. Matriz Dy is primitive and has (unique) eigenvector (1,1,0,1)7. Let
2(1) = 2((1,1,0,1)7) = (0,—1,0)7. It is easily checked that {Z(k)} is a Markov
chain on state space {z(i) : 1 <14 < 5}, with

0 -1 -1 0
2(2) = (0> , 2(3) = (0 ) y 2(4) = (—2) and z(5) = (—1) X
0 0 0 -1
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Denoting the transition probability of Z(k) from state z(i) to state z(j), for
1< 4,7 <5, one obtains the following transition matriz

1-6 0 0 0 0
0 0 0 1-0 0
P= 0 0 0 1-6 0
0 0 0 0 1

1-¢ 0 0 0 ©

The chain is aperiodic and since the state space is finite it is uniformly ¢-
recurrent. Moreover, the unique stationary distribution of Z (k) is this given by

oo =02 o ed-0 o 602
M1 -0) P T 1100 -06) BT 11001 -06)
0(1— 0) 6(1-6)

o ] d 2 =
OTTTea -9 " ™G T 110 - 0)
Applying Theorem 2.4.8, yields A = E.[D(1)]. Evoking Theorem 2.4.2, this
expected value can thus be computed as follows:

5
A=) i) (1 ©2® 22(4))
i=1
=1y(1) + 27 ,(2) + 275(3) + T2(a) + To(s)
0
1+6—6%
for any 6 € [0,1]. For a different example of this kind, see [65].
Example 2.4.2 Let {A(k)}, with A(k) € {0,1}2*2, be an i.i.d. sequence fol-
lowing the distribution P(Aj(k) =0) = 1/2 = P(A;(k) =1) for1 < 4,5 < J.
We turn to the Markov process {Z(k)} as defined in (2.36). This process has
state space {—1,0,1}. By Theorem 2.4.1, the transition probability of Z(k) is
given by
P(Z(k+1)=m|Z(k)=2z)
= P((An(k+1)® (Agak +1)®2)) — Ak +1) @ (Aie(k+ 1) ® 2) = m) ,

form,z € {~1,0,1}, and the transition matriz on {Z(k)} can be computed as

=1+

=
[STES
o]

[oallS)

Sl
Sle

11
2

N

The Markov chain {Z(k)} is aperiodic (all elements of P are positive), uniformly
¢-recurrent (the state space is finite) and has unique stationary distribution
3 8 3

7T—1=—174“,7r0=ﬁ77r1=ﬁ-
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From Theorem 2.4.8 together with Theorem 2.4.2 follows that
A= Z ]E[All(l)@(Alz(l)®Z)]7rz

z€{-1,0,1}
_3,1,8 3 3 3
14 2 14 4 14 2
6

=

As shown in [93], for this example o (as defined in Remark 2.4.1) is equal to
33/343.

The above examples are deceitfully simple in the sense that (i) the transition
probability (in this case a matrix) of {Z(k)} can be calculated easily and (ii) we
can deduce that {Z(k)} is aperiodic and uniformly ¢-recurrent from inspecting
the transition matrix of {Z(k)}. In [93], examples with countable state space
are discussed. For one example, the elements of A(k) are exponentially distrib-
uted with the same parameter; for another example, the elements are assumed
to be uniformly distributed over the unit interval. Unfortunately, even when
the elements of A(k) are governed by these ostensibly simple distributions, the
analysis leads to cumbersome computations. It is mainly for this reason that
the Markov chain approach, as presented in this section, will be of avail only in
special cases.

2.5 Limits in the Projective Space (Type IIb)

In the previous section, we studied the limit of differences within z(k), that is,
zj(k)—z1(k), for 2 £ j < J. In what follows, we take a slightly different point of
view and consider differences between z(k) and x(k—1), that is, x;(k)—z;(k—1),
for 1 < 5 < J. The basic recurrence relation we study is given by

zk+1) = Ak)®@x(k), k>0, (2.40)
with z(0) = 29 € R, and A(k) € RZX/, for k > 0.

max max

For the following we use a definition of Z(k) that slightly differs from the
definition in Section 2.4. We now let

Z(k) =a(k) —a(k—1), k=1, (2.41)

denote the component-wise increase of z(k). In particular, the components of
Z (k) are given by

Zj(k) = F;(A(k — 1), z(k — 1))
J
o (@ Ak = 1) ® 2:(k - 1)) - wy(k=1)

i=1

J
=Aj k-1 @P Ak -1)® @k-1)-z;(k=1), j=1.
i=1

i)
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For z(k — 1) € IPRZ,,, the value of F; doesn't depend on the representative,
that is, for all X € z(k — 1) we have Z;(k) = F;(A(k—1),X),for1 < j < J, and
we write Z;(k) = F;(A(k — 1),z(k — 1)) to express this fact. For the definition
of the modes of convergence used in the following lemma we refer to Section E.4
in the Appendix.

Lemma 2.5.1 Consider the situation in (2.40) and let {A(k) : k > 0} be sta-
tionary. If z(k) € PR’ converges weakly to a unique invariant distribution,
uniformly over all initial conditions, then Z(k) converges weakly to a unique
invariant distribution, uniformly over all initial conditions.

Proof: Consider the sequence y(k) = (A(k),z(k)), k > 0. The sequence
A(k) is stationary by assumption with stationary distribution 74. Let A be
distributed according to wa. If (k) converges weakly to T, then y(k) converges
weakly to (A,Z). Because F' = (F,...,Fy) defined above is continuous, we
obtain from the continuous mapping theorem (see Appendix, Section E.4) the
weak convergence of F(A(k),z(k)). D
___In what follows we establish sufficient conditions for weak convergence of
z(k). By Lemma 2.5.1, this already implies weak convergence of Z(k) which
in turn yields type IIb second-order ergodic theorems. As we will show in the
following, in many situations, the convergence of Z(k) occurs even in strong
coupling. In Section 2.5.1, we will study systems with countable state space
and, in Section 2.5.2, we will address the general situation. In Section 2.5.3 we
revisit the deterministic setup. Finally, we present a representation of type IIb
limits via a renewal type approach in Section 2.5.4.

2.5.1 Countable Models

In this section, we study models with countable state space. Let A be a finite
or countable collection of J x J-dimensional irreducible matrices. We think of
A as the state space of the random sequence {A(k)} following a discrete law.

Definition 2.5.1 Let {A(k)}, with A(k) € A, be a random sequence. A matriz
A € A is called a pattern of {A(k)} if a sequence @ = (ay,...,an) € AV exists
such that

(a) fi:aN®aN_1®-'-®a1
(b) P(A(N+Ic)=aN,...,A(1+k)=a1)>0, keN.

We call & the sequence constituting A.

Note that if {A(k)} is 1.i.d., then the second condition in the above definition
is satisfied if we let A contain only those possible outcomes of A(k) that have
a positive probability. In other words, in the i.i.d. case, the second condition is
satisfied if we restrict A to the support of A{k). Existence of a pattern essentially
implies that 4 is at most countable, see Remark 2.2.8.

The main technical assumptions we need are the following:
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(C1) The sequence {A(k)} is i.i.d. with countable state space A.
(C2) Each A € A is regular.
(C3) There is a primitive matrix C that is a pattern of {A(k)}.

Observe that we have already encountered the concept of a pattern - as
expressed in condition (C3) - in condition (C) on page 82, although we haven't
coined the name ‘pattern’ for it at that stage.

The following theorem provides a sufficient condition for {m—)—} to converge
in strong coupling.

Theorem 2.5.1 Let (C1) - (C3) be satisfied, then {x(k)} converges with strong
coupling to a unique stationary regime for all initial conditions in RY. In par-
ticular, (k) converges in total variation.

Proof: Let C be defined as in (C3) and denote the coupling time of C by c.
For the sake of simplicity, assume that C € A, which implies N = 1. Set 79 = 0
and

Tt =inf{m > +c: Aim—-i)=C:0<i<c-1}, k>0.

In words, at time 7, we have observed for the k** time a sequence of ¢ consecutive
occurrences of C. The 1.i.d. assumption (C1) implies that 7 < 741 < oo for all
k and that limy_,oo T = oo with probability one. Let p denote the probability
of observing C, then we observe C¢ with probability p°. By construction, the
probability of the event {73 = m} is less than or equal to the probability of the
event A(k) #C,0<k<m-—c,and A(k)=C,fork=m—-c+1,...,m. In
other words, for m > ¢, it holds that P(r1 = m) > (1 — p)™ “p. Hence,

Elnl< Y m(1-p)" %

m=c

Il

e

(m+¢)(1—p)™p°
0

o o<
=cp” Yy (1-p)™ +p°Y_ m(1-p)™
m=0 m=0
C c
1-—
_cr®  p(d-p)

) p?
<0,

3
il

which implies that E[rg41 — 7] < oo, for k € N.

At 7, z(1k) € V(C), see Theorem 2.1.1. By condition (C3), C is primitive
and, by Corollary 2.1.1, the eigenspace of C' is a single point in the projective
space (that is, the eigenvector of C is unique). In other words, {A(k)} has MLP,
see Lemma 2.2.2. By (C__Z),_Wk) € R, for any k, and from the above line ar-
gument it follows that {z(k)} is a Harris ergodic Markov chain and regenerates
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whenever the chain hits the single point V{C). This implies that {z(k)} con-
verges with strong coupling to a unique stationary regime. See Section F in the
Appendix. OO

What happens if we consider in Theorem 2.5.1 a stationary and ergodic
sequence instead of an i.i.d. sequence? The key argument in the proof of Theo-
rem 2.5.1 is that {A(k)} has MLP. This is guaranteed by the fact that we
observe with positive probability a sequence of occurrences of A(k) such that
the partial product over that sequence equals C¢, for some primitive matrix C,
where ¢ denotes the coupling time of C, see Lemma 2.2.2. If the coupling time
of C is larger than 1, then, under i.i.d. regime, the event that C occurs ¢ times
in a row has positive probability. However, this reasoning doesn’t apply in the
stationary case. To see this, consider the following example. Let Q@ = {wy, w2}
and P{w;) = 1/2, for ¢ = 1,2. Define the shift operator 8 by 6(w1) = wy and
6(w2) = w1. Then 6 is stationary and ergodic. Consider the matrices A, B as
defined in Example 2.1.1 and let

{A(k,w))} = A,B,A,B,... {A(k,w3)} = B,A,B,A,...

The sequence {A(k)} is thus stationary and ergodic. Furthermore, A, B are
primitive matrices whose coupling time is 4 each. But with probability one we
never observe a sequence of 4 occurrences in a row of either A or B. Since neither
A or B is of rank 1, we cannot conclude that {A(k)} has MLP and, consequently,
that z(k), with z(k+1) = ®f=0 A(3)®xo, is regenerative. However, if we replace,
for example, A by A™, for m > 4 (i.e., a matrix of rank 1), then the argument
would apply again. For this reason, we require for the stationary and ergodic
setup that a matrix of rank 1 exists that is a pattern, so that z(k) becomes a
regenerative process. Note that the condition ‘there exits a pattern of rank 1’
is equivalent to the condition ‘{ A(k)} has MLP.’ The precise statement is given
in the following theorem. For a proof we refer to [84].

Theorem 2.5.2 Let {A(k)} be a stationary and ergodic sequence of a.s. regular
square matrices. If {A(k)} has MLP, then {z(k)} converges with strong coupling
to a unique stationary regime for all initial conditions in R7. In particular,

{z(k)} converges in total variation.

2.5.2 General Models

In this section, we consider matrices A(k) the elements of which may follow
a distribution that is either discrete or absolutely continuous with respect to
the Lebesgue measure, or a mixture of both. For general state-space, the event
{AN +k)® - ® A(2 + k) ® A(1) = A} in Definition 2.5.1 typically has
probability zero. For this reason we introduce the following extension of the
definition of a pattern. Let M € RJXJ be a deterministic matrix and > 0. We

denote by B(M,n) the open ball with center M and radius 5 in the supremum
norm on RY*J. More precisely, A € B(M,n) if for all ¢,§, with 1 < 4,5 < J, it
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holds that
a.d € (Mij —n,Mij+n) for My; #e¢,
“ =& for Mij'—"é‘.

With this notation, we can state the fact that a matrix A4 belongs to the support
of a random matrix A by

vn>0 P(AeB(4,n)) > 0.

This includes the case where A is a boundary point of the support. We now
state the definition of a pattern for non-countable state-space.

Definition 2.5.2 Let {A(k)} be a random sequence of matrices over R7X! and
let A € REX] be a deterministic matriz. We call A a pattern of {A(k)} if a
deterministic number N exists such that for any n > 0 it holds that

P(A(N—1)®A(N—2)®-~-®A(o) € B(/i,n)) >0.

Definition 2.5.2 can be phrased as follows: Matrix A is a pattern of {A(k)} if
N € N exists such that A lies in the support of the random matrix A(N — 1) ®
A(N -2)®@---® A(0). The key condition for general state space is the following:

(C4) There exists a (measurable) set of matrices C such that for any C € C it
holds that C is a pattern of {A(k)} and C is of rank 1. Moreover, a finite
number N exists such that

P(AN-1)®AN-2)& - 8A0) €C) > 0.

Under condition (C4), the following counterpart of Theorem 2.5.2 for models
with general state space can be established; for a proof we refer to [84].

Theorem 2.5.3 Let {A(k)} be a stationary and ergodic sequence of a.s. regular
matrices in REXJ. If condition (C4) is satisfied, then {x(k)} converges with
strong coupling to a unique stationary regime. In particular, {z(k)} converges

in total variation to a unique stationary regime.

In Definition 2.5.2, we required that after a fixed number of transitions the
pattern lies in the support of the matrix product. The following, somewhat
weaker, definition requires that an arbitrarily small n-neighborhood of the pat-
tern can be reached in a finite number of transitions where the number of tran-
sitions is deterministic and may depend on #.

Definition 2.5.3 Let {A(k)} be a random sequence of matrices over RJ%Y and
let A € RIX! be a deterministic matriz. We call A an asymptotic pattern of
{A(k)} if for any n > 0 a deterministic number N,, exists, such that

P(A(N,,—1)®A(Nn—2)®---®A(O) e B(A,n)) > 0.
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Accordingly, we obtain a variant of condition (C4).

(C4)’ There exists a matrix C such that C is an asymptotic pattern of {A(k)}
and C is of rank 1.

Under condition (C4)’ only weak convergence of {z(k)} can be established,
whereas (C4) even yields total variation convergence. The precise statement is
given in the following theorem.

Theorem 2.5.4 Let {A(k)} be a stationary and ergodic sequence of a.s. regular
matrices in REXJ. If condition (C4)' is satisfied, then {z(k)} converges with 6-

< coupling to a unique stationary regime. In particular, {x(k)} converges weakly
to a unique stationary regime.

Proof: We only give a sketch of the proof, for a detailed proof see [84]. Suppose
that a stationary version x o 0% of z(k) exists, where @ denotes a stationary and
ergodic shift. We will show that x(k) converges with d-coupling to z o 6%, Fix
7 > 0 and let 7 denote the time of the first occurrence of the pattern. Condition
(C4)’ implies that at time 7 the projective distance of the two versions is at
most 7, in formula:

dp(Z(r),z007) < 7. (2.42)

As Mairesse shows in [84], the projective distance of two sequences driven by
the same sequence {A(k)} is non-expansive which means that (2.42) already
implies

V27 dp(zk),zobk) < 7.

Hence, for any n > 0,
P(dp(z(k),zobk) < n,k>7)=1.
Stationarity of {A(k)} implies 7 < oo a.s. and the above formula can be written

lim P(dp(z(k),z06%) < n)=1.
k—o0

Hence, (k) converges with é-coupling to a stationary regime. See the Appendix.
Uniqueness of the limit follows from the same line of argument. O

We conclude this presentation of convergence results by stating the most
general result, namely, that existence of an asymptotic pattern is a necessary
and sufficient condition for weak convergence of {z{k)}.

Theorem 2.5.5 (Theorem 7.4 in [84]) Let {A(k)} be a stationary and ergodic
sequence on RJIXJ. A necessary and sufficient condition for {x(k)} to converge
in &-coupling (respectively, weakly) to a unique stationary regime is that (C4)'

is satisfied.
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2.5.3 Periodic Regimes of Deterministic Max-Plus DES

Consider the deterministic max-plus linear system
zk+1) = A®z(k), k>0,

with z(0) = 2o € R’ and A € RJX/ a regular matrix. A periodic regime of
period d is a set of vectors z?,...,2% € R’ such that (i) 27 # 29, for 1 < i #

J <d, and (ii) a finite number u exists which satisfies

2l =A2t, 1<i<d,
and u®x' = A®z?%. A consequence of the above definition is that 21, ..., z¢ are
eigenvectors of A% and  is an eigenvalue of A%, If A is irreducible with cyclicity
o(A), then A will possess periodic regimes of period o(A), see Theorem 2.1.1,
and A°(4) will have 0(A) mutually linear independent eigenvectors.

From a system theoretic point of view, one is interested in the limiting be-
havior of z(k). More precisely, one is interested in the behaviour of z(k) for k
large. If A is primitive, x(k) converges in a finite number of steps to T, where
2 denotes the unique eigenvector of A. In the general situation, however, there
are two sources for non-uniqueness of the limiting behavior of z(k). First, if A
has cyclicity o(A) > 1, then {z(k)} may eventually reach a periodic regime of
period o(A). Secondly, even if A has cyclicity one, if the communication graph
of A possesses m strongly connected subgraphs, with m > 1, then the eigenspace
of A is a m-dimensional vector space. See Theorem 2.1.2.

Example 2.5.1 Consider matrix

A:(fi).

A is irreducible with eigenvalue 5 and the critical graph of A consists of the
circuit ((1,2),(2,1)). The critical graph has thus one m.s.c.s. and o(A) = 2. It
is easily checked that the eigenspace of A is given by

V(4) = {(2) cR:_|JacR: (2) = a®<(1))} .

Starting in z(0) € V(A), will lead to a periodic regime of period 2. For example,
taking z(0) = (0,0), yields

= (5) - w=(35) 0= () == ()

In other words, A? has eigenvalue 10 and two linear independent eigenvectors,

. @
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We call the set of all initial conditions zp such that Ak ® xo eventually
reaches T, for some eigenvector z, (resp. periodic regime F, ..., 2%) the domain
of attraction of x (resp. z',...,2%). For example, for the matrix given in Ex-
ample 2.5.1 above, the vector z = (0,0) lies in the domain of attraction of the
periodic regime (6,4), (10, 10).

For J = 3, Mairesse provides a graphical representation of the domain of
attraction in the projective space, see [83] and the extended version [82]. In
particular, the eigenvector (resp. periodic regime) in whose domain of attraction
an initial value xo lies can be deduced from a graphical representation of the
eigenspace of A in the projective space.

2.5.4 The Cycle Formula

We revisit the situation in Section 2.2.3.2 and use the notation as introduced
therein. Specifically, we assume that {A(k)} has MLP. Elaborating on the pro-
jective space, (2.26) reads

z(Ty) =z, k>0,

for some fixed x € RY. This constitutes a regenerative property of {z(k)}.
Specifically, the cycles {z(k) : Ty < n < Tky1} constitute an i.i.d. sequence.
Moreover, {T}} is a sequence of renewal times for the process {x(k)—xz(k—1)} as
well. Stationarity and ergodicity of {A{k)} imply that x(k) hits T a.s. infinitely
often. Hence, {z(k) — z(k — 1)} is a regenerative process with renewal times
{T%}, see Section E.9 in the Appendix. Note that

o

E| Y (alk) — a(k- 1))} = E[z(Ty) — z(To)] .

k=To+1

Let X denote the unique stationary regime of {z(k)}. Provided that
E{z(T1) — z(Tp)] < oo and E[Ty — Ty] < oo, the limit theorem for regenera-
tive processes yields

N T
k=1 k=To+1
Moreover, ergodicity of {A(k)} yields
lim ! XN: (k) —z(k —1)) =E[X 00— X] as.,
N-—»oo et

for X € X. In particular, for X € X, it holds that
EXo6—X] =E[Xo6~X].

We summarize the above analysis in the following lemma.
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Lemma 2.5.2 (Cycle Formula) Let {A(k)} be a stationary and ergodic se-
quence in RJXJ that has MLP. If Blz(T}) — z(Ty)] < 0o and E[Ty — Ty] < oo,
then

E[z(Th) — 2(To)]

EXo06-X| = BN =Ty

where X denotes the unique stationary regime of {x(k)}.

Remark 2.5.1 Note that

Xof0={Y|Fa: Y =a®(Xcb)}
={Y|3a: Y =(a® X)ob}

and the cycle formula can alternatively be phrased

E[z(Th) — 2(To)]

EXe7-%) = SRl

Remark 2.5.2 If {A(k)} is i.i.d., then in the above theorem the condition that
{A(k)} has MLP can be replaced by condition (C), see Lemma 2.2.2. Moreover,
a stmple geometrical trial argument, like the one used in the proof of Theo-
rem 2.5.1, shows that E[Ty — Ty} < oo. If, in addition, A(k) is integrable, one
can show that E{z(T1) — z(To)] < oo holds as well.

In the following section we will establish sufficient conditions for E[X 0§ — X)
to be equal to the Lyapunov exponent.

2.6 Lyapunov Exponents via Second Order Lim-
its (Type IIb)

The Lyapunov exponent can be defined as a first-order limit, as explained in
Section 2.2. However, as we will show in this section, under suitable conditions,
the Lyapunov exponent can be obtained by a second-order limit as well. In
Section 2.6.1 we establish the general result, whereas in Section 2.6.2 we provide
a direct analysis via backward coupling. It is this result that will prove valuable
for the analysis provided in Part II. The basic recurrence relation we study is
given by

zk+1) = Ak)y®z(k), k>0, (2.43)

with z(0) = zo € R’ and {A(k)} a stationary sequence of a.s. regular matrices

IxJ
on R; %,
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2.6.1 The Projective Space

Suppose that z(k) converges in total variation and let X denote the limiting ran-
dom variable. Goldstein’s maximal coupling implies the existence of a random
variable N so that for allk > N

z(k) =X o 0% as.,

where, for notational convenience, we have identified the versions of the random
variables on the underlying common probability space with the original ones.
Let 24 denote the initial value of the recurrence relation, then we may rephrase
the above equation as

Ak)® - ®A(0)@zo=Xo00%, k=N,

or, equivalently,

AO)RA-1)® @ A(-k)®zo=X, k>N,

where {A(k) : k= ...1,0,~1,...} denotes the continuation of the stationary
sequence {A(k)} to the negative numbers. Hence, for X € X there exists ¢ € R
so that

ADQA(-1)® - QA(-k)®xzg=a®X, k2>2N.
This implies, for £k > N,

ADNRA0)RA(-1)® - @ A(-k) @z — A(0)® - ® A(—k) ® 9
=A(1)®a®X —a®X
=A1)®X - X,

where a.s. regularity of {A(k)} and our assumption that zo € R’ implies that
the above differences are well-defined. Taking the limit,

lim A1) 8 A0)® A(-1) @+ ® A(~k) ® z0 — A(0) @+ ® A(—=k) ® zo

=A1)®AO0)®A(-1)® - ® A(-N)®z¢ — AD)® -+ ® A(~N) ® zo
=A1)®X — X,

for all X € X. We introduce the following condition:
(D) A random variable Z € [0,00)7 exists such that with probability one
sup [A(1)@A(0)RA(-1)® - ®A(—k)®zg — A0)® - - @ A(—k)®zo| £ Z
k
and E[Z] is finite.

In the next section we will provide sufficient conditions for (D).
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Suppose that condition (D) is satisfied, applying the dominated convergence
theorem then yields

kllngg Ejz(k + 1) — z(k)]
= kli%oE[A(l)@A(O)@A(_l) ® - ®A(—k)®z0 — A0)® - ® A(=k) ®a:0]

=E [kligr;o (A(l) R®A0)RA-1)® - ®A(-k)®z0 — A(0)® - ® A(~k)® wo)]
=E[A()® X - X] <.

Convergence of E[z(k + 1) — z(k)] implies convergence of the Cesaro-sums (see
Section G.1 in the Appendix) and we obtain

k+1
Jim Efz(k +1) - o(k)]= lim k+1E]E z(i) — z(i — 1)]

[ 1 k+1
= lim E X ;(m(i) —2(i— 1))}

. ! 1

n—00 +

— lim E h%m(k)] .

k—o0
We summarize our analysis in the following theorem:
Theorem 2.6.1 Consider the situation in (2.43). If
o {x(k): k > 1} converges in total variation to T,
o {A(k)} is a.s. regular and stationary,
o condition (D) is satisfied,
then there is an a.s. finite random variable N so that

hm ]E[ (k)] ® A(l) @ zg — ® Al ®@ x|

k i=—N

for any finite initial value xo € R7.

Under the conditions in Theorem 2.2.3, Elz;(k)]/k, 1 < j < J, tends to the
Lyapunov vector of {A(k)} as k tends to co. This yields the following represen-
tation for the Lyapunov vector:

Lemma 2.6.1 Consider the situation in (2.43). If

(i) {T(k) : k = 1} converges in total variation to T,
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(i) condition (D) is satisfied,

(i) {A(k)} is an a.s. regular and stationary sequence of integrable matrices
such that

— {A(k)} has fized support,
— any finite element is a.s. non-negative, and

— the elements on the diagonal are a.s. different from e,

then there is an a.s. finite random variable N such that

0 0
E|A1)® Q) A@)®z0 — Q) AG@)®z0| = X,
i=—N i=—N

for any integrable initial value zo € RY, where X denotes the Lyapunov vector

of {A(k)}-

Lemma 2.6.1 can be stated in various forms. For example, if we replace
condition (iii) by the condition that {A(k)} has MLP, then we obtain that the
components of the Lyapunov vector are equal, see Theorem 2.2.4.

Recall that we have introduced e as the vector with all elements equal to e.
For z € R, the vector with all elements equal to z is then given by z ® e. For
sequences {A(k)} with countable state-space, Lemma 2.6.1 can be phrased as
follows:

Lemma 2.6.2 Consider the situation in (2.43). If
e (C1) — (C3) are satisfied, and
o condition (D) is satisfied,

then there is an a.s. finite random varieble N so that

0 0
E|[A1)® Q) AG) @z — Q) A ®@z| = A®e,
i=—N i=—N

for any integrable initial value xy, where A denotes the Lyapunov exponent of

{A(R)}-

Proof: Conditions (C1) — (C3) imply convergence of {z(k) : & > 1} in total
variation, see Theorem 2.5.1. By condition (C3), a primitive matrix, say, C
exists that is a pattern of {A(k)}, and we assume, for the sake of simplicity,
that C € A, which implies N = 1, Let ¢ denote the coupling time of C. From
the i.i.d. assumption it follows that the event {A(c— 1) = A(c—2) = -+ =
A(0) = C} has positive probability and matrix C therefore satisfies condition
(C). By Theorem 2.2.4 we obtain limg_,o E[z;(k)]/k = A, for 1 < j < J. Hence,
the proof of the lemma follows directly from Theorem 2.6.1. O
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‘We conclude this section with a remark on the cycle formula in Section 2.5.4.
Under the conditions put forward in the above Lemma, it holds that

EA)®X - X] = AQ@e. (2.44)

The cycle formula can therefore be rephrased as follows: let the conditions in
Lemma 2.6.2 be satisfied and let {T;} denote the time of the k** occurrence of
the c-fold concatenation of C, see Section 2.5.4 for a formal definition. A simple
geometrical trial argument, like the one used in the proof of Theorem 2.5.1,
shows that

E[T} — Tp) < 0. (2.45)

Elaborating on the limit theorem for regenerative processes (see Section 2.5.4
for details), (2.45) together with (2.44) implies E[z(T}) — z(Tp)] < 0, and the
cycle formula reads
Elz(Ty) — x(T
rwe - El(T) = 2T
E[T} — To)

2.6.2 Backward Coupling

In the previous section, the existence of a coupling time N was shown. In this
section, we will provide an explicit construction of N via backward coupling.
In Markov chain theory, backward coupling, or, coupling from the past, is an
approach that allows sampling from the stationary distribution of a finite-state
Markov chain. Suppose that we consider a family of Markov chains X° on a fi-
nite state space S, each with the same transition probabilities and with common
unique stationary distribution «, but with version X° starting in state s € §. If
we can find a time T in the past such that all versions X* starting, not at time
0, but at time —T, have the same value at time 0, then this common value is a
sample from 7, see Theorem 1 in [92]. Intuitively, it is clear why this result holds
with such a random time 7. Consider a chain starting at —oco with «. This chain
must at time —T pick some value s, and from then on it follows the trajectory
from that value. By definition of T, this trajectory reaches at time 0 the same
state s’ that is reached by X® no matter what choice of s. Therefore, s’ is a
sample from 7. Propp and Wilson coin the name ‘coupling-from-the-past’ for
this algorithm since in essence —7 is a coupling time with the stationary version
started at —oco. Based on the same principles, Borovkov and Foss developed in
123, 22] the so-called ‘renovating events’ approach to stability analysis of sto-
chastically recursive sequences. In particular, the approach to stability analysis
via patterns (see Section 2.5) was originally inspired by backward coupling via
‘renovating events.’

Elaborating on backward coupling, we combine our results for second-order
limits with results for first-order limits in order to represent the Lyapunov expo-
nent (a first-order limit) by the difference of two finite horizon experiments. We
follow the line of argument in [7]. The key assumption for our analysis is that
{A(k)} possesses a pattern A such that A is primitive. The fact that {A(k)}
admits a pattern resembles a sort of memory loss property of max-plus linear
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systems. To see this, let z(k + 1) = A(k) ® z(k) be a stochastic sequence de-
fined via {A(k)} and assume that {A(k)} has a pattern with associated matrix
A and that {A(k)} is a.s. regular. For vectors z,y € R/, let & — y denote the
component-wise difference, that is, (z — y); = z; — y;. In what follows we con-
sider the limit of z(k + 1) — z(k) as k tends to oo, where the limit has to be
understood component-wise. In order to prove the existence of this limit we will
work with a backward coupling argument. For this reason it is more convenient
to let the index k run backwards. More precisely, we set

0
A%, FA0eA-De---0A-m) ¥ & Ak)

k=—m

and

0
def
22, F A, Q@ = ® Alk) ® zo,
k=—m
with 2 = zo € R, that is, 27, is the state of the sequence {z(k)}, started at
time —m in g, at time 0. The sequence {z%,, : m > 0} evolves backwards in
time according to

2 ity = ALy ® A(—(m + 1)) @ a0 .

Note that z(k + 1) and z°, are equal in distribution. With this notation the
second-order limit reads

0 0
klirr;oA(l)®xEk—x2k=klirx;° (A(l)@ QR Am)yeze - Q) A(M)®$0> :

m=—k m=-—k

Note that the above differences are well-defined due to the a.s. regularity of
{A(k)} and our assumption that zo € R’.

Let condition (C8) be satisfied. Suppose that, after going n steps backwards
in time, we observe for the first time the ¢(A)-fold concatenation of the sequence
constituting A, the pattern of {A(k)}. More precisely, let (an,an—1,...,01)
denote the sequence constituting A, that is, A = ay ® -+ - ® a1, and let & denote
the c(fi)-fold concatenation of the string (ay,an-1,...,a1), which implies that
@ has M = ¢(A) - N components. Then,

o M
Ac(A) — ®ak
k=1
and 7 is defined by

n = inf{k > 0| A(~k) = a1, A(~k + 1) = a9, ..., A(~k + (M — 1)) = ap} .
(2.46)
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In accordance with Theorem 2.1.1, we obtain that the random variable

0
® Ak)®=z9, n20,
k=—(n+n)

is an eigenvector of A, in formula:

1]
Q) Ak)®m € V(A), n>0.
k=—{n+n)

Remark 2.6.1 The random wvariable n denotes the index of the matriz that
completes the first occurrence of a. Since we start counting the elements of the
series of matrices from zero, the total number of transitions until this happens
isn+1.

Recall that multiplication of a vector v € Ré‘ax with a scalar v € Rpax i
defined by component-wise multiplication: (y ® u); = v ® u;. It can be easily
checked that

VYERmax, VERI, : BRu—-C®v=BR®v)—C®(yQv), (247)

for all B,C € R.XJ. We now use the fact that the eigenvector of a primitive

max*

matrix is unique (up to scalar multiplication): if u,v € V(A), then a v € Ryax
exists such that v = v ® u, see Corollary 2.1.1. Hence, (2.47) implies

Vo,ue V(4A): Bv—-CQv=BQu-C®u, (2.48)
for matrices A, B,C € RZ*J. Combining the above arguments, we obtain

max *

lim A1) ® 2%, —z°,
k—o0

0 0
=kllrgo (A(l)@ ® A(m) @ zo — ® A(m)®x0>

m=~k m=—k
0 - —-n-1
=41 @ AmeAWe &) Am)ex
m=—n+M m=—00
eV (4)
0 . -n-1
- ® A(m) ® A4 @ ® A(m) ® =g
m=—n+M m=—00 ,

eV (A)
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0
(2.48) A()® ® A(m) @ AP @ x4

m=-n+M eV(A)
0 ~ ~
- R Am)e AWM e,
ot M —
m ev(A)

0 0
® ® Am)®@zo — ® A(m) ® zg

m=-n m=~n

=A(1)®A(ln®mo - A‘l,7®x0 <o0o.

Hence, the second-order limit can be represented by a random horizon experi-
ment.

Next, we will show that the above limit representation also holds if we con-
sider expected values. We have assumed that zo € RY. This together with
a.s. regularity of A(k) yields that z(k) € R a.s. for all k. Let (-); denote the
projection on the j** component. Applying Lemma, 1.6.1 yields

(A(1)® ® A(k)®wo> (@ Ak ®xo)

k=—m i k=—m

0
AN e @ Ak)®zo

k=—m

k=-—m

52
1

<2 3 A®)llg + 2llollg -

From the preceding analysis follows that, for any m,

( 1)® ® Ak)@mo) (® A(k)®$0>

k=—m j k=—m
1

Z AR)lle + 2llzolle -

Let A(1) be integrable, then E[||A(1)||g] < 00, and assume that E[n] < co. By
construction, for m > 0, the event {7 = m} is independent of {A(—k) : k > m}.
Provided that {A(k)} is i.i.d., Wald’s equality (see Section E.8 in the Appendix)
yields

1
E [Z lAm)lle | = Eln+ 1E[lAD)]le] < oo

k=—n

Hence, provided that E[p] < oo, we may apply the dominated convergence
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theorem to the second-order limit and obtain
lim Efz(k +1) ~ z(k)]
k—oo
= lim E[AQ)®2%, —2%;]
k—o0

E [kllr{.xo (Al)® 2%, - w‘lk)]
1

0
=E ® Ak)®xg — ® Ak)® zo| < 0. (2.49)
k=-—n k=-n

In particular, the above analysis shows that if E[n] < oo, then (C1) — (C3)
already imply (D), and Lemma 2.6.2 can be phrased as follows:

Theorem 2.6.2 Let {A(k)} be a sequence of integrable matrices. If (C1)—(C3)
are satisfied, then the Lyapunov exponent of {A(k)}, denoted by A, exists and it
holds for any initial vector zo € RY:

1 k—1
= lim —-E |: Al ® xO:I
k i=0
1 k—1
=lim - (X)A()®zo a.s
k— k =0

Proof: We show that E[] is finite. By assumption (C3), a primitive ma-
trix, say, C exists that is a pattern, and we assume, for the sake of simplicity,
that C € A, which implies N = 1. Let ¢ denote the coupling time of C'. Because
the state space is discrete and the sequence is i.i.d., the probability of observing
C, denoted by p, is larger than 0. If p = 1, then E[n] = c. In case 0 < p < 1, we
argue as follows. By construction, the probability of the event {n = m} is less
than or equal to the probability of the event that A(k) # C,0>k > —m +¢,
and A(k) = C, for k= —m+c—1,...,—m. In other words, for m > ¢, it holds
that P(n =m) > (1 — p)™~°p°. This implies

Efl< ) m(1—p)™p°
— 3 m+ ) (1-p)mf
m=0

o0 oo
=cp® Y (1-p)™ +p° Y mA-p™
m=0 m=0



116 Ergodic Theory

cC C]_
p +p(2p)
P p
<00,

which concludes the proof. [J
‘We conclude this section with revisiting the cycle formula in Lemma 2.5.2.

Corollary 2.6.1 Let (C1)—(C3) be satisfied. If C is a pattern of {A(k)}, then,
Jor any finite initial vector zg € V(C),

_ E[z(n) ~ =]
Efn] ’

where A denotes the Lyapunov exponent of {A(k)}.

AQe

e~



Part 11

Perturbation Analysis



Chapter 3

A Max-Plus Differential
Calculus

In this chapter we consider parameter-dependent max-plus linear systems where
the parameter, denoted by 8, is a parameter of one of the firing time distribu-
tions of the event graph. For example, in a queuing application, § may be the
mean service time at one of the queues. We are interested in sensitivity anal-
ysis and optimization of performance measures of max-plus linear systems and
we therefore want to find algebraic expressions for gradients of max-plus linear
systems. Only in special cases the gradients can be calculated explicitly and in
the general situation unbiased gradient estimators are obtained.

Perturbation analysis is an approach to gradient estimation that dates back
to the pioneering paper by Ho et al. [67]. Since then there has been great in-
terest in gradient estimation and various approaches have been developed. The
following monographs [94, 52, 68, 95, 90, 44] may serve as main references.

We work within the framework of measure-valued differentiation. One ex-
ample of such measure-valued derivatives are weak derivatives as introduced by
Pflug, see [90] and for an early reference we refer to [89]. Specifically, we intro-
duce D-derivatives of random matrices (and vectors), where D-differentiability
refers to a concept of differentiability that is defined via a class D of perform-
ance functions. In order to develop our calculus of differentiation, we embed the
random matrices into a richer set of objects. This enlarged object space allows
us to define sample-path D-derivatives of random matrices. For these sample-
path D-derivatives we provide a calculus of D-differentiation that allows us to
calculate derivatives of sums and products (or expressions containing mixtures
of sums and products) of random matrices. The calculus resembles the stan-
dard calculus of differentiation. For various types of max-plus linear systems,
we explicitly calculate the sample-path derivatives. It is worth noting that the
obtained sample-path derivatives are unbiased gradient estimators by construc-
tion.

This chapter is organized as follows. Section 3.1 gives a short introduction
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to the theory of measure-valued differentiation. In Section 3.2, we introduce a
standard example of the function space D. Section 3.3 introduces D-derivatives
of random matrices and develops our calculus of D-differentiation. An algebraic
framework for calculating D-derivatives of max-plus matrices is derived in Sec-
tion 3.4, and our differential calculus is established in Section 3.5. Finally, we
present unbiased gradient estimators for various types of max-plus linear sys-
tems in Section 3.6.

The algebraic framework for D-derivatives of max-plus matrices as estab-
lished in Section 3.4 is based on [62]. The theory developed in this chapter
however extends the results in [62] to unbounded performance measures.

3.1 Measure-Valued Differentiation

This section provides a short introduction to the theory of measure-valued dif-
ferentiation. Let (S, dg) be a separable metric space and let M = M(S,S) be
the set of finite signed measures on the measurable space (S5, S), where S denotes
the Borel field of S. The set of all probability measures on (S, S) is denoted by
My = My (S, 8). Let D(S) be a set of mappings from S to R and assume that
the constant function g = 1 is in D(S).

def

Cousider a family {ug : 8 € ©} of measures on (5,8), with 8 = (a,b) C R.
Denote the set of continuous absolutely integrable mappings with respect to ue
by £!(up) and denote by

£ (no:0.€©) = () L' (o)
oce

the set of mappings that are absolutely integrable with respect to ug for any
6 € ©. Moreover, let C®(S) denote the set of bounded continuous real-valued
functions g : S+ R. To simplify the notation we will write C® for C*(S) when
it is clear which underlying space is meant. Note that for any pp in M and for
any 0 in ©, we have C® C L (us).

Definition 3.1.1 We call the mapping u : @ — My D-differentiable at point
6 with D C L (ug : 0 € O) if there exists a finite signed measure py € M such
that for any g in D:

3 5 ([ amorata) - [ goiuo@s)) = [ ateiuitas.
- S S S

If pp is D-differentiable, then uj is a finite signed measure. Any finite signed
measure can be written as difference between two finite positive measures. This
representation is called Hahn-Jordan decomposition, see Section E.1 in the Ap-
pendix. More specifically, a set ST € S exists such that, for A € S,

(o]t (A) € uhAn sty >0,

[h)™(A) & —ph(ANn(S\§1) >0
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and
po(A) = [up]* (4) — [pe]~(4).
Set
co = [l (S) (3.1)
and
o = [ugl™(S)-

Since [up]* and [up]~ are finite measures, ¢y and &g are finite. We may thus
introduce probability measures ug, 4y on (S, F) through

i (4) = —lu)(4) (3.2)
and .
pg (A) = a[uél‘(A), (3.3)

for A € S. This yields the following representation of uj
VAES: wh(A) = conf(A) — Gouy(A).

The fact that uj stems from differentiating a probability measure implies that
co = &. Indeed, for pg € My, it holds ug(S) = 1 for all  and, since we have
assumed that the constant function g = 1 is in D, this implies

0= Liu(®) - a%/lpg(ds) - /w;,(ds) = up(S) .

Hence, pj(S) = 0 for all € ©, which yields

co pug (S) = o g (S)-

Since u}' and p, are probability measures, we obtain ¢y = &. Thus, pj is
completely characterized through the triple (co, g, py ), with pg, Ug € My We
call pf in (3.2) the (normalized) positive part and p; in (3.3) the (normalized)
negative part of pp, respectively. Note that, by the above construction, a set
A € S exists such that either uf (4) = 0 or pg (S\ 4) = 0, in symbols: g Ly .
We now state the formal definition of a D-derivative of a probability measure.

Definition 3.1.2 Let D C L (ug : 0 € ©). We call a triple (cuy, 1y , 1y ), with

u;t € M; and ¢y, € R, a D-derivative of probability measure pg at 0 if, for all
g in D, it holds true that

jim 5 ([ oooraas) - [ alohma(as
= oo ([ stoitas) - [ atowatan)
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Remark 3.1.1 Definition 3.1.1 is easily extended to finite measures in M.
However, in order to conclude that [uh)*(S) = [up]~(S) we need the additional
condition that a number d € R exists such that

YEe® : pp(S)=d

If up € M satisfies the above condition, then a D-derivative of ug can be defined
as in Definition 3.1.2.

An instance of a D-derivative can always be found through the Hahn-Jordan
decomposition, see (3.1), (3.2) and (3.3), and this construction is called the stan-
dard construction. However, this is only one of many representations possible.
To see that a D-derivative is not unique, let (cg, 7, p15 ) be a D-derivative of
g, and let -y be a probability measure on ($,8) with D C £*(v) and let b be a
positive constant. Then

Co

b0 )——(c+b) @ g 0 )
bMe ca+b7 o ca-i-buo c.9+b7

is also a D-derivative of ug. The ’D-derivative of a probability measure us be-
comes unique if we assume that (a) :“o are again probability measures, and (b)
7% l,ue Moreover, cg is minimized if pg _L,uo

Suppose that pg is D-differentiable and that pg has v-density fy which is
differentiable in 8. If, for any g € D, interchanging the order of integration and
differentiation is justified, we obtain

d d
3 [t vtas) = [ o) o vias).

) 1/‘ fo(s)

Weo = (C(H'b)(

Let
v(ds)

be finite, then

and ) J
fa (s) def -c; max (0, —@fo(s)) ,

for s € S, are v-densities, and for any g € D it holds that
d
< / 9(s) fa(s) v(ds) = co / 9(8) 5 (s) v(ds) — g / 9(s)f5 (s) v(ds)
S S S

(that f; and f, are indeed densities follows from the fact that they are lim-
its of measurable mappings). Consequently, we may obtain p} as the re-scaled
difference between the probability measures

/n dﬂ/ﬂM=AH@M¢ (3.4)
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for A € S, that is, f; is the v-density of u} and f;” is the v-density of g - Note
that this decomposition is nothing else than the Hahn-Jordan decomposition:
differentiability of fs implies that

St = {SES : %f@(S)ZO}

is measurable and the measures defined in (3.4) satisfy, for any A € S,
cond (4) = (AN S*) and copip (A) = —h(AN (S §7)).

A typical choice for D is D = C?(S), the set of bounded continuous real-
valued functions. Indeed, Pflug developed his theory of weak differentiation for
this class of performance measures, and CP-derivatives are called weak deriva-
tives in [90].

Next, we give an example of a D-derivative and illustrate the non-uniqueness
of the D-derivative.

Example 3.1.1 Let S = [0,00) and let
fo(z) def pe—0= , 20
be the Lebesgue density of an exponential distribution with rate 0, denoted by

pe. Take D = C®([0,00)) and © = [a,b], with 0 < a < b < oo, then ug is
CP-differentiable. To see this, note that

d
Efo(x)

sup
o€(a,b]

< (1+bz)e®,

which has finite Lebesgue integral. Applying the dominated convergence theorem,
we obtain for any g € C®

d%/owg(w) fo(z) dz = /Ooog(:c) C%fg(w) de .

1 f*°|d
'2*/0 25/0@)

max (d—défo(m),O) = 1j9,1/0)(z) (1 — fz) ™%

Note that

1
dr = —
L= ge

and d
max (—-ngg(ac), O) = 1{1/6,00)(®) (6 — 1) et
Introducing densities

ﬁmgémwmm—Mf“ (3.5)

and ]
ﬁwgamemwnﬂ% (3.6)
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with
it L
0 0e’

we obtain for any g € C*

5 [ s@isfa) iz

1 1/8 1 o
~ Pe / 9(x) (0 — %) ' % dz — fe / g(x) (0% — 0) % da
¢Jo 1/6

and a C® derivative of jig is given by (co, fy (s)ds, fy (s)ds).
Sometimes the standard construction is not the most efficient one. Let

ha,6(x) Ut p2pe—0= , 20,

denote the Lebesgue density of the Gamma-(2, 8 )-distribution. It is easily checked
that d

1
0@ = 5(fo@) = haol@))
which implies that (1/8, fo(s)ds, hae(s)ds) is a C*-derivative of g, that is,
for any g € C® is holds that

%Ag(x)fo(x) dz = %/}Rg(w) folz)dz — —/g(w) ha oz

Let Xy and Yy be independent samples of the exponential distribution with mean
1/60. Then the above equation can be phrased as follows

Blg(X0)] = 7Elg(Xo)] - FEl9(Xo+Yo)], geC.

In words, the derivative of E[g(Xy)] can be estimated by drawing one extra sam-
ple from the exponential distribution.

In the above example, ug as well as u; and py have Lebesgue densities, that
is, the measure as well as its D-derivative are dominated by the same measure.
The following example demonstrates that this is not always the case.

Example 3.1.2 Let U g) be the uniform distribution on the interval [0, 6] for
0< 8 <a, witha < co. For any g in C? it holds that

8
= [ @t dn) = j(,(; / g(w)dw)

H
=%9(9) - 512-/0 9(x) da

:% (/g(x) bo(dz) — /g(m)u[o,()](dx)) )

where &, denotes the Dirac measure in z. Hence, (1/0,09,Ujpq)) is a c®t-
derivative of Ujp,g)-
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We conclude this series of examples with an example of a distribution that
fails to be D-differentiable.

Example 3.1.3 Let §y denote the Dirac measure with mass in 8 € O. For any
g:© — R that is differentiable with respect to 0 at a 0y € ©, we obtain

4
do

[o@sntan) = 5

9(9).
0=0¢0

6=0¢

Hence, &g fails to be D-differentiable for any reasonable set D. However, we may
construct a set D that artificially generates D-differentiability. To see this, fiz
¢,z,y € R and let D denote the set of all differentiable mappings g : © — R,
such that p

-C_l_e' 9(0) = C,

6=0o

g(z) =1 and g(y) = 0. Then by is D-differentiable with D-derivative (c, 0z, 0y).
Indeed, for g € D it holds that

4
do

[ s@stin= | o)

= ([ stwsutan) - [ o) .

For D = C°®, Definition 3.1.1 recovers the definition of weak differentia-
bility in [90]. Weak differentiability of a probability measure yields statements
about derivatives of performance functions out of the restrictive class of bounded
continuous performance functions. The results in [62] elaborate on the theory
developed in [90] and thus suffer from the restriction to bounded performance
functions too. The theory developed in this chapter extends the results in [90]
(and thus in [62]) in such a way that unbounded performance functions can be
studied as well. The following theorem is our main tool: it establishes a product
rule for D-differentiability. For weak derivatives, such a product rule is claimed
in Remark 3.28 of [90] but no proof is provided. For the general setup of D-
differentiation, we will provide an explicit proof for the product rule. Before we
can state the exact statement, we have to introduce the following definition. A
set D of real-valued mappings defined on a common domain is called solid if

6=6o

(i) for f,h € D there exists a mapping g € D such that max(f, h) < g,
(ii) if f € D, then for any g with |g| < f is holds that g € D.

The precise statement of the product rule is given in the following theorem.

Theorem 3.1.1 Let (S,S) and (Z, Z) be measurable spaces. Let pg € M1(S,S)
be D(S)-differentiable at 6 and vy € M1(Z, Z) be D(Z)-differentiable at 0 with
D(S) and D(Z) solid.
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Then, the product measure pg X vg € M1(S x Z) 18 D(S, Z)-differentiable at
0, with

D(5,2) = {g€ L) N L o)+ lg(s, )] < 3 difi()u()
=0

1< f, € D(S),1 ghie’D(Z),dieR},

and it holds that
(o x vo)" = (g x Vo) + (1o X vp) .
Furthermore, if pg has D(S)-derivative (cy,, g , 1y ) and ve has D(Z)-derivative

(c,,a,u‘;",uo_), respectively, then the product measure po X vg is D(S, Z)-
differentiable and has D(S, Z)-derivative

(Clto + Cug »

+

,u0><1/9+ Ho X vy ,

g ><1/9+—,ug><1/9).

Cug + Cup Cug + Cuy Cuep + Cug Cup T+ Cuy

Proof: We show the first part of the theorem. Let g € D(5, Z) be such that

n
9(s,2)| < ) difi(s)hi(2).
i=0
We have assumed that D(.S) is solid and condition (i) in the definition of solid-
ness implies the existence of a mapping f € D(S) such that f > f; > 1 for
1 £4 < n. In the same way, solidness of D(Z) implies and there exists h € D(Z)
such that h > h; > 1 for 1 < ¢ < n. This yields

lg(s, 2) < f(s Zd [fills 1R,

where

il def fi(s) def hi(z)
PF) Phiz)”

for 1 <i<n (for a proof note that |fi(s)| < |}filly f(s), for any s € S). Hence,

it suffices for the proof to consider g € D(S, Z) such that |g(s,2)| < f(s)h(z)

for f € D(S) and h € D(Z). By calculation,

and  ||hilln (3.7

1
~ \Mo+A 94+A — Ho X Vg
X (Ho+a X v, X vp)

1 1
= Z(NQ+A — ,u,g) X Vg + g X Z(V9+A - 119) (3.8)

1
+ Z(#0+A — o) X (Voya — vp) .

Let
Dp(S) ¥ {g € D(S) |3 > 0: |g(s)| < cf(s),Vs € S},
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or, equivalently,
Dy(S) ={9€D(S) : llgliy < oo}

and let

Du(2) ¥ (g€ D(Z) |3 > 0 |g(s)| < ch(s),¥s € S},

or, equivalently,
Dn(Z) = {9 € D(Z) : |iglln < oo0}.

The remainder of the proof uses properties of the relationship between weak
convergence defined by the sets Dy and Dy, respectively, and norm convergence
with respect to || - ||y and || - ||n, respectively. These statements are of rather
technical nature and proofs can be found in Section E.5 in the Appendix.

By condition (ii) in the definition of solidness, ug is in particular Dy-
differentiable, which implies that

Jim, [ 9(6) Fluosa = uo)(ds) = [ o) sis(as)

for any g € Dy and, by Theorem E.5.1 in the Appendix, ||to+a — polls tends
to zero as A tends to zero. For the extension of the definition in (3.7) to signed
measures, we refer to Section E.5 in the Appendix. In the same vein, vy is
Dy -differentiable which implies that

tim [ o) 3 0oea —vo)@) = [ () viaz)

for any g € Dy, and ||vg4a — vol|n tends to zero as A tends to zero. Applying
Lemma E.5.1 in the Appendix to the individual terms on the right-hand side of
(3.8) yields

hm —/ (5,2) ((Ho+a — He) X vg)(ds,d2) = /g(s,z)(u'o X vg)(ds,dz)

hm —/ 5,2) (ne X (Voya — ve))(ds,dz) = /g(s,z)(uo X vp)(ds,dz)

and
Jim —/ (s,2) ((Bo+a — po) X (vo+a — ve))(ds,dz) =0

which proves the first part of the theorem.

For the proof of the second part of the theorem one represents pj and v
by the correspondmg D-derivatives. Let (c,,, 4, g ) be a D(S)-derivative of
we and let (cw,,vo 1V ) be a D(Z)-derivative of vy. By the first part of the
theorem:

(o x Vo) = pg X vp + g X v
- +_ - + ~
= (Cuoltg — Cuohtg) X Vo + 1o X (CugVf ~ ¥ )
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re—grouping the positive and negative parts yields
= cﬂeu;’ X Vg + Cyylhg X 1/;' — Cugltg X Vg — Cyglig X Vg

and normalizing the parts in order to obtain probability measures gives

c c
= (Cup + Cup) ((¢u; Xvg + —20 % 1/3')

Cug t Cup Cug + Cuy
Cuyg - Cug -
(i et o ss))
<cua + Cup Ho Cup + cuolu o
which completes the proof. ]

Remark 3.1.2 By assumption, any g € D is continuous. However, it is possible
to slightly deviate from the continuity assumption. If g is bounded by some h € D
and if the set of discontinuities, denoted by Dy, satisfies uf (Dg) = 0 = p; (D),
then the analysis applies to g as well.

The statement of Theorem 3.1.1 can be rephrased as follows. Let X, € S
have distribution ps and let X,, € Z have distribution vy with X, independent
of X,,. If g is D(S)-differentiable and vy is D(Z)-differentiable, then random
variables XF, X7 and X}, X, exist, such that for all g in D(S, Z):

He? ve?

d
@E[Q(XNWXW))]
= ]E[cwg(XIe,XW,) + c,,,,g(XM,X,j:) — (cﬂog(XM‘e,X,,a) + c,,og(XM,X;‘;))] .

In order to make the concept of D -differentiability fruitful for applications,
we have to choose D in such a way that

e it is rich enough to contain interesting performance functions,
e the product of D-differentiable measures is again D-differentiable.

In what follows, we study two examples of D: The space C? of bounded contin-
uous performance mappings and the space Cp, to be introduced presently.

3.2 The Space C,

Let the measurable space (S,S) be equipped with an upper bound || - ||g, see
Definition 1.6.1. For p € N, we denote by C,(S,]| - ||s) the set of all continuous
functions g : S — R such that

l9(2)] < ag +bglla|”, ze€S,

for finite constants ag,by. Note that C®(S,|| - ||s) is a solid space and that
C*(S, 11 1ls) € Cp(S, ([ - [|s) for all p > 0.

The space Cp(S, || - ||s) allows us to describe many interesting performance
characteristics as the following example illustrates.
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Convention: When it is clear what S is, we will simply write C), instead of

Co(S: 1] - 11s)-

Example 3.2.1 For J > 1, take S = [0,00)7, || - |ls = || ‘ |l and let X =
(X1,...,Xs) € S be defined on a probability space (Q, A, P) such that PX = p.

o Taking g(z) = exp(—rz;) € Co(S), with r > 0, we obtain the Laplace
transform of X through

E [e—er] = /g(m) p(dz) .
e For g(z) = z¥ € Cp, we obtain the higher-order moments of X through
J 2
E[Xﬂ = /g(w)u(dm), forp>1.

e Let E[X;] = a; and E[X;] = a; for specified i and j, with i # j, and
assume that a;, a; are finite. Setting

g(:vl,...,.’tj) - xiw]- - aiaj,

we obtain from E[g(X)] the covariance between the i** and j** component
of X.

Remark 3.2.1 In the literature, see for example [15], Taylor series expan-
sions for maz-plus linear systems are developed for performance functions
f 1 [0,00) — [0,00) such that f(z) < cfx” for all x > 0, where v € N. This
class of performance functions is a true subset of C,([0,00)). For example, take
f(x) = V/z, then no ¢/ € R and v € N exist such that f(x) < ¢f x¥, whereas
F(x) €1+ 22 and thus f € Cy([0,00)).

In what follows we study Cp-differentiability of product measures, that is,
we take D = Cp.

Example 3.2.2 We revisit the situation in Example 3.1.1. Let fg:(ac) be given
as in (3.5) and (3.6), respectively. Since all higher moments of the exponential
distributions are finite, it follows that pg is Cp([0, 00), |- |)-differentiable for any
peN.

Cp-spaces have the nice property that, under appropriate conditions, the
product of C)-differentiable measures is again Cjp-differentiable and it is this
property of Cp-spaces that makes them a first choice for D when working with
D-derivatives. The main technical property needed for such a product rule of
C)p-differentiation to hold is established in the following lemma. The statement
of the lemma is expressed in terms of the influence of binary mappings on C,-
differentiability.
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Lemma 3.2.1 Let X,Y, S be non-empty sets equipped with upper bounds ||-||x,
[| - lly and||:]|ls, respectively.

o Leth: X XY — S denote a binary operation. For g € Cp(S), let gn(x,y) =
g{h{z,y)), forz € X, y € Y. If finite constants cx,cy ewist such that for
anyr € X,yeY

[Ih(z,»)lls <exllzllx + evllylly,

then
gn €C(X,Y),

with
CX,Y) = {9 : X xY = Ri3n: [g(z,y)| < Zdifi(x)hi(y) )
fi € Cp(X, 1+ 11x) b € G, - Ilv), di € R . (3.9)

o If finite constants cx,cy and an upper bound || - {|xxy on X X Y emist,
such that for anyx € X,y €Y

(= llxxy < exllellx + evllylly
then Cp(X,Y) C C(X,Y), with C(X,Y) as defined above.
Proof: Let g € Cp(S, ]| |ls)- For r = h{z,y), with z € X and y € Y, we obtain

l9(r)| Sag + byllrli%
=ag + byllh(z, )|
<ag + bylex|lzllx + evllylly)”

P
~ag+ 3,3 (7) & el bl
1=0

P
=dpi1 + Y dillzlli Wl
i=0

with d; € R, for 0 < i < p+1. By definition, ||-||% " € Cp(X) and ||| € Cp(Y)
for 0 € 7 < p. Hence, g, € C(X,Y) which concludes the proof of the first part
of the lemma.

The proof of the second part of the lemma follows from the first part with
S =X xY and h(z,y) = (z,y). O

An immediate consequence of Lemma 3.2.1 above is a version of Theo-
rem 3.1.1 for Cp-spaces yielding a product rule for Cp-differentiability of mea-
sures.

Theorem 3.2.1 Let (S,8) and (Z, Z) be measurable spaces equipped with upper
bounds || ||s and ||-||z, respectively, and let the product space S X Z be equipped
with upper bound || - ||sxz. If
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o for any (s,z) € S x Z it holds that
His, 2)llsxz < llslls + [l2llz,
o pg € Ma(S,8) is Cp(S, || - ||s)-differentiable and vy € M1(Z,2) is
Co(Z, |} - || z)-differentiable,

then po X v is Cp(S x Z,|| - |lsx z)-differentiable and it holds
(/19 X I/(;)’ = ,ugl X Vg + g X 1/0’.

Proof: Let h be the identity on S x Z. Applying Lemma 3.2.1, it follows that
Cp(S x Z) C C(S5,2), with C(S,Z) as defined in (3.9). We will now apply
Theorem 3.1.1. Specifically, we take D(S) = Cp(S) and D(Z) = Cp(Z), which
yields D(S, Z) = C(S, Z), and the proof follows from Theorem 3.1.1 together
with the fact that C,(S) and Cp(Z) are solid spaces and that C,(S x Z) C
C(S,2).0

Combining Theorem 3.1.1 with Lemma 3.2.1 yields a powerful result on
Cp-differentiability of binary mappings.

Theorem 3.2.2 Let (X, X),(Y,V),(S,8) be measurable spaces equipped with
upper bounds ||-||x, |- |ly and||-||s, respectively, and let h: X xY — S denote
a measurable binary operation. If

e finite constants cx,cy exist such that foranyx € X,y €Y
lh(z,v)lls < exllzllx + evllylly ,

o pg € Ma(X,X) is Cp(X,|| - ||x)-differentiable and vy € M1 (Y,D) is
Co (Y, |1 - |ly)-differentiable,

then it holds for any g € Cp(S, || - ||s) that
d

40 Jxxy

= [ alhte,) (ua’ x vo)(dm,dy) + / a(h(z,9)) (o X vo')(dardy) ,
XXY

XxY

g(h(x:y)) He X V0(d'77’dy)

or, more concisely,
! h
((uo x pa)")" = ((no x pe))" .
Proof: Let g € Cp(S). For z € X and y € Y, set gn(z,y) = g(h(z,y)). By
Lemma 3.2.1, g» € C(X,Y), with C(X,Y) as defined in (3.9). Moreover, from
Theorem 3.1.1 applied to the Cp-spaces Cp(X, || -||x) and Cp(Y, |- ||y), respec-

tively, we obtain that the product measure pg X vy is C(X,Y)-differentiable.
Since g, € C(X,Y), we obtain

d
~—/ an(z,y) (pe X ve)(dz, dy)
d9 XxXY

= [ o)y x w)azd) + [ gn(a,9) (oo x vz, )
XxY XxXY
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Rewriting gx(z,y) as g(h(z,y)), we obtain
T . an@) (o x vo)(d, )
= [ b)) (i x ) + [ g(ho,) (o x v3)(dar ),
XXY XxY

which concludes the proof of the theorem. (]

When we study max-plus linear systems, we will consider h = ®,® and ||-||g
as upper bound. This choice satisfies the condition in Theorem 3.2.2 and the
theorem thus applies to RZXJ. In the following, we will use this richness of the
max-plus algebra to establish a calculus for Cp-differentiability.

3.3 D-Derivatives of Random Matrices

For © = (a,b) C R, let (Ag € RIXJ : 6 € ©) be a family of random matrices
defined on a common probability space.

Definition 3.3.1 We call Ag € RIXJ D-differentiable if the distribution of Ag
is D-differentiable. Moreover, let (cy,, 1y, 1y ) be a D-derivative of the distri-
bution of Ag. Then, the triple (ca,, Af, A7), with ca, = oy Af distributed
according to u'; and Ay distributed according to g , is called a D-derivative of
the random matriz Ag, and it holds for any g € D

F19040)1=E [ea, (9047) ~ 0047 )]

The goal of our analysis is to establish a Leibnitz rule for D-differentiation
of the type: if A and B are D-differentiable, then A ® B and A ® B are D-
differentiable, for random matrices A, B of appropriate size. Working with a
general set D has the drawback that the set of performance functions with
respect to which the @-sum of two random matrices is differentiable is only im-
plicitly given, cf. Theorem 3.1.1 where a precise statement in terms of measures
in given. Fortunately, it will turn out that this problem does not arise when we
work with Cp-spaces defined via the upper bound || - ||g. Specifically, we will be
able to show that it holds that if A, B € RZX] are Cp(R7%!I ||||@)-differentiable,
then A @ B is Cp(RJ%1, || - ||@)-differentiable and a similar result will hold for
®-product of matrices of appropriate size. For this reason, we will present our
results for Cp-spaces rather than in the most general setting possible.

Let matrix Ag € RJX! be a measurable mapping of random variables
Xo,1,...,Xg,m, with Xg; € Ryax for 1 <7 < m, that is, assume that

A0 = A(Xe,lv e ,XG,m) .

We call Xg1,...,Xg,m the input of Ag. The following theorem establishes suf-
ficient conditions for the existence of a Cp-derivative of a matrix with input
(Xo,15- -+, Xo,m)-



3.3 D-Derivatives of Random Matrices 133

Theorem 3.3.1 Let Ag have input Xg1,Xa, ..., Xm, with (Xa,..., Xpn) inde-
pendent of 0, and let Xg 1 have cumulative distribution function Fy such that
Fy has Cp(Rmax, || - [|l@)-derivative

(cFevFé'-vFa_)'

If Xy 1 is stochastically independent of (X, ..., Xp) and if a constant ¢ € (0, c0)
exists such that

[lA(Xe,1, X2, ..., Xm)llo < cl|(Xo,1, X2, ., Xm)llo
then Ag has Cp(RIXI, || - ||l@)-derivative (ca, , Af , Ay ) with cg, = ca, and
o A = A.(X;:l,XQ, ooy Xm), where X;:l is distributed according to Fj ;

o Ay = A(X5,, X2, ..., Xm), where X, is distributed according to Fy .

Proof: The mapping A maps Rpyax X (Rmax)™ ' onto RIXJ. Writing

max *

A(Xp1,Xq...,Xm) as h(Xo,1, (X2, ..., Xm)), it holds by assumption that

HA(Xo,1, (X2 s Xmdllle < ell(Xo, Xa o, Xim)lle

and Corollary 1.6.1 yields
[1A(Xo,1, (X2,..., Xm))lle < cllXpalle + cll(Xz, ..., Xm)lle -

Hence, Theorem 3.2.2 applies. Using the fact that the distribution of
(X2,...,X,) is independent of ¢ completes the proof. [

In a queuing application, the entries of matrix Ag(k) are typically sums of
service times and the condition in the above theorem is satisfied. The following
example illustrates this for a specific situation.

Example 3.3.1 Consider the homogeneous model of the queuing network in
Ezample 1.5.2. Let the interarrival times oq(8,k) be exponentially distributed
with mean 1/0, that is, P(0¢(6,k) < z) = Fyp(z) = 1 — e~ 9. For this model is
holds that

Ag(k) = A(oo(6,k +1),01(k+1),...,05(k+1)),

see Equation (1.26). Assume that the interarrival time oo(0,k) is stochas-
tically independent of the service times (o1(k),...,o4(k)) and that the ser-
vice times are independent of 8. In accordance with Ezample 3.1.1, we see
that Fy is Cp([0,00),]| - ||g)-differentiable with Cp([0,00),|| - |le)-derivative
(671, Fy,T(2,8)), where I'(2,0) denotes the Gamma-(2, 8 )-distribution. Observe
that

”A(O'O(ovk)vgl(k)a""UJ(k))HGB < (J+ 1)”(0'0(6v k)’al(k)v"-raJ(k))IGB'
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Hence, Theorem 3.3.1 applies and we obtain the following Cp(REXI || - |le)-
derivative of Ag(k)
Ag (k) = Ag(k),

ca, = 1/0 and
Ay (k) = Alog (6,k+1),01(6,k+1),...,05(k+1)),
where o (k + 1) has distribution I'(2,0).

If it causes no confusion, we will suppress # in order to simplify the notation
and write A in lieu of Asg.

The following lemma states a first result on the D-differentiability of prod-
ucts and sums, respectively, of random matrices.

Lemma 3.3.1 If A, B ¢ RIXJ are stochastically independent and
Cp(Rize || - ll@)-differentiable, then for all g € Co(REZL | - [lo)

Ealg(A® B)]
=E9[CA9(A+@B)+CB9(A@B+)— (cAg(A_ G)B)-i—cBg(AeaB“))] .

Furthermore, if A € Rpax' <7 is Cp(RIXI|| - ||@)-differentiable and B €

Rinax” X is Cp(RIXE || - ||@)-differentiable and stochastically independent of
A, then for all g € Co(REXE ) lo)

Ealy(A® B)]

=E9[cAg(A+®B)+cBg(A®B+) -~ (cAg(A— ®B)+cBg(A®B—))].

Proof: By Lemma 1.6.1, the upper bound || - ||¢ satisfies the condition
in Theorem 3.2.2 for the operations @ and ® as well. Switching from random
matrices to their distributions, applying Theorem 3.2.2 and switching back to
Cp-derivatives proves the lemma. O

Lemma 3.3.1 provides the means of calculating the derivative of E[g(A&® B)].
Unfortunately, it does not answer the question regarding what the D-derivative
of A® B looks like nor if it exists at all. This is due to the fact that there exists
no (¢,C*,C™), such that

Eo[ e (9(C) - 9(c7)) ]
:]Eg[cAg(A+69B)+cBg(A®B+)— <cAg(A"®B)+cBg(A@B"))}.

But to establish the D-differentiability of A @ B we require such an object
(¢, Ct,C™). Suppose that we could give meaning to the equations

cAAT@®B + cgA® BT = C* (3.10)
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and
cAA"@®B +cgA®B™ =C~ (3.11)

and suppose further that g is linear; then we would obtain from Lemma 3.3.1

d%]Eo[g(AeaB)] = Es[g(C*) — g(C7)].

Hence, the D-derivative of A @ B would be cagp = 1, (A& B)+ = C* and
(A® B)” = C~. As already said, Equations (3.10) and (3.11) have no meaning
in Roax’ xJ Furthermore, g is by no means linear.

In the following section we will embed Rmaxl *J into a richer object space,
called M%7 where M1*/ will be the set of all finite sequences of triples
(c, A, B), such that c € R and A, B € RLXJ. Thus, the D-derivative (c, A*, A™)
of a matrix A € RIXJ will be an element of M%7, In particular,

¢ we define @-sums and ®-products on M7*7 in such a way that the semi-

ring RJX7 is a proper sub-structure of the (later defined) structure AM7*7

max
over MI*J,

e all real-valued mappings g on R/XJ can be extended to MT*7;

e on MT*J we can define a binary operation ‘4’ and scalar multiplication
by real numbers in such a way that all real-valued mappings g on RIXJ
are linear on M 7%,

Hence, Equations (3.10) and (3.11) have solutions in M?*7. Since the extension
of g € D to MY is linear in M'*/, we can then calculate

Z5Eal9(A® B)=Es[cag(A4* @ B) + cag(A® BY)
- (cAg(A“eaB) + cBg(AeaB-))]
=]Eg[g(cAA+€BB + cg A® BY)
~9(caA” ®B + cs A® B7)) |
=Eo[9(C*) - 9(C)],

i.e., (1,CF,C7) is the D-derivative of A®B in M¥*7 . It will turn out that simple
rules of D-differentiation exist in M?*Y. In other words, M 7%/ is a suitable space
for calculating D-derivatives of complex functions of random matrices. With a
simple trick, called randomization, we are even able to project objects in MT*7
on random elements in RZXJ. Moreover, this projection leads to an unbiased
gradient estimation algorithm for random matrices (which will be discussed in

Section 3.5).
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3.4 An Algebraic Tool for D-Derivatives of Ran-
dom Matrices

As was stated in the previous section, we will work in applications with Cp-
derivatives rather than with general D-derivatives. However, the construction
of the algebraic extension of RZXJ is independent of the set D with respect to
which we define the derivatives and we will use the term D-derivative in this
section (since this generality comes at no costs).

In the following we construct M?*7 and develop a calculus which enables us
to calculate D-derivatives of functions of random matrices. We take as M?*/
the set of all finite sequences of triples (c, A, B), with ¢ € R and A, B € RI%J.
A generic element oo € MT%7 is then given by

o = ((CI,AI)BI)’ (02)A27B2) ey (C’na)AnaanQ)) )

where n, < oo is called the length of a. If « is of length one, that is, ny = 1, we
call it elementary. Observe that the D-derivative (ca, A*, A7) of a matrix 4 is
an elementary element of M?%7,

On M™% we introduce the binary operation ‘4’ as concatenation of strings.
For example, let o € MT*7 be given by

a=(a;:1<i<ng),
with ¢; elementary, then
a:iai =ar+azt-+an, -
i=1
More generally, for o, 8 € M%7 application of the ‘+’ operator yields
at+fB=(01,...,00,,81,...,8n,)

Mo ng
=Y o+ Y B (3.12)
i=1 7=1

For a = (c*, A%, B%) and 8 = (c?, AP, B?) elementary in M 7>/ we set

a®p = (c* P, A*9 AP, B> @ BP),
where z -y denotes conventional multiplication in R, and for & = (¢®, A%, B®) €
M g = (P, AP, BP) € M7*K we define

a®pf = (ca~cﬁ,A°‘®Ag,B°‘®Bﬂ).
These definitions are extended to general o, § as follows. The @-sum is given
by

ng ng ng
a@ﬂ=za1®ﬂj + Zaz@ﬁj + e+ Zana@,@j

=1 i=1 j=1

Na N6

:Zzai®ﬁj,

i=1 j=1
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for a, 8 € MT*/, that is, a @ 8 is the concatenation of all elementary @-sums,
which implies nogg = nq - ng. For the ®-product we set

np ng ns
a®ﬂ=zal®ﬂj + Zaz®ﬂj +o ) an, ®f;
j=1 =t =1
na NS

zzzai®ﬁj’

i=1 j=1

for a € M7 and B8 € M7*K, that is, @ ® 8 is the concatenation of all
elementary ®-products, which implies nogs = nq ' ng. In particular, for a €

MI¥J and z € MY & MIX1 the matrix-vector product o ® « is defined.

Set £1%J = (1,€(I,J),E(I,J)), then £7%7 is the neutral element of @
in M%7, The element £/*7 is unique in the sense that for all o € M*J:
Na@elxs = Mg. Furthermore, set EV*7 = (1, E(J,J), E(J,J)), then E7*7 is
the neutral element of ® in M7*7 and it is unique in the sense that for all
a€ MI*J; NaEIxI = Na.

We define scalar multiplication as follows. For elementary o = (¢, A, B) €

M™>™ wesetr-a=(r c A B)and for a = (0g,...,0n,) € MT*7 we set
No
r-a——-Zr‘ai. (3.13)
i=1

We embed RZXJ into M >/ via a homomorphism 7 given by

AT 1(4) = (1,4,4),
for A € RIXJ. Tt is easily checked that (A® B)” = A" @ B™ and (A® B)™

max *
A" ® B".
We now define the 7-image of a function g : RIXJ — R. For a =
({c1,A1,B1), ..., (Cnyy Angy Bn,)) € M we set

7@ = 3 Lepeer (5040 ~ 9(B2) (3.14)
=1

The mapping ¢”(-) is called 7-projection w.r.t. g onto R, or (7, g)-projection for
short. For ease of notation, we suppress the superscript 7 when this causes no
confusion and write g(-) instead of g7 (-).

Remark 3.4.1 For A € ]RmaxJXJ, the T-projection with respect to any g :

RJXJ — R yields g™ (1(A)) = 0. However, we can recover g via the T-projection

with respect to g through a linear transformation. More precisely, take 7> =

(1, B(J,J),E(J, ) € MIXY | then n7*7 @ 7(A) = (1, A,£(J,J)) and we obtain
VAERDX « g7 (77 @ 1(A)) = g(4),

max

where we assume without loss of generality that g(£(J,J)) = 0.
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The definition of addition and scalar multiplication are tailored to make the
extension of any real-valued function on RIXJ to M?*7 linear. This is shown in
the following lemma.

Lemma 3.4.1 For a,3 € M™*7 and co,cg € R it holds true that
Vg € RR= :  g7(ca-a + cg-f) = cag(a) + cag(B).

Proof: For o = ((¢® A%, B®) :1<i<ng), B=((c?, AP B?y:1<i<
ng) and ¢4, cg € R we obtain
g (cax + cgf3)
ng(ca((c?v ?>B?)"")(CgavAgLanga))
+cp((cf, A9, BY), ..., (5, AL, BE)))
g ((calet, AT, BY)s ... calen,, An,» Br))
+ <cﬂ<c§’,A§’,B{*>,...,cﬂ< 8., A8 B )))
O 57 (((cact, A%, BY), ..., (cacl., A%, B ),
(cﬁcf,Af,B% -y (cach,, A, BEY))

ng’ ing?
(314)2 cact (942) ~ 9(B)) + ZC,@C (9(4f) - 9(BY))
_caZc( Aa)—gBa)-l-cﬁZ ( Aﬁ) (Bzﬂ))

G2, 9" (@) + cgg"(B).

(3.13)

0

The operator ‘+’ does the trick to make any g : RZXJ — R linear on M7/,
Unfortunately, the structure M7*J = (M%7 @, ®, +, E/*/,£7%7) has very
poor algebraic properties. For example, the operation @ fails to be commutative
in MT*7. However, in what follows we will show that most of these properties
can be recovered in a ‘weak’ sense.

On M%7 the equation o = 8 means that « is element-wise equal to [. We
call this the strong equality on M%7, We say that o, 3 € M%7 are equal in the
weak D-sense if and only if

VgeD: Elg'(e)] = Elg"(8)],

in symbols: @ =p 3, where D is a non-empty set of mappings from M7*7 onto
R (to simplify the notation, we will write & = 3 when it is clear which set D is
meant). Obviously, strong equality implies weak D-equality. On the other hand
we are only interested in results of the type Vg € D : E[g"(...)] = E[g"(...)],
that is, in all proofs that will follow it is sufficient to work with D-equality on
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M/ When there can be no confusion about the space D, we use the term
‘weak equality’ rather than ‘D-equality.’

We now say that the binary operator f is weakly commutative on MT*7 if
affB = Bfafor all o, B € MP*Y | and define weak distributivity, weak associativ-
ity a.s.f. in the same way.

Theorem 3.4.1 (Rules of Weak Computation) On M%7/, the binary op-
erations @ and 4’ are weakly associative, weakly commutative and & is weakly
distributive with respect to ‘4. Furthermore, on M7*Y, ® is weakly distributive
with respect to “+°.

Proof: Observe that, for v = (c1,...,cn,) € MT*J, g(v) is insensitive
with respect to the order of the entries in #, i.e., for any permutation 7 on
{1,...,n4} it holds true

gT((Clv oo Cn'y)) = gT((CW(l)a v Cr(n.,))) . (315)

We show weak commutativity of @: for a = (a1,...,as,),8 = (b1,...,bn,) €
M) o & 3 contains all elementary @-sums a; ® b; for 1 < i < n, and
1 £ j < ng. Hence, a @ B and § @ a only differ in the order of their entries.
In accordance with equation (3.15), g(-) is insensitive with respect to the order
of the entries which implies g{a @ ) = g(8 & o). Weak commutativity of ‘+’
follows the same line of argument as well as the proof of weak associativity of
®, ®, ‘+’ and we therefore omit the proofs.

Next we show left-distributivity of & with respect to ‘+’: for a =
(ala‘ --aana)ug = (bly"'vbng) and Y= (Cl)"'7cn’y) € MIXJ’ a® (/8 + 7)
contains all elementary @®-sums a; ®b;, for 1 <i < ny, 1 £ j < ng, and a; ® cx,
for 1 € i < ng,and1 < k < n,. These are exactly the entries of (a® )+ (a®7)
and weak left-distributivity follows from (3.15). Weak right-distributivity as well
as weak left-, respectively right-, distributivity of ® with respect to ‘+’ follow
the same line of argument. [J

Remark 3.4.2 On M%7/, @ fails to be weakly left or right distributive with
respect to ®. To see this, consider a, 5,7 € M?*7 with ny > 1 which gives

na®(ﬂ®7) = nanﬂn‘, < nanﬁnann’/ = n(a®ﬂ)®(a®7) .

Hence, in general, a®(B&7) # (a®B)®(a®y) and weak left-distributivity fails.
For weak right-distributivity we argue in the same way. Consequently, M7*7 is
not a semiring in the weak sense.

So far we have introduced a new structure M7/ =
(M7 &, ®,+,£7%7, B7%7) and established its (weak) algebraic proper-
ties. We now ask: what is the relationship between the structures RJ%J and
MJ><J ?

Recall that we embedded R1XJ into M7*Y via the mapping 7. We now call

(RIXI) = {7(A) : A € Ruax "7 }
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the set of standard elements of M%7 and the elements of M%7\ (RIXJ)" the
nonstandard elements.

Theorem 3.4.2 The structure
(Res) = (R3x))" @,0,57,€7)

constitutes an idempotent semiring in the weak sense.

Proof: We prove commutativity of @ on (RZX7)". For A,B € R7X! we
have

A"® B =(1,4,4)® (1, B, B)
=(1,A®B, A® B)
=(1,B®A,B& A)
=B"T@® A",

where the last but one equality follows from commutativity of & on RJXJ. All

other properties are checked in the same manner and the proofs are therefore
omitted. O

In accordance with Theorem 3.4.2, any formula over R
M7*J if we add ‘7’ to all constants. For example, from

JxJ

vy is valid over

VA,B,CeRIX]: (AeB)®C=(ARC)a(B®C)
we can conclude

VA,B,Ce R : (AeB)oC=(A8C)e(Bo0),

max

that is, all formulae valid over RJX/ are also valid if interpreted over M7*/

(even if they contain variables g out of the specified set D). This is known in
algebraic model theory as Leibnitz principle.

Nonstandard elements, such as A™ + B for A, B € Rpyay’ %7, cannot be
directly interpreted as random matrices in R;;. However, we can project them
with the help of the {7, g)-projection onto R. We conclude our study of M%7
by giving a purely stochastic way of interpreting the ‘4-’-operator in M%7,

Lemma 3.4.2 Let o be uniformly distributed over {0,...,k} and independent
of everything else. If A(i) € M**J (0 < i < k), then

k
dTAG) = (k+1) A(0) .
=0



3.5 Rules for C,-Differentiation of Random Matrices 141

Proof: Let g be a measurable mapping g from RL%J on R. Applying

Lemma 3.4.1 yields

E [QT (Zk: A(i)> ] =E Lz:f (A(i))]

=0
k
—(k+1) SE[G (AG)] Plo =)
i==0

=E[(k+1)g" (A0))]
=E[g" (k+1) A(0))] .

O
To simplify the notation we introduce the following convention.

Convention: From now on we identify the elements of (RLXJ)" and R1XJ. For

ezample, for A,B € RIX the formula ‘A + B’ has to be read ‘A” + B"".

max?

3.5 Rules for C)-Differentiation of Random Ma-
trices

This section provides rules for Cj-differentiation of @-sums and ®-products of
random matrices. Firstly, we will introduce the general D-derivative and then
establish results for the special case D = C,(RIXI, |} - l|e).

If Ag € Ryax’ ™’ has D-derivative (cap, A;, Ag) at 8, we set
AIQ = (CA,,,A;-,A(;) .
It is easily checked that this implies

Eolg(40)] = Eolo(45)],

for g € D, which motivates the following definition (again we will suppress for
ease of notation the subscript § whenever this causes no confusion).

Definition 3.5.1 For A € RIXJ we call A’ = (ca, A, A") € M!XJ o D-

max

derivative of A if for all g € D

d
& kol g(4)]=Eslg(4)].
If the left-hand side equals zero for all g, we set A" = (0, A, A).

D-differentiation maps A € RIXJ on a (nonstandard) element A’ € M%7,
However, the extension of the g € D to M*’, see (3.14), projects A’ on R
in such a way that we recover the original definition of the D-derivative of a
random matrix, see Definition 3.3.1. The main benefit of this approach is that we
may consider A’ and A as objects in M7%7 and elaborate on the ‘rules of weak

computation in M%7’ put forward in Theorem 3.4.1 to perform computations.
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Remark 3.5.1 The D-derivative A’ of a matriz A is by no means the sample
path derivative of A. For this reason we carefully avoid writing dA/df for the
D-derivative. However, A' is a random variable such that, for all g € D, g(A")
yields an unbiased estimator for dEg[g(A)]/db, i.e., we may think of A’ as an
ersatz derivative in the sense of Brémaud, see [27].

Example 3.5.1 Let 6 € [0,1] and let Xy € {D1, Dz}, with D1,Dy € RIXJ,
be governed by the Bernoulli-(9)-distribution such that P(X¢ = D1) = 6 =
1— P(Xg = Dy). Calculation yields

& Elg(Xo)] = 2 (o(D1)0 + 9(D2)(1 - 0))
=g(D1) — g(D2). (3.16)

Hence, (1, D1, Dq) is a D-derivative of Xo, where D is any set of mappings from
{D1, D3} onto R. The derivative at the boundary points 0 and 1 is obtained as
one-sided limit and (1, D1, Dy) is thus a D-derivative of Xg on the entire interval
[0,1].

In what follows, we work, as before, with D = C,. We revisit Lemma 3.3.1.
For A,B € RIXJ with Cp-derivative (ca, At,A™) and (cg, B*, B™), respec-
tively, we obtain from Definition 3.5.1

A= (CA)A+7A—)

and
B = (CB,B+,B—) .

Direct calculation yields

ca(9(A*®B) — g(A"@B)) = g (A @ B")
and

cs(9(A®@B*) - g(A®B7)) = g’ (AT @ B'),

where we place the superscript 7 to indicate that the objects on the right-hand
side of the above equations live on M%7, whereas the objects on the left-hand
side live on RZX7. Lemma 3.3.1 applies and making use of the linearity of g over

M™J | see Lemma 3.4.1, we obtain

LBolg(A® B)|=Eolg"(4'® B") + g7(A” 0 B')]

=E¢[g" (A ®B™ + A" ® B')}, (3.17)
or, elaborating on the weak equality on C,(RLXJ,|| - ||lg) and suppressing the
superscript 7,

(AoB) = AoB+ Aa B . (3.18)
In the same way we conclude
(A®B) = A®B+ A®B'.

We summarize our analysis in
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Corollary 3.5.1 (Lemma 3.3.1 revisited) If A,B € RIXJ are stochastically
independent and Cy,-differentiable, then

(AeBY =A®B+ A® B .

Furthermore, if A € RIXJ and B € RIXK are stochastically independent and

C,-differentiable, then
(A®B) = A®B + A®B'.

Next we state a simple but useful consequence of the results obtained so far
which justifies the intuition that the Cp-derivative of a random matrix which
does not depend on 8 is ‘zero.’

Corollary 3.5.2 Let A, B € RIXJ be stochastically independent and have Cp-

max

derivatives A' and B’, respectively. If B does not depend on 0, then
(Ao BY = A9 B,

and if A does not depend on 0, we obtain (A® B) = A B'.
Furthermore, let A € RIXJ and B € RIXK be stochastically independent and

max max

Cp-differentiable. If B does not depend on 0, then
(A®B) = A'®B,
and if A does not depend on 8, we obtain (A® B)Y = A® B’.

Proof: Note that, for B independent of 8, we have
B' = (0,B,B)
which implies (see the definition of the 7-projection in (3.14) )
g (A"®B)=0=4¢g"(A"®B)

and the proof follows from (3.17). The proof of the second part of the corollary
follows the same line of argument and is therefore omitted. [J

Another result that will prove helpful is that the Cp-derivative of a sum
equals the sum of the C)-derivatives of its components. The precise statement
is given in the next lemma.

Lemma 3.5.1 If A,B € RJXI are stochastically independent and Cp-
differentiable, then
(A+B) = A'+B.

Proof: For the proof we elaborate on the fact that g € C, becomes linear
over M7*1 see Lemma 3.4.1. In the following we mark the use of this argument
by (a). For any g € C,, we obtain

(a) d

LElo(A+B)] 2 Lrio(a) + ()
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i

Il

(a)

]

SEalg(A)] + - Eolg(B)
Eolg™(A")] + Eolg" (B)]

=" Eglg" (A" + B')].

The next theorem states the basic rules of Cp-differentiation. Due to our

calculus we are able to give a purely algebraic proof. Let A(7)

k). For technical convenience, we set

k
P AG)

=3

for j > k, and for I = J, we set

k
&40
i=j
for j > k.
Theorem 3.5.1 Let A(i) € RIXJ (0

Cp-differentiable, then
k ! k
(©40) =3
1=0
and, for J =1,

(&) - 28

H]

Fj=04=j+1

ERIXJ

max

(0<i<

= &(I,J)

= E(J,J)

< 1 £ k) be mutually independent and

K -1
D 46) @ 4G) & P A,

F=0i=j+1

i=0

j—1

Q) AG) .

=0

A(i) ® A(j)' ®

Proof: We prove only the first part of the theorem since the proof of the
second part follows the same line of argument.

We give a proof by induction. For k = 2, the proof follows from Lemma 3.5.1.
Suppose that the statement of the theorem holds true for k, then it follows from
the rules of weak computation in M7*/ see Theorem 3.4.1, that

k+1 ! k
(@ A(i)) E(A(k +1) @ P A)
1=0 1=0

k
=A(k+1) o P AG) + Alk+1) @

=0

k
=A(k+1) o P AG)

=0

+> D

) |
(3

. . =0 i
A ® A() & P AG)
1=0

J=01i=j+1
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k+1 k+1 Jj—1
=Y P A() o AG) o P AG).
§=0i=j+1 =0

O
We illustrate the statement in the above theorem with an example.

Example 3.5.2 Consider the situation in Frample 3.5.1. Let A(k) (k = 1,2)
be stochastically independent and Bernoulli-(8)-distributed over {D1, D3}, with
P(A(k) = Dy1) =0 =1— P(A(k) = D,), for § € [0,1]. For the Cp-derivative of
A(k) we obtain

A(k)' = (1,D1,D2) .

Theorem 8.5.1 now implies
(A1) ® A(2)) = A1) ® A(2) + A(1) ® A(2),
or, more explicitly,
(A1) ® A(2))'=(1, D1, D) ® (1, A(2), A(2)) + (1,A(1), A(1)) ® (1, Dy, D2)

(1,D; ® A(2), D; ® A(2)) + (1,A(1) ® D1, A(1) ® D)
((1,A(1) ® D1, A(1) ® Dy), (1, D1 ® A(2), D2 ® A(2))) .

li

Il

Applying the (T, g)-projection yields
[9(AQ1) ® A(2))]=Eq [g" ((A(1) ® A(2)))]
=Eo | 9(A(1) @ D1) + 9(D1 ® A(2))

- 9(A(1)® D3) - 9(D; ® A(2))]

d
260

The above formula can be phrased by saying that the derivative of Eg[g(A(1) ®
A(2))] can be obtained from the difference between two exzperiments. For the
first experiment, we consider all possible combinations of replacing the nominal
matriz A(k) by D1, the positive part of the Cy-derivative of A(k). For the sec-
ond experiment, we consider all possible combinations of replacing the nominal
matriz A(k) by Da, the negative part of the Cp-derivative of A(k).

Notice that A(k) converges in total variation to Dy as 8 tends to 0. Hence,
taking the derivative of A(1) ® A(2) at zero yields

(A(1) ® A(2))'=((1, D, ® D1, D, ® D3),(1,D; ® D1, Dy ® Dy))
and
lim <o [9 (A1) ® A2))]=g(D1 ® D1) + (D1 @ D)

do
—g9(D1® Dy) — g(D; ® Dy)
=9(D1® D2) — g(D2 ® D).
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Differentiation of @-sums or ®-products increases the complexity of the
Cp-derivative. However, we may introduce a stochastic concept called random-
ization that reduces the complexity. The basic idea (as already presented in
Lemma 3.4.2) is to replace the summation with an expectation with respect to
an independently, uniformly distributed random variable, say o.

Let A(k) € RIXJ with k € N, be a sequence of Cp-differentiable random
matrices. To simplify the notation we write for k € Nand j < k

k
(@A(i)) @ A() ® A(G) @ EBA (3.19)
i=0

i=j+1

!
and, for A(k) € RJX/, we define the expression (®f=0 A('L)) (4) in the same
way.
Randomization indeed simplifies the presentation of our results as the state-
ment in Theorem 3.5.1 can be rephrased as follows.

Corollary 3.5.3 If A(i) € REXJ (0 < i < k) are mutually independent and

Cp~differentiable and if o is uniformly distributed over {0,...,k} independent
of everything else, then

(&)

(k+1) (EBA z)>(a)

=0

and, for I =J,

k ! k !
(@ A(z’)) = (k+1) <® A(i))(a)
=0 i=0

Proof: Apply Lemma 3.4.2 to Theorem 3.5.1.

3.6 Gradient Estimation for Max-Plus Linear
Stochastic Systems

We consider the max-plus recurrence relation
z(k+1) = A(k)®=z(k) ® B(k), fork>0.

Using basic algebraic calculus, the above recurrence relation leads to the follow-
ing closed-form expression

z(k+1) = ®Az)®x0@@®A k>0. (3.20)

i=0 j=i+1
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This gives
B [g(a(k + 1)) | #(0) = o]
& k k&
QR AG) ez oD Q Al)®BG)

i=0 i=0 j=i+1

In what follows, we calculate the Cp-derivative of the above expression, where we
will distinguish between homogeneous and inhomogeneous recurrence relations.
Recall that recurrence relation (3.20) is called homogeneous if z(k+1) = A(k)®
z(k), for k > 0, i.e., B(k) = (g, ...,¢e) for all k. For example, the closed tandem
network of Example 1.5.1 is modeled by a homogeneous recurrence relation. On
the other hand, recurrence relation (3.20) is called inhomogeneous if B(k) #
(e,...,€) for some k € N. For example, the max-plus representation (1.27) on
page 26 of the open tandem system in Example 1.5.2 is of inhomogeneous type.

3.6.1 Homogeneous Recurrence Relations

Since ¢ is absorbing for ®, (3.20) can be simplified for any homogeneous recur-
rence relation to
k

zb+1) = @A) ®z0, k0.

i=0

Let A(4) (0 <4 < k) be mutually independent and Cp-differentiable with C-
derivative (ca(y, A% (i), A= (). Corollary 3.5.2 implies

k !
a'(k+1) ((X)A () ®z0> (@ A(i)) ® .

Let ¢ be uniformly distributed over {0,..., %} independent of everything else.
In accordance with Corollary 3.5.3 we obtain

!
t'k+1) = (k+1) (@ A(z) ) ® 20 - (3.21)
By calculation,

JieE" ok + 1)[#(0) = 20 = Eo[g" (" (k + 1)[(0) = 2o

(o)
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j=o+1 j=0

k o—1 :
G19 g, [ ((lc+1 ) Q) AG) @ A'(0) ® R) Aj ®~’Eo>}
k o—1
G2 g, |:k+1)cA(a){ (@ A( )®A+(a)®®A(j)®xo)

j=o+1 j=0

Jj=0

i ( ® A(j)@A—(a>®®A<j>®xo) H .
j=o+1

The above expression has a surprisingly simple interpretation. To see this, we
introduce two processes z = {ac ()):0<i<k+1}andz;y = {27(¢): 0<
i<k+1},with0<j< Ic deﬁned as follows.

Algorithm 3.6.1 Choose o uniformly distributed over {0, ... k} independently
of everything else; and construct z} as follows. Initialize z}(0) to x9. For all
1< o set

r(i+1)=A@G) @z} (i), (3.22)

whereas for i = o set
z¥(c+1)= AT (0)®z} (o). (3.23)

Continue with (3.22) until i = n. In words: for all transitions, except the ot"
transition, the dynamic of ¢} is identical to that of the original sequence {z(i) :
0<% < k+1} . Construct x7 in exactly the same way except for (3.28) which
has to be replaced by

2z (c+1)=A"(0)® 2, (c).
From the construction follows that

Eq[ (k + 1)ea() 9(=d (k + 1))|27 (0) = o]

= Eq [(k+ 1)ca()g ( QRA@) ® A* (o) ®®A ®xo)]

=041
and

Eo[ (k + 1)ca(o) 9(z5 (k + 1))|z; (0) = o]

o—1
{(k+1 )CA(@)9 ( 6) ®A_(0)®®A(j)®wo)] :
j=0

j=o+1

Hence,

d%]Eg [g(x(k + 1))’m(0) = xo] (3.24)

= Bo[(k + Ve (g(a2 (6 + 1)) = glz5 (b+1))) |27 (0) = 25 (0) = o] ,
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for all g € Cp(Riax, |l - |lo). In other words, Algorithm 3.6.1 together with
(3.24) provides an unbiased estimator for derivatives of finite max-plus matrix
products.

Expressions containing Cp-derivatives can be easily transformed into the
initial max-plus setting. Thus, sensitivity analysis and optimization can easily
be added to any max-plus based simulation of the system performance.

3.6.2 Inhomogeneous Recurrence Relations

Consider the max-plus recurrence relation given in (1.27) on page 26, describing
the sample dynamic of the queuing system in Example 1.5.2. In order to obtain
the Cp-derivative of £(k+ 1) we could either transform (1.27) into a closed-form
expression like (3.20) and calculate the derivative directly (which will lead to
tiresome calculations) or we could transform (1.27) into a homogeneous equa-
tion. In what follows we explain the latter approach. To this end, we define the
(J + 1) x (J + 1)-dimensional matrix

Ak) = (A(k) B(k)®¢(k+l)>

and set

with
— [To
z(0) = (e) .
With the above definitions, recurrence relation (1.27) reads
z(k+1) = A(k)®@z(k), k>0. (3.25)

C,-differentiability of A(k) and (B(k) ® 7(k + 1)) implies that of A(k) (for a
proof follow the line of argument in the proof of Theorem 3.3.1 and use the fact
that A(k) and (B(k) ® 7(k + 1)) have common input ao(k+ 1),...,05(k +1)).

In particular, )
At (k) = (f;“(kg (B(k) @ rlk + 1))+>

and )
A (k) = (A—(k) (B(k)®'r(lc+1))‘) .

E...€ e

Following the same line of argument as in Section 3.6.1 we obtain the following
algorithm.

Algorithm 3.6.2 Initialize }(0) = zo = 2 (0); choose o uniformly distrib-
uted over {0,...,k} independent of everything else; and set for i # o

/(i +1) = AG) @z}~ (i) @ BG) @ (i + 1)
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whereas for i = o
zHo+1) = At (o) @zt (o) @ (B(o)®@ (0 +1)*
and

g (0+1)=A"(0)®z;(0)® (B(o)®T(c+1))".

The above algorithm yields an unbiased gradient estimator for inhomogene-
ous max-plus recurrence relations. More specifically, for g € Cp(RZ,., || [lo) set
g{z,e) = g(x), then it holds that

o [o(a(h +1))|2(0) = =o]

=E, [(k + e (g(xj(k +1)) — gz (k+ 1)))

zF(0) = z;(0) = mo] .

In Example 1.5.4 we have explained how waiting times can be represented
via inhomogeneous max-plus recurrence relations. We conclude our presentation
with an application of our results to Cp-differentiation of waiting times.

Example 3.6.1 Consider the situation in Example 1.5.4 again. For the sake of
simplicity, assume that 8 is o parameter of the interarrival time distribution so
that the interarrival time ao(k) has a Cp-derivative afy(k) = (c,of (k), 0q (k).
The matric A(k) and the vector B(k) are independent of 6. Furthermore,
C(oo(k)) is Cp-differentiable with C'(oo(k)) = (c,C(ag (k)), Cloy (k). Our
calculus of Cp-differentiation then implies

(4K @ Cloolk + 1)))'5A(k) & C'(oo(k +1)).

Let W} (i) and W, (i) (0 <4 < k+ 1) be two sequences defined as follows. Ini-
tialize W (0) = W(0) = W, (0); chose o uniformly distributed over {0,...,k}
independent of everything else; and set for i # o

WH=(i+1) = A@G) ® Cloo(i + 1)) @ W}~ (3) ® B(5),
whereas fori = o
WHi+1) = AG) ® Clof (i + 1)) ® W, (i) ® B(3)
and
Wo(i+1) = AG)®Clog i+ 1)) @ W, (3) ® B(i) .
Then for all g € Cp(Ri s, ||+ ll@) 4t holds true that

Lo [gW (h+1))]= ok + 1) Eo[gW;t (6 + 1)) — oW (k4 1)].



Chapter 4

Higher-Order D-Derivatives

In this chapter, we extend the concept of D-differentiability to that of higher-
order D-differentiability. The key contribution of this chapter will be that we
establish a Leibnitz rule of higher-order D-differentiation and that we give an
explicit formula for higher-order D-derivatives. The general setup is as in the
previous chapter.

This chapter is organized as follows. In Section 4.1, we introduce the concept
of higher-order D-differentiation. The basic result for higher-order differentia-
tion in Cp-spaces is established in Section 4.2. Higher-order D-differentiation
on M?*J is discussed in Section 4.3. Then, we take D = C), and prove in Sec-
tion 4.4 a Leibnitz rule of higher-order Cp-differentiation. Finally, we introduce
in Section 4.5 the concept of D-analyticity and show that the @-sum and the
®-product on Rpyax preserve Cp-analyticity.

4.1 Higher-Order D-Derivatives

The definition of higher-order D-derivatives is a straightforward generalization
of Definition 3.1.1.

Definition 4.1.1 Consider the mapping p : © — My(S,8). Let D C
LYup: 0 €O) and set uéo) = pg. We call ug n times D-differentiable at 6

if o finite signed measure /15)") exists such that for any g € D:

dn

g@;;/sg(S)uo(dS) = /Sg(s)uﬁ,")(ds).

The definition of an n** order derivative readily follows from the above
definition.

Definition 4.1.2 We call a triple (c‘(,"), ,ué"’H), ugn’"l)), with ué"’“), ,u((,"’—l) €
M;(S,8) and cé") € R, an n* order D-derivative of pe at 8 if ug is n times
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D-differentiable and if for any g € D:

Lo = o ([ aur o) - [ aeuDa@) . @

If the left-hand side of the above equation equals zero for all g € D, we say that
the nt* order D-derivative of pg is not significant, whereas it is called significant
otherwise.

We denote by s(ug) the order of the highest significant D-derivative. Specif-
ically, we set s(ug) = oo if pe is oo times D-differentiable and oll higher or-
der D-derivatives are significant. In case pg fails to be D-differentiable, we set

5(pe) = —

For § € O, let up € M1(S5,S) be absolutely continuous with respect to
4 € M;j and denote the u-density of pg by fs. Assume that fy is n times
differentiable as a function in € and suppose that interchanging the order of n
fold differentiation and integration is justified for any g € D, in formula:

ey %/Sg(s),uo(ds):/ o(5) o To(s) ulds) . (42)

Set

(n)

fo(s)| n(ds)

{ o

and assume that c(") < 00. We may then define p-densities

(n+1) 1 n,—1) 1
fo (n) max (d@"fo’ ) v o _mmax< dH"fe’ ) ~

Equation (4.2) then reads

s o natas) = & ([ o056y utas) - [ ots) 5O mias))
(1)
(n,+1)

From the densities fg ™+ ang fén'— we obtain measures g b,

respectively, on (S, F) through

ur W = [ {6 us) ) = [0 utds),
(4.4)
for A € F. For n = 1, we recover the definition of D-differentiability as stated

n (4.1). Like for first-order D-derivatives, the above representation of /.zé") is
the Hahn-Jordan decomposition, where

+
Su,(,;") = {SES dO”fo(S) > }

In the following we provide examples of infinitely D-differentiable distribu-
tions.

and fg
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Example 4.1.1 Let pg(z) = 1 — e~%% be the exponential distribution on S =
[0,00), with © = [0;,0,] for 0 < §; < 8, < 0, see Example 3.1.1.

We show that g is co times Cp-differentiable, for any p € N. The Lebesgue
density of pg, denoted by fo, is bounded by

sup fo(z) = B, e7 %% = def Kf(w), z € [0,00) .
60

For n > 1, the nt* derivative of fo(x) is given by

s fola) = (1" (0 ) e,

which implies, for any z € [0, 00),

n

d e
sup | 2 fo(e)| < (0 m) 21 et 2 K(a), (45)

for n > 1. All moments of the exponential distribution exist and we obtain, for
alln and all p,

/]w]”K?(m) dr < oo
s

From the dominated convergence theorem it then follows

= [t motas) = 25z [ o) o) as
= [Late) ggeots) ds.

Writing d" fo/d0™ as

n n

;Tnfo(s) = max (denfg(s) 0) — max (——jwfg(S),O) ,

where

e (5000, )={1["/9’w><w>(0m~n)e-‘*w n even,

dom Lio,n/0) (@) (n — 0z)e™%  otherwise,

and

n _ —0x
ma.x( d 1o(5), 0> {l[o,n/g)(l‘) (n—0z)e n even,

dor Lin/6,00) () (02 — m) e~ otherwise,

we obtain the ntt Cp-derivative of g through

() gy L "
pe ' (ds) = @max (Eg,’;fo(s),0> ds,
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_ 1 d
7 ds) = (= 5 0(9),0) s
Cy
" n "
oM = (.Q_.é) .

Hence, pg is oo times Cp-differentiable, for any p € N, and all higher-order
Cyp-derivatives are significant, that is, s(ug) = oo. The above Cp-derivative is

and

notably the Hahn-Jordan decomposition of ué"). Later in the text we will provide
an alternative representation elaborating on the Gamma-(n,0)-distribution.

Example 4.1.2 Consider the Bernoulli-(8)-distribution pg on X =
{D1,D2} C S with pe(D1) = 6 = 1 — pg(Ds). Following Example 3.5.1,
we obtain

(1,6p,(:)» 6, ()

as o first-order D-derivative of up, where &, denotes the Dirac measure in x
and D is any set of mappings from X to R. Furthermore, all higher-order D-
derivatives of g are not significant. Hence, pg is 0o times D-differentiable with

s(ueg) = 1.

For the exponential distribution with rate 6 all higher-order Cp-derivatives
exist and are significant, whereas for the Bernoulli-(8)-distribution all higher-
order Cy-derivatives exist and but only the first Cp-derivative is significant. We
conclude this series of examples with the uniform distribution on [0, #]: here only
the first C®-derivative exists.

Example 4.1.3 We revisit Example 3.1.2. There exists no (reasonable) set D,
such that the Dirac measure in 0 is D-differentiable, see Example 3.1.8. In par-
ticular, the Dirac measure fails to be Ct-differentiable.

In Example 3.1.2 we have shown that the uniform distribution on [0,6], de-
noted by Up,q), 13 C*-differentiable and we have calculated Z/{[’O,O]. In particular,
u['o_(,] is @ measure with a discrete and a continuous component, where the di-

screte component has its mass at § and therefore any representation of u[lo,ol
in terms of a scaled difference between two probability measures does. In other
words, any CP-derivative of ug involves the Dirac measure in 0. Twice C®-
differentiability of Upo,g) 13 equivalent to Cb-diﬁerentiabilz’ty of u{o,e] and thus
involves CP-differentiability of the Dirac measure in 8. Since the Dirac measure
in 6 fails to be CP-differentiable, we conclude that the second-order C?-derivative
of Upo,g) does not exist and likewise any higher-order C*-derivative of Ujo, -
Hence, U g) is once Cy-differentiable and s(Ujg,g)) = 1.

In what follows, we will establish a Leibnitz rule for higher order D-
differentiability. Before we state our lemma on D-differentiability of the product
of two D-differentiable measures, we introduce the following multi indices. For
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n € N, my, mg € Z, with m; < mg, and px € My(S,8), with m; < k < mgy, we
set

Limy, mg;n] = {(lml, vy lmg)

ma
Ik €{0,...,n}, Ik < s(ug) and Z lkzn} ,

k=m1
and, for ! € Lm1, ma;n], we introduce the set

i =

{(iml, .

ir € {0,4+1,-1},4, =0 iff I, = 0 and H ik=+1}.
frmyg geeerbmg
ik #0
For ¢ € Z{l] we introduce the auxiliary multi index ¢~ as follows. Let k* be the

highest position of a non-zero element in 4, that is, i = 0 for all £ > k* and
ik € {~1,+1}. We now set

= (imlv o '7im2)_ = (imu' "ik“‘—h—ik“‘,ik*-l-l’“ . aimz) ’

that is, the multi index ¢~ is generated out of ¢ by changing the sign of the
highest non-zero element. In the following theorem we denote the cardinality of
a given set H by card(H) .

Theorem 4.1.1 Let (S,8) and (Z, Z) be measurable spaces. If pg € M1(S,S)
is i times D(S)-differentiable and vo € M1(Z, Z) n times D(Z)-differentiable
for solid spaces D(S) and D(Z). Then pg X vg is n times D(S, Z)-differentiable,
where

D(S,Z) = {g € LM uo x vg: 0 € ©)|TIm: |g(s,2)] < f:difi(s)hi(z) ,

=0
fi S 'D(S),hl € 'D(Z),di S R} R

and it holds

n! 1 1
(o X v9)™ = Z —lo!ll!ug ) x 1/5 2
I=(lp,l1)EL[0,1;n]
Moreover, let pg have nt* order D-derivative (c,,, x5V, u™ VY and let vp
o> Ko 6

have n** order D-derivative (c,,,,,vén’ﬂ),l/‘g"’_l)), then an n'* order D(S, Z)-
derivative of ug X vg is given by

(Cl(-:;)xuo’ (no x vg)™¥1 | (g X Ve)(n'~1)> '

with |
() I cllo) L ) L carq(zl))

1o Xve T Vo
1=(lo,l1)€L[0,;n]) Ot
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(lo) . (l1)

] ) )
(n,+1) _ T Cue” ' Cup (lo,i0) (1381)
(g x vg)™" = § : NN § : g X Vg
1=(lo,1)€L[0,1;n] Cusxve (io,i1)ETl]
and

(lo) (1)

! _ _
(=1 _— T Cus Crvo (osig) o (hsiy)
(o xv)™ 0 = D e o T XV
I=(lg,l1)€L[0,1;n) HoXvy  (ig,i1)ELl]
where Mgo,o) = Uy, u,§°’°) = vp and c,(f:,) =1= c,(,g).

Proof: We prove the first part of the theorem by induction with respect to
n. Theorem 3.1.1 implies that the induction hypothesis holds for n = 1. Suppose
now that the statement of the theorem holds for n > 1. Direct calculation yields,
for any g € D(S,Z):

;T: / g(u) po x vo(du)
1 Gy pOT ve)(au) )

d n — 1)! o .
p7) > (77—,)‘ 9(u) (uff vl )) (du)
(lo,)eLlo,n—1) 07

> (7;—0!_1117)!% ( / gw) (1 x v (du)) .

(lo,11)€L[0,1;n—1]

I

We assumed that the nt" D(S)-derivative of ug and the D(Z)-derivative of vp,
respectively, exist and evoking Theorem 3.1.1 again yields

(n—1)
1ol ! g('u,) (N.E)l0+1) X V‘gh)) (du)
(lo,l1)€L[0,1;n—1] 01

+ /g(u) (ugl") x u‘gllﬂ)) (du))

S g [ e (5 <) @, (0

(lo,11)€L[0,1;n]

I

Since only the first s(ug) derivatives of ug and the first s(vp) derivatives of vy
are significant, we only have to take into account indices { = (ly,;) such that
lo < s(pe) and I < s(vp).

In order to prove the second part of the theorem, we consider the positive
and negative parts of the higher-order derivatives of ug and vy separately, see
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(4.1). The measure on the right-hand side of (4.6) then reads

n! ) )
Z lo!ll!'uoo X’/el
(lo,11)€L[0,1;n]
lo,+1 lo,—1 11,41 I1,~1
S S (e ) ) ()

(lo,11)€L[0,1;n)
rearranging the positive and negative parts yields,

, I1,+1 lg,—1 l,—
W{g;;) 5}91)((l0+1)XV§1+)>+(Mé0 ) 1))
(lok1)€L[0,15n] O

_cl(tlo) c(ll)(( (lor+1) o V{gll»—l)) + ('ugo,—l)(z) % I/,gll’+1)) )}
ST My > (e )

(loh)eLo,15m) 0L (m,il)EIU]
(toyig) o, (li7)
LT My 3 (e o)
(lo,l1)€L[0,1;n) (i0,i1)€Z[l]
- S:)Xye((#e % VB)(n,+1) — (ug % Vo)("’_l)) .

Note that, for | € {0,1} and 7 € {+1,0,—1}, p (l 9 and 1/( 9 are probability
measures. That (g X 1/9)(" +1) are indeed probablhty measures can be seen as
follows:

nl o), '(111)
(1o x vo)™*D (S % Z)= > e T N

TARG)
I=(lo,l1)€L[0,15n] bolty! cl‘ox"f’ (t0,41)€Tl]
1
T > o', 105»13) by card(Z[l])
Cuoxvp 1=(lo,l1)€L[0,L;n]

=1.

This concludes the proof of the theorem. O
We now turn to n** order D-derivatives of random variables.

Definition 4.1.3 Let Xy have distribution pg. We call a random variable X,
n times D-differentiable if ug is n times D-differentiable. Let pg have nt* order
D-derivative (c,w,u(n +) ("’_1)) We call the triple (cg?o),Xé" D X("’“l))

ntt order D-derivative of Xo if X(" V) s distributed according to ,u(" D and

(n,~1)

X, (n,—1) according to p, , respectively, that is, if for any g € D:

o = & (5[ (57 |- 5[0 (<))

where cg() = c,w). If the left-hand side of the above equation equals zero for all

g € D, we take (0, Xy, Xp) as an n** order derivative and call the n** order
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D-derivative not significant, whereas it is called significant otherwise. We set
8(Xp) = s(ug).

We illustrate the above definition with the following example.

Example 4.1.4 Let Xy € R be exponentially distributed with mean 1/6 and
denote the Lebesgue density of Xg by fg. In Example 4.1.1, we have already
calculated

dn

Y
A straightforward way for obtaining a C,-derivative of Xg is to split dfe/d8 into
its positive and negative part. Re-scaling these functions leads to densities of
X‘;F and X, respectively, and the re-scaling factor will be equal to cx,.

However, as already explained in Ezample 3.1.1 for the first-order C®-

derivative, a more convenient representation of the Cp-derivative is obtainable
from the Gamma-(n,0)-distribution. To see this, recall that

fo(z) = (-1)"a"" 10z —n)e™’".

1 -
o™ xn—l e fx

Y 3 >11
(n—1)! "=

hnyg (:1?) =

is the Lebesgue density of the Gamma-~(n,0)-distribution. Direct calculation
yields:

%fa(x) =(-1)"z"" @z —n)e "
=(-1)" (a:”ﬁ - nm"—l) e 0=

1

n! 1
=(=1)"= | =" n+l _
(=1) o (n!x o

(n —1)!

wn—lgn) 6—0:5

:(—1)”35!(hn+1,e(w> - h""’(w)) ’

Hence,
m_n

Cxe = gn’

for n even
150 @) = harro(e), S V(@) = hao(a)
and for n odd

1570 @) = huola), V@) = hurre()

Let X,g"’il) have Lebesgue density f,g"’il), then an instance of an n** order
Cp-derivative of Xg is given by (n!/H",X(gn’H),Xé"’_l)).

Samples from the Gamma-(n, 0)-distribution can be obtained by summing n
i.i.d. copies of exponentially distributed random variables with mean 1/0. This
leads to the following scheme for sampling an nt* order C,-derivative of Xg.
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Let {X¢(k)} be an i.i.d. sequence of exponentially distributed random variables
with mean 1/0, then, for n even, the n** order Cy-derivative of Xg is given by

n+1 n
(}j—' S Xo(h), er(k))
k=1 k=1

and, for n odd, the nt* order Cp-derivative of Xg reads
n' n n+1

<0—n, > Xo(k), ng(k)) :
k=1 k=1

Put another way, for any g € Cp, it holds that

ool b)) o

Note that the above representation allows for a recursive estimation of higher-
order derivatives: the (n+1)% derivative of E[g(Xp)] can be estimated from the
same data as the n*® derivative and the additional drawing of one sample from
an exponential distribution. Taking g as the identity, Fquation (4.7) yields the
Sfollowing well known result:

L Rlg(Xo(1)))

a9
= (—1)"97% (]E

SEX(D]=(~1)" T E[ X (rm + 1)

n !
2(_1) gn+l

a1

Tden \g)
Example 4.1.5 Let Xy € {D;,Dy} be Bernoulli-(6)-distributed, so that
P(Xg = D1) =0 =1~ P(Xg = Dy), for 8 € [0,1]. From Ezample 4.1.2 it

follows that (1, Dy, D3) is a R(PvD2)_derivative of Xg. Since all other deriva-
tives are non-significant, we obtain

(C(n)’Xén,-l-l),Xén,—l)) — (17D17D2) fO’I" n= ]-’
(0, Xp,Xg) forn>1,

for 6 € [0,1], where we take sided derivatives at the boundary points 0 and 1.

4.2 Higher-Order Differentiation in C,-Spaces

As in Chapter 3, we will confine ourselves to Cp, as space of performance func-
tions in order to derive sufficient conditions for a Leibnitz rule to hold. This
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will be done in the following theorem which establishes our Leibnitz rule for
higher order C,-differentiability measures, namely that the product of two n
times Cp-differentiable measures is again n times Cp-differentiable. This result
will serve as the main technical tool for developing a calculus of higher order
C,-differentiation for matrices and vectors over the max-plus semiring.

Theorem 4.2.1 Let (S,8) and (Z, Z) be measurable spaces equipped with upper
bounds ||-||s and ||-||z, respectively, and let the product space S x Z be equipped
with an upper bound || - ||sxz. If

e forany s € S, z € Z, it holds that
(s, 2)llsxz < llslls + llzllz

® ug € My(S,S) is n times Cp(S, || - ||s)-differentiable and v € M, (Z, Z)
is n times Cp(Z, || - || z)-differentiable,

then po X vg is n times Cp(S X Z, (| - ||sxz)-differentiable and it holds

n n! l l
(0 x vg)™ = Y o

I=(lo,l1)€L[0,1in] folhy

Specifically, an n'* order Cp(S x Z,|| - ||sx z)-derivative of e X vg is given by

(cfb?xuo ’ (Ma X VG)(n’“H) ) (“‘0 X VG)(n’_l)) )

with '
n n!
Cfm)x'/a = l—,ﬁcﬁ(‘,’) . cf,l;) -card(Z[l]),
I=(lp,l1)€L[0,1;n] 051
(o)
(o x vg)™+D) = n! cué’( ) 5 pllorio) o (i)
11 )
l=(lo,l1)€L[0,1;n] bolha! cu"sxus (i0,i1)EZ[)
and
(lo) . (t1)
- G’ v losiz) o (i)
RIS D 1 Cr g ST
15! (n) [ 9 y
I=(lo,l1)€L[0,1;n] lolly! CMTZXWI (i0,i1) €I}
where NéO’O) = Ne,u(go'w = vp and cfg,) =9 =1

Furthermore, let {R,R) be a measurable space equipped with upper bound
[|'1lr and let h: S x Z — R be a measurable mapping such that finite constants
¢s and cz exist which satisfy

[lh(s, 2)l|lr <esllslls + czllzllz, s€8,z¢€Z.

If po € My(S,S) is n times Cp(S, || - ||s)-differentiable and vy € My(Z, Z) is
n times Cy(Z, || - ||z)-differentiable, then (ug X vo)* is n times Cp(R,|| - ||r)-
differentiable and the n'* order C,(R,|| - ||r)-derivative of (e x ve)* is given
by
h
(1o x Vo)h)<n) = ((Me X Vo)(")) :
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Proof: Take D(S) = Cp(S,1|||s) and D(Z) = Cp(Z, || || z) and note that
D(S) and D(Z) are solid. Then Theorem 4.1.1 implies that pg X vg is n times
differentiable with respect to the set

{9€ Lo xvo:0€0)3m: lg(s,2) <Y difi(s)u(z)
=0

1 € Gy(S, I IIs), hi € Cp(Z, | - I|2), ds € R},

which coincides with the set C(S5,Z) defined in Lemma 3.2.1. From the same
lemma, it follows that C,(S % Z,{| - |lsxz) C C(S,Z), and we thus proved the
first part of the theorem.

We turn to the proof of the second part of the theorem. In the proof of
the first part of the theorem we have shown that pg X vy is actually n times
C(S, Z)-differentiable. By Lemma 3.2.1, gx(-,-) = g(h(:,)) € C(S, Z), for any
g € Cp(R, || - ||r), and, using this fact, we calculate

o [ o) o x v ar)= 2 [ g(h(s,2)) o x ve)(ds, )
dom Rg ) \He (7} )= aom szg ) Ho (4 H
= —d——/ gn(s,2) (ue X vg){(ds, dz)
do™ SxZ

= / (s, 2) (e x v9)™ (ds, dz)
SxZ

= [ olh(s,2)) o x 1) (s, d2)
SxZ

= /Rg(r) (}1,0 X ua)(")>h (dr),

which proves the second part of the theorem. [
The following lemma extends the above theorem to n fold products of prob-
ability measures.

Lemma 4.2.1 Let (S, S) be a measurable space equipped with upper bound ||-||s
and let, for some m € N, the product space S™1! be equipped with upper bound

(|- llgm+r. If
e for any k < m it holds that

[I(s0,- s se)llgetr < |(s0,-- - 8k—1)lls* + lIsklls

o g € Mi(S,8) is n times Cp(S, || - ||s)-differentiable,
then vp = pd**! (where pitt denotes the (m + 1) fold independent product of

po) is n times Cp(S™F, || - ||gm+1)-differentiable and it holds

m

(n) _ n! ()

A > O!...lmgH“Gk :
I=(lo,....lm)EL[0,m;n] k=0
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Specifically, an instance of the nt* order C,(S™ 1, ||+ ||gm+1)-derivative of vy (=
uyr Yy is given by

( (n) gn,+1> ’ V{gn,—n) ,

Ve’

with
= Z l PRI H c(l‘“) card(Z[l]),
I=(lg, - lm)EE[Omn] ™ k=0
(n,+1) n! [Tieo cff,f) ) (krin)
n, _ : = kalk
Yo = Z ol by o™ Z H'“G
1=(loyeeeskm ) EL[0,min) Cug (805 +-yim ) ET[I] k=0
and
(k) m
(n—=1) _ nt TTieoCio (i)
1/9 — Z lO!"'lm! (n) Z HHF) & )
1=(l0yereslm YEL[O,min] Cup (30s++yim ) ET[{] k=0
where 'ugo,o) = ug and cf?o) =1.

Furthermore, let (R, R) be a measurable space equipped with an upper bound
l|“|lr and let h: S¥ — R, for 1 < k < m + 1, be a measurable mapping such
that for each k, with 2 < k < m+1, finite constants c1(k) and ca(k) exist which
satisfy

”h(sﬂv LR Sk)IIR < cl(k)“h(sﬂ’ (RN sk—l)”R + c2(k)||3k||5 y S€ shHt >

and for k =1 a finite constant ¢ exist which satisfies:

1h{s0; s1)lIr < c(llsolls + [Isklls) -

If ng € M1(S,8) is n times Cy(S, || - ||s)-differentiable, then (vp)* is n times
Cp(R, || - ||r)-differentiable and the n*" order Cp(R, || - ||r)-derivative of v} is

given by
(n) h
W)™ = (v
Proof: The proof follows from Theorem 4.2.1 by finite induction. [l

4.3 Higher-Order D-Differentiation on M/

In this section we introduce the basic concepts of higher-order D-differentiation
in the extended space M%7/ defined in Section 3.4. We begin with the formal
definition of the nt* order 'D-derlvatwe of a random matrix in R/ %! as an object
in MIxJ,
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Definition 4.3.1 We call A = Ay € RIXJ n times D-differentiable if the dis-

max

tribution of A is n times D-differentiable. We call
A = (CXL)’A(n,+1)’A(n,—1)> e MIxJ
ntt order D-derivative of A if for any g € D it holds that

%:'{EG[Q(A) ]=E9[g"(A(n))} _

If the left-hand side equals zero for all g, we set A™ = (0, A, A) and we call the
nth D-derivative of A not significant, whereas it is called significant otherwise.
For a first order D-deriative of A we write either A’ or A,

We illustrate the above definition with examples.

Example 4.3.1 Consider the Bernoulli case in Example 4.1.5. Only the first
RP1:D2) _derivative is significant. More precisely, we obtain AT = (1, Dy, Dy)
forn =1 and A™ = (0,A4,A) for n > 1 as RP1D2) derjvative of A. Let
g € RPLD3) toking the (7, g)-projection of A™ (see (3.14) for the definition
of this projection) yields

& Bolo(d)] = Eolg(A™)] = {g‘” v s

for 8 € [0,1], where we take sided derivatives at the boundary points 0 and 1.

In applications, a random matrix may depend on # only through one of the
input variables. Recall that X1, ..., X € Ryax is called the input of A € RZX!
when the elements of A are measurable mappings of (X1,...,Xn). As for the
first-order Cp-derivative we now show that higher order Cp-differentiation of a
matrix A is completely determined by the higher order C,-differentiability of
the input of A.

Corollary 4.3.1 Let Ay € R,I,f;;{ have input X1, X2,...,Xm, with X1, X; €
Rinax, for 2 < i < m, and let X1 have nth order Cp(Ruax, || - ||@)-derivative

n n n,+1 n,—1
Xé,l) = (cg(,,),l ) Xé,l )VXé,l )) .

If
o Xy 1 is stochastically independent of (X2,...,Xm),
o (X,,...,X.) does not depend on 8, and

e a constant ¢ € (0,00) exists, such that

HA(XG,LX27' . 7X7TL)I[€B S C[[(Xﬂ,l’X% e )X’m)H@ 3
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then Ag has nth order C,(RLXI, || - |lg)-derivative

max ?

A = (), A gl

with (n) (n) (n,+1) (n,+1)
ano 1 cAno ? Aan, = A(XGJ’ vX27 e ’Xm)

and
APV = A, KXoy X))

Proof: Using Theorem 4.2.1, the proof follows from the same line of argument
as the proof of Theorem 3.3.1 followed from Theorem 3.2.2 together with Cor-
ollary 1.6.1. OO

Example 4.3.2 We revisit the situation in Example 8.3.1 (an open tandem
queuing system the interarrival times of which depend on 8) . In accordance
with Example 4.1.1, 69(0,k) is 00 times Cp(Rmax, || * ||@)-differentiable with nt*
Cp-derivative

(")(9 k) = ( t(:;)(o)’ (n, +1)(9 k), (n,—-l)(e k))
The condition on ||A(eo(8, k), 01(k),...,05(k))||e in Corollary 4.8.1 is satisfied.
The positive part of the n'" order c, (R,Jnji”“ I| - l|l@)-derivative of A(k) is
obtained from A(k) by replacing all occurrences of o¢(0, k+1) by a(n’+1)(0, k+1);
and the negative part is obtained from replacing all occurrences of oo(8,k+1) by
06"’-1)(9,19 + 1). More formally, we obtain an n*" order C,-derivative of A(k)
through

A k) = (Sl Al DOk + 1), 01k + 1), 0ulk +1)),
Ao DO,k + 1), 00(k + 1),...,00(k + 1))) )

fork > 0.

Following the representation of higher-order Cp,-derivatives of the exponen-
tial distribution in Ezample 4.1.4, we obtain the higher-order C,-derivatives
as follows. Let {Xg(i)} be a sequence of i.i.d. exponentially distributed random
variables with mean 1/6. Samples of higher-order Cp-derivatives can be obtained
through the following scheme

2n+1
A ( > Xo(i),o1(k+1),...,00(k+ 1)) = A (g) = ACrHLAD (k)

i=1

for n > 0, where we elaborate on the convention AQ+Y) = A, and, forn > 1,

i=1

2n
A (ZXe(i),al(k+ 1),...,05(k+ 1)) = ACr=L=U(k) = AGP—D (k).
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4.4 Rules of C’p-Differentiation

In this section we establish the Leibnitz rule for higher-order C,-differentiation.
Specifically, the Cp,-derivative of the (m + 1) fold product of n times Cip-
differentiable probability measures can be found by Lemma 4.2.1 and the follow-
ing lemma provides an interpretation of this result in terms of random matrices.

Lemma 4.4.1 (Leibnitz rule) Let {A(k)} be an i.i.d. sequence of n times

Cp-differentiable matrices over R1X/, then

m o
_ n!
((é)) A(k)) = 2 T

teL{D,m;n) " eIl

m m m
(T @ a0, @t 00)
k=0 k=0 k=0

where ACO (k) = A(k) and cff()k) = 1. A similar formula can be obtained for

the ntt Cp-derivative of A® B.

Proof: Let S =R7*J and set h

m
h(Ao, Ar,..., Am) = ) A,
k=0

for A € R,an,{, for 0 < k < m. In accordance with Lemma 1.6.1, for any m > 1

m m—1
R4l < | 4|l +llAnllg
k=0 ) k=0 )

and Lemma 4.2.1 applies to h.

Switching from probability measures to the appropriate random matrices
yields an interpretation of n** order derivative in terms of random variables.
Canceling out the normalizing factor concludes the proof of the lemma. More
specifically, let ug denote the distribution of A(k) and let AU) (k) be distrib-
uted according to ,ug’“““) and let AU+ ) (k) be distributed according to u‘(glk’zk ),
for I € L[0,m;n] and 7 € Z[l].

Lemma 4.2.1 applies to the (m + 1) fold independent product of ug, denoted
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m+1 and we obtain for g € C,(RZXI, |1 le)

k=0
m (k)
S}?“ Z m IH ?Z; Z

lEL[O,m;n] =0 €, m+1 iez[]

(el (éA“’W)] (@)

The factor ¢ Tz“ cancels out and according to Definition 4.1.3 it holds that

cﬁ’(“,)c) = (), ThlS gives

e (&)

= Z H Cﬁi'&)o

leL[0,m;n] ol i€Z(l)

(el (@‘“’%)] elp (@)

and switching from g to g7, the canonical extension of g to M7*Y, yields
g g

ZZ ZIZ

leL[O,m;n] i€Z[l)

m
’ [ (Tt @4, @) |
k=0

k=0 k=0

by pg

we now elaborate on the fact that for any mapping g € Cp(RIX, |- |le) the
corresponding mapping ¢g” becomes linear on M7*7 and we arrive at

=E |9 E lolll o IZ

leL][0,m;in] ieZ[l}

m m
(n oy @ atow, G aenn) )]
k=0

k=0 k=0

which concludes the proof of the lemma. 1

With the help of the Leibnitz rule we can explicitly calculate higher-order
Cp-derivatives. In particular, applying the (r, g)-projection to higher-order Cp-
derivatives yields unbiased estimators for higher-order Cp-derivatives, see Sec-
tion 3.6.
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Example 4.4.1 Let {Ag(k)} be a sequence of i.i.d. Bernoulli-(6)-distributed

matrices on RLX7. Only the first-order C,-derivative of Ag(k) is significant and

an n** order Cp-derivative of the product of Ag(k) over 0 < k < m reads

m (n)
(® Ao(k))
k=0
- xay (@arw @arow).

I=(lo,...tm)€{0,1} ™1 4€I(l] k=0

lk=n

When we consider the derivatives at zero, see Example 4.1.5, we obtain Ag(k) =
Dy and, for ezample, the first-order derivative of g(®jro Ao(k) ® o) is given
by

d
dag <® A()(k)) ®£B0>
m . .
Z (D;"" ® D1 ® D} ®x0> — (m+1)g (DR @ xp)

whereas the second-order derivative reads

1d? (&5
27627 ®Ao(k) ® o

m— lm—l—] o )
=y g (D;"*“’"1 ®D;®Dy®D1 ®D)® xo)
j=0 i=0
m~—1
+(m+1)mg (DP*t @ zg) — m Z g(DE"_j®D1 ®Dg®mg)
Jj=0

——mig(D;"_j@Dl@Dé@xo)

i=1

=2 X g(D;’H“"'l®D1®D§®D1®D§®xo)

j=0 i=0
d m
—m=sd <® Ao(k) ® wo)
k=0
m—1 ) ]
-m g(D;"—J®D1®D£®mO>.
j=1

We conclude this section by establishing an upper bound for the nt* order
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Cp-derivative. To simplify the notation, we set

m © m
g ((@ A(k)) ®x0) ey ((g) A(k) ® xo) . (4.8)
k=0 k=0

Lemma 4.4.2 Let {A(k)} be an ii.d. sequence of n times C,-differentiable
square matrices in RZX]. For any g € C,, it holds with probability one that

m (n)
g’ ((@ A(k)) ®1‘0) < Bg,m,{A(k)}(n>p) )
k=0

where

Bg,m {4k} (1, P)
def

n! i
= Y o 2 e

leL[0,m;n)] i€ZI[l] k=0

m P
x (2% + b, (Z 4t o[+ nxou@)
k=0
m 14
k=0

In particular,

m 14
def
Bym, (a3 (0,p) = ag+by (ZHA(IC)H@ + llwollea> :

k=0

In addition to that, let A(O) have state space A and set

def
lAlle = sup [|Allo
AeA

and

def (m)

U L

If zo = e and ||A||g < 00, then
Bin, ga(ky},9(n:0)

n! nan

S Y (e 2 (ag + by (m+ 174l

ol Ly!
leL[0,m;n]

and
By,m,(a)}(0,p) < ag + by (m+1)P||A|lG .
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Proof: We only establish the upper bound for the case n > 0. The case n = 0
follows readily from this line of argument. From the Leibnitz rule of higher-order
C)p-differentiation, see Lemma 4.4.1, we obtain an explicit representation of the
nt* order Cyp-derivative of @jr, A(k). Using the fact that g is linear on M7*7,
we obtain

Il

o\ Y mro

(lec[o,m;n] lolly!. . 1!

Z (H CX’Z())), A(lhik)(k’) ® xo, ® A(l’“'i;)(k‘) ® -’EO))
k=0

) k=0 k=0

L
= 71 1
reLlomin] lolly!. . 1!
m l m ) m o
29 (H ity O A (k) @ 20, (R) A0 (k) >

ieI[l] k=0 k=0 k=0
_ (Lk)
= Z . > 114,
teco,m lo ll lm! i€Z[l] k=0

(g <® A(lk,’ik)(k) ® wo) -9 (é A(lk,il)(k) ®z0)> )
k=0 k=0

where, for the last equality, we take the (7, g)-projection, see (3.14). Taking
absolute values and using the fact that g € C, yields

m (n)
(@A(k)) ® 7o
k=0
< lo'll....l 'Z ﬁi’gé)

leL[0,m;n] i€Z[l} k=0
i (2%+”9( Q) A (k) © 2o

k=0
Applying Lemma 1.6.1 yields

(

Q) Al (k) ®
k=0

) J)

) s(iHA"’“’“(mH@ + ||xon@)p
k=0

Q) At (k) @ 2o

k=0

@
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and

< (i “A(lk’i’:)(k)He) + H%ll@)p
k=0

Q) Al (k) ® zo
k=0 )

This yields

m (n)
(® A(k)) ® o

k=0
(k)
< Z lo'll ! Z HCA(O)
leL[0,m;in] i€Z[l] k=0

. (zag +5, (Z (4w, + llwolle>p
k=0
+b, (éﬂA“k»i?)(mH@ + onn@>p> ,

which completes the proof of the first part of the lemma.

We now turn to the proof of the second part of the lemma. Note that 2o = e
implies that ||zo||lg = 0. Without loss of generality, we assume that the state
space of Cp-derivatives of A(0) is (a subset) of A (this can always be guaranteed
by representing the Cp-derivative via the Hahn-Jordan decomposition). This
implies, for any ¢ € {—1,0,1} and m € {0,1,...,n},

max(||A™ (k)|lo , 1A (k)lle) < IMlle, k20,

and we obtain

(Z [| At (k) l|ea> (Z At 1“(’6)!!@) < 2(m+1)" (Il Alle)”

k=0

For any | € L]0, m; n], at most n elements of [ are different from zero. For [}, > 0,

(x)

Ca(y < €a(0)- Hence, for any I € L]0, m;n]

i l
1<%, < (cao)™
k=0

Furthermore, for any | € £[0,m;n], Z[l] has at most 27! elements, see Sec-
tion G.5 in the Appendix. This completes the proof of the second part of the
lemma. OJ

4.5 D-Analyticity

We begin this section by formally defining D-analyticity of measures.
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Definition 4.5.1 We call pg € My(S,8) D-analytic on ©, or, D-analytic for
short, if

o all higher-order D-derivatives of pp exist on ©, and

o for all 6y € © an open neighborhood Ug, C © of Oy exists such that for
any g € D and any 0 € Uy, :

5 210~ [ o(0)ufas) = [ ats) o).

In the following we establish sufficient conditions for Cp-analyticity of some
interesting distributions.

Example 4.5.1 Let pg be the exponential distribution and denote the Lebesgue
density of pg by fo(x) = 6 exp(—0z), for 6 € © = (0,00). Then fo(zx) is analytic
on (0,00). In particular, the domain of convergence of the Taylor series for fo(x)
developed at any 6y € © is (0,00). For 8y € (0,00), set Uy, () = (6,20 — &) for
6o > 6 > 0, then, for all z € [0, 00):

oo

%

1 4
n! don

fo(z)(0 — 6o)"

0=0,

oo
_ 1 n
< Z(&om" +nz" "ty efo® —T—L—!IH — 8|

n=0
< e~®2(gy + (Bp — 8))ellom=
= (20 — 8)e %",

where the second inequality follows from the fact that |6 — 6p| < 6y — 8. This
implies, for any g € Cp,

5 000 [ ota)uf) @

_ 2 ;11—!(9 — o) dTZ . / 9(x) po(dz)

= 2 771?(9 — o)™ dann - / 9(z) fo(z)A(dz)
= [ g(z) i %(0 fo)" a‘—l(:; _ fo(z)A(dz)
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Hence, ug is Cp-analytic on (0,00), for any p € N, and the Taylor series for g
at By has at least domain of convergence Uy, (8), for 8o > & > 0.

Example 4.5.2 Let pg be the Bernoulli-(9)-distribution on {D1, Da}. Then g
is 0o times RP1P2) differentiable and since only the first order D- derivative
is significant, g is D-analytic on [0,1). Notice that taking one-sided derivatives
at the boundary points, pg can be expanded into a Taylor series at, say, 8 = 0.

The following theorem characterizes the set of performance functions with
respect to which the product of two analytic measures is analytic.

Theorem 4.5.1 Let (S,S) and (Z,Z) be measurable spaces. If g is D(S)-
analytic and vy is D(Z)-analytic for solid spaces D(S) and D(Z), then ug X vg
is D(S, Z)-analytic, with

D(S,Z) = {g € LYo xvo:0€0)3n: |g(s,2)| < idifi(s)hi(z) ,
=0
fi € D(S), b € D(2),d; € R} .

In particular, if, for 0y € ©, the Taylor series for ug has domain of convergence
Ué‘o and the Taylor series for vg has domain of convergence U}, then the domain
of convergence of the Taylor series for the product measure pg X vy is at least
Up, NU .

Proof: The Leibnitz rule of higher-order D-differentiation (see Theo-
rem 4.1.1) implies that all higher order D(S, Z)-derivatives of g X vy exist.
More precisely, let the Taylor series for up at 6y have domain of convergence
Ué‘o and let the Taylor series for vy at 6 have domain of convergence Uy . Then
all higher order D(S, Z)-derivatives of g X vg exist on Ug, = Uy, N Uy, .

For 6 € Uy,, with 8y € ©, we calculate

S i 0=00" i [ o) G x v )

foar’ m!
1
= Z m(@ - 00)’"/ 9(u) (e, % ve,)™ (du)
m=0 SxZ
> (™ (n) (k)
_ 1 m .
= mX::Om!(e 6o) nz::O (n) /szg(u) (ugo X vgh ) (du)
> . (n) (k)
= e e (G — n+k n
- ,;),Hn:m nig @~ %) /stg(“) (52 x v) (du)

=Y -0 (0~ eo)’c/SXZg(u) (16 5 ) ().
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Set
/S 0(5,2) u (ds) = hy(2)

for z € Z, and observe that g € D(S, Z) implies hy(-) € D(Z). Applying Fubini’s
theorem (see Section E.1 in the Appendix), yields

3D (0~ o) (0~ ) /szg(u) (62 x 14 (au)

n=0 k=0
-y %(9 —~ Go)" Z —;—(9 - 00)’°/Z (/S 9(s,2) uéﬁ’(ds)> v (dz)
n=0" =0 o

=hg(2) , hg€D(Z)

=S Lo [ ([ oo 2u @) ez
=S Lo [ ([ s 2mtan) i as).

Using the fact that
[ at.2mi@a) e (),
zZ

the proof follows from the D(S)-analyticity of pg. O
For Cy-spaces, we are able to characterize binary mappings that preserve
Cp-analyticity.

Theorem 4.5.2 Let (S,8) and (Z, Z) be measurable spaces equipped with upper
bounds ||-||s and ||-]lz, respectively, and let the product space S X Z be equipped
with an upper bound || - ||sxz. If

e foranys €S, z € Z, it holds
I, 2)llsxz < |Islls + 1l2llz ,

o o € M1(S,8) is Cp(S, ||-||s)-analytic and vg € My (Z, Z) is Cp(Z,||||2)-

analytic,

then pg X vg is Cp(S X Z,|| - ||sxz)-analytic. In particular, if, for 6y € ©, the
Taylor series for ug has domain of convergence U(f and the Taylor series for vy
has domain of convergence Uy, then the domain of convergence of the Taylor
series for the product measure pug X vy is er nUg .

Furthermore, let (R,R) be a measurable space equipped with upper bound
|'lr and let h : S x Z — R be a measurable mapping, such that finite constants
cs and cz exist and for any s € S,z € Z:

lh(s, 2)l|r < csllslls + czllz]lz -
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If po € M1(S,8) is Cp(S, || - |ls)-analytic and vg € M1(Z,Z) is Co(Z,]] - ||2)-
analytic, then (g x vp)" is Cp(R,|| - ||g)-analytic.

Proof: The proof of the theorem follows from the same line of argument as the
proof of Theorem 4.2.1 and is therefore omitted. [J

4.6 D-Analyticity on M?*J

D-analyticity of a random matrix over the max-plus semiring is defined as fol-
lows.

Definition 4.6.1 We call Ag € RJXI D-analytic on © if the distribution of Ag
is D-analytic on O, that is, if

e all higher-order D-derivatives of Ag exist on O, and

e for all 6y € O, an open neighborhood Uy, C © of Oy exists such that for
any g € D and all 0 € Uy,:

o

) ;11“!(0 — 60)"Eoy[97(A™)] = Eq{g(A)].

n=0

D-analyticity of a random matrix Ag implies analyticity of the expected
value of g(Ap) as function of @ for any g € D as the following lemma shows.

Lemma 4.6.1 If Ag € R} %! is D-analytic on ©, Eg[g(A)] is analytic on © for
all g € D. Furthermore, if, for 6y € ©, the domain of convergence of the Taylor

series for Ag is Uy,, then the domain of convergence of the Taylor series for
Eolg(A)] is also Uy,.

Proof: Let Ap have distribution ug. D-analyticity of As implies D-
analyticity of ug. Hence, for any g € D it holds

o0

3 20— 00 Eaply” (A=Y (0~ 00)" ey lg(4)]
n=0 " n=0 "
=3 20— 002 [ o(6) nan(a)
n=0
= [ o(s) watas)
—Eo[g(4)],

for any 6 € Up,. (I
We now establish sufficient conditions for D-analyticity of some interesting
classes of random variables.
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Example 4.6.1 Let Ay € RY*! be exponentially distributed with Lebesgue den-
sity fo(z) = 0 exp(—0zx), for z > 0, and let © = (0,00). From Ezample 4.5.1
it follows that Ap is Cp-analytic on (0,00). The Taylor series for Eqglg(A)] at
B0 has at least domain of convergence Uy, (8) = (6,260 — 6), for all 6y € (0, c0),
with 0 < 6 < 6.

Example 4.6.2 Let Ay be Bernoulli-(9)-distributed on {D1, Dy} C RIXE. By
Example 4.5.2, Ag is RPvDP2) gnalytic on [0,1] and the Taylor series for
Eg{g(A)] at 6 € [0,1] has the domain of convergence is [0,1].

For applications, we work with Cp-analyticity. The following corollary es-
tablishes an immediate consequence of the definition of Cp-analyticity that is
useful in many practical situations for deciding whether a matrix over the max-
plus semiring is analytic. Recall that Xi,..., X;m € Rpyax is called the input of

A € RXTif the elements of A are measurable mappings of (X3,...,Xm).

Corollary 4.6.1 Let Ag € RI%J have input Xo,1, X2 .., X, with Xp1,X,; €

max

Ruax, for 2 <i<m, and let Xg1 be Cp(Rmax, || - l|lo)-analytic. If
o X1 is stochastically independent of (X, ..., Xm),

o (Xa,...,Xnm) does not depend on 0 and the elements X;, 2 < i < m, have
finite pt* moment,

® a finite positive constant ¢ exists, such that

“A(X0117X27 v ’Xm)HéB < CH(XO,I’X% e 'vXM)“G) y

then Ag is Cp(RIXY ) ||+ ||@)-analytic and the domain of convergence of the Taylor

series for Ag and Xo,1 coincide.
Proof: To abbreviate the notation, set
hy(z) = E[g(A(Xo,1, X2, .., Xm)) | X1 = 2].

The mapping h(-) is independent of 8 and lies in Cp(Rmax, || - ||@). To see this,
note that for g € C,(RIXJ, || - ||e) it holds

max?

| hg(z) | <E[ag + by (|A(Xb,1, X2y« - s Xm)lle)? | Xo,1 = 2]
<Elag + by cP(||(z, X2y ..., Xm)lle)? | Xo,1 = 2]

m p
<ag + by E [ (m + Z|Xi])
=2

We have assumed that X5, ..., X,, have finite p* moment and that they are
stochastically independent of X4 ;. Hence, the expression on the right-hand
side of the above inequality seen as a function in z lies in Cp(Rpyax, || - |le)-

Xo,l = .CL‘:I .
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Cp(Rumax, || - |l@)-analyticity of Xq,1 is equivalent to that of the distribution on
Xo,1, denoted by ug. Direct calculation yields:

n

=1 n d
25(9—90) I

n=0

Eo[g(4)]
=05

’ﬂ

= Z _(9_ 00)" —— dH” ]E[g(A(Xo,l,Xz,---,Xm))]

) ;_0 0= 0" g o oo/ o) Holde)
= [ hy(a) mo(ao)
= E[g(A(Xp,1, X2,...,Xm))]

which concludes the proof. [J

Remark 4.6.1 Note that Corollary 4.6.1 requires the first p moments of the
input variables Xo,..., Xy, to be finite. This is in contrast to Theorem 8.3.1
and Corollary 4.3.1, where no condition on the moments of the input varia-
bles is imposed. To see why a stronger condition is required in the setup of
Corollary 4.6.1, let ug denote the distribution of Xg1 and let v denote the dis-
tribution of (Xa,...,Xm). Following the line of proof for Theorem 3.3.1 and
Corollary 4.3.1, respectively, we would calculate as follows:

oo

n dn
Z (6~ bo) T

n-—O

Eo[g(A)]
0=0¢

I

1
= 00\ ——
n! (0 )" don

p”qg

/ 9(A(@, ) 1o(d) v(dy)

6=0¢g

(0~ do)" / 9(Alz,y)) 1 (d) v(dy) .

0

3
Il

I
M8
3!»—-

0

3
It

However, for the proof of the corollary we then still have to show that

* 1 "
350 =00 [ atate,) ) ) via) = [ oA o) i),
which can be guaranteed if

/ 9(A(, 1) Y(dy) € CpRemass |- o)

and if pg is Cp(Rpax, || - ||l@)-analytic at 0y. It is exactly for this purpose that
the moment condition on the input is required.
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Example 4.6.3 We revisit the situation in Ezample 4.3.2 (an open tandem
queuing system whose interarrival times depend on 8 introduced in Ezam-
ple 1.5.2). In accordance with Ezample 4.6.1, oo(0,k) is Cp(Rmax; || - |l@)-
analytic. The condition on ||A(oo(0,k),01(k),...,0s(k))||le in Corollary 4.6.1
is satisfied, hence, A(k) is Cp(RLEIXT+1 || . ||g)-analytic.

The following corollary summarizes our analysis by showing that C-
analyticity is preserved under finite ®-multiplication or @-addition.

Corollary 4.6.2 (Product rule of Cp-analyticity over Rpn,x) If A,B €
RI%J are stochastically independent and Cp(RZIX!, || - ||g)-analytic on ©, then
A® B and A® B are Cp-analytic on ©.

In particular, if, for 6y € O, the Taylor series for A at 6y has domain of
convergence Ué‘(‘) and the Taylor series for B at 8y has domain of convergence
Uolg, then the domain of convergence of the Taylor series for A @ B at by,

respectively A® B, is Ué‘(‘) n UQB;.

Proof: By Lemma 1.6.1, we may apply Theorem 4.5.2 where we take || - ||g
as upper bound and the ®-product and the @-sum of matrices, respectively, as
mapping h. O

An immediate consequence of Corollary 4.6.2 is that if A(k) € RJ%/ is an
i.i.d. sequence of Cp-analytic random matrices on ©, then

zk+1) = A(k) ®z(k), k>0,

where z(0) = zg, is Cp-analytic on @ for any k. Furthermore, Lemma 4.6.1
implies that Eg[g(z(k + 1)] is analytic on © for any ¢ € Cp and k € N. In
addition to that if, for §y € ©, A(0) has domain of convergence Ué‘(‘) , then
z(k + 1) has domain of convergence Ué‘(‘).



Chapter 5

Taylor Series Expansions

This chapter addresses analyticity of performance measures, say J(8), such as
completion times, waiting times or the throughput (that is, the inverse Lya-~
punov exponent), of max-plus linear systems. Specifically, this chapter studies
Taylor series expansions for J(8) with respect to 6. First results on analyticity of
stochastic networks were given by Zazanis [104] who studied analyticity of per-
formance measures of stochastic networks fed by a Poisson arrival stream with
respect to the intensity of the arrival stream. Baccelli and Schmidt [17] con-
sidered the case in which the network is max-plus linear. Their approach was
further developed in [15] and [16]. For applications of their results to waiting
times, see [71] and [97]. The results mentioned above are restricted to the case
of open networks, where @ is the intensity of the arrival stream. Taylor series
expansions for closed networks are addressed in [7] and [8]. Strictly speaking,
the aforementioned papers study Maclaurin series, that is, they only consider
Taylor series at zero.

In this chapter we establish sufficient conditions for analyticity of max-plus
linear stochastic systems. In particular,

1. for open systems, we do not require the arrival stream to be of Poisson
type;

2. our analysis applies to open and closed systems as well;

3. the parameter with respect to which the Taylor series is developed, may
be a parameter of the distribution of any input variable of the max-plus
system,;

4. at any point of analyticity we establish lower bounds for the domain of con-
vergence of the Taylor series, which is in contrast to the study of Maclaurin
series predominant in the literature.

In some special cases the obtained derivatives can be calculated analytically
and in the general case the formulae obtained have a simple interpretation as
unbiased estimation algorithm.
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Our approach is closely related to Markov chain analysis. Cao obtained in
[30] a Maclaurin series for steady-state performance functions of finite-state
Markov chains. This result has been extend to general state space Markov chains
in [64]. Although the types of systems considered in the aforementioned papers
are different from the ones treated here, the approach is closely related to ours.

The chapter is organized as follows. Section 5.1 studies Taylor series expan-
sions for finite horizon performance indices. Section 5.2 deals with Taylor series
expansions for random horizon performance indices. Section 5.3 is devoted to
Taylor series expansions for the Lyapunov exponent. Finally, we address Taylor
series expansions for stationary waiting times in Section 5.4. Throughout this
chapter we will equip Ryax with upper bound || - [|¢ and we simply write Cp
instead of C,(RIXL, ||+ |]@)-

5.1 Finite Horizon Experiments
In this section we establish conditions under which deterministic horizon

performance indices of max-plus linear systems can be written as Taylor series.
A precise description of the problem is the following:

The Deterministic Horizon Problem: We study sequences z(k) = z4(k),
k € N, following

x(k +1)=A(k) ® 2(k) ® B(k), k>0.

with 2(0) = zo, A(k) = Ae(k) € RS, B(k) = Bo(k) € Rfax and 6 € © C R.
For a given performance function g : R, — R, we seek sufficient conditions
for the analyticity of

Eo[g(z(k +1))]a(0) = @0] . (5.1)

These conditions will depend on the type of performance function and the
particular way in which the matrix A(k), respectively the vector B(k), depends
on 6.

The section is organized as follows. Section 5.1.1 states the general result
on Taylor series expansions for finite max-plus performance indices. In Sec-
tion 5.1.2, we address analyticity of transient waiting times in non-autonomous
systems (that is, open queuing networks). Finally, in Section 5.1.3, we present
a scheme for approximating performance characteristics of max-plus linear sys-
tems, called variability expansion.

5.1.1 The General Result

Corollary 4.6.2 provides the means to solve the deterministic horizon problem.
The precise statement reads as follows.
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Corollary 5.1.1 If A(k) € RIXJ and B(k) € R, (0 < k) are two i.i.d. se-
quences of random matrices and vectors, respectively, which are Cp-analytic on

© and mutually independent, then
z(k+1) = A(k)®z(k)® B{k), k>0,

with £(0) = zo, is Cp-analytic on © for all k. Moreover, Eg[g(xz(k + 1))] is
analytic on © for all g € C,,.

If, for 6o € ©, the Taylor series for A(0) at Oy has domain of convergence
Ué‘(‘) and the Taylor series for B(0) at 8y has domain of convergence Uf;, then
the Taylor series for x(k+ 1) at 6y has domain of convergence Ué‘(‘) N U,f),

Proof: Analyticity of z(k + 1) follows from Corollary 4.6.2 via induction
with respect to k; and analyticity of Eg[g(z(k+1))] is an immediate consequence
of Lemma 4.6.1.00

Corollary 5.1.1 is illustrated with the following example.

Example 5.1.1 We revisit the situation in Ezample 4.6.3. Let p € N. By Cor-
ollary 4.6.1, the transition matriz A(k) is Cp-analytic on (0,00). We now make
the additional assumption that the service times and the interarrival times are
mutually independent and that interarrival times as well as the service times at
the servers are identical distributed. The sequence {A(k)} is thus i.i.d. There-
fore, x(k + 1), with z(k+ 1) = A(k) @ z(k), for k > 0, is Cp-analytic on (0, 00)
and, for g € Cp, the Taylor series for Eglg(x(k +1))] at 6o € (0,00) has at least
domain of convergence Up,(8) = (6,260 — 8), for 6y > 6 > 0.

Note that we cannot apply our theory when we consider recurrence relation
(1.27) on page 26 in Example 1.5.8, since B(k) ® 7(k + 1) and A(k) fail to be
stochastically independent. However, we can conveniently work with the homo-
geneous variant of the model and avoid this problem.

Recall that for any Cp-differentiable matrix A the largest order of a signifi-
cant Cp-derivative of A is denoted by s(A4).

Theorem 5.1.1 Let A(k) be an i.i.d. sequence of matrices in RJ%XJ that are

(h+1) times Cp-differentiable on a neighborhood Ug, C © of 6y € ©. Then, for
any g € Cp:

Eoo+a [9 (@ Alk) ® wo)

m
k=

<

AR m (n)
— o9 <® A(k)) ®zo || + rat1(bo, D),
: k=0

I
M=

n=0

I
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for 8y + A € Ug,, where thy1(00,A) = 0 for h > (m + 1) s(A(0)). Provided that
Zo = e, it holds for h < (m + 1) s{A(0)) that

|7'h+1(00, A)' S Rh+l(007 A)

gt 1 [F4 h
w D /0 (O + A — )" By [ By m aey (b + 1,)] di .
Y

Proof: The product @y, A(k) is (h + 1) times Cp-differentiable, see
Lemma 4.4.1. Hence,

Egy+n [g (é Ak) @ wo)]
k=0

can be written as Taylor polynomial of degree h the remainder term of which is

given through

see equation (G.2) in Section G.4 in the Appendix. In accordance with
Lemma 4.4.2, the (h + 1)** Cp-derivative of the above product is bounded by
Bgm,{ A(k)}(h + 1,p) and inserting this bound into the above expression for the
remainder term concludes the proof of the theorem. (]

1 fo+A h dh+1
-};-!- (00+A—t) _d0h+1 ot

b

Example 5.1.2 In the Bernoulli case, A(k) is Cp-analytic on [0,1)], for k € N
and any p € N. Provided that {A(k)} constitutes an i.i.d. sequence,

- (gone-)

is analytic on [0,1] for all g € Cp, and all zo € R?. The domain of convergence
of the Taylor series is [0,1]. When we consider the Taylor series at zero, the
first terms of the series are given in Example 4.4.1.

Consider the system in Example 1.5.5. Let 0 = 1, ¢’ = 2, then ||Di|lg =
[|1D2lle = max{o,0’) = 2 and the second part of Lemma 4.4.2 yields

o (g

where we have used the fact that (i) only the first order Cp-derivative of A(k)
is significant, (i) cagy = 1, and (%) ||Allg = 2. As shown in Section G.5 in
the Appendiz, it holds that

> (h+ 1) = (m+ 1)t

LeL[0,m;h+1]

dh+ 1

a7, >0 (1128 (agkby(m1)P 27

lea[o mih+1]
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and the remainder term of the Taylor polynomial of degree h is for h < m +1
given by

1 fota h h+1 gh+1 pop
B, ot B0 (ma M2 g by 1P

_ongr{m A1)

pPop h+1
= 2 (@ + by (m 4 172 A

and the remainder term equals zero for h > m + 1.

5.1.2 Analyticity of Waiting Times

In this section we consider open max-plus linear systems like the one in Exam-
ple 1.5.3; we use the notation introduced in Section 1.5.2. More precisely, we
consider max-plus linear models for the beginning of service times in queuing
networks. These models typically have the form

a(k+1) = Ak)®@z(k)®Bk)®r(k+1), k>0, (5.2)

with z(0) = 2o € R’, {A(k)} a sequence of i.i.d. matrices in RZXJ, {B(k)} a

sequence of i.i.d. vectors in R, and

k
(k) = Z o0(f) ,

where 7(k) denotes the k*® arrival epoch (recall that oo(k) denotes the k**
interarrival time). Provided that the system is initially empty, the time the k"
customer arriving at the network spends in the system until beginning of her /his
service at station j is given by

Wj(k) = (k) —7(k), k=1.

Recall, that if z(k) in (5.2) models the vector of k** departure times at the sta-
tions, then W;(k) defined above represents the time spend by the k** customer
arriving at the system until her/his departure from station j.

For our analysis it is more convenient to include the source into the state-
vector, that is, we consider

z(k+1) = A(k)®z(k), k>0, (5.3)

where {A(k)} is an appropriately defined sequence of i.i.d. matrices in R t1x7/+1
and z(0) = e, see Section 1.4.3. From this we recover (W (k)), through

Wjk) = z(k) —zo(k), 1<j5<J. (5.4)

Note that, for z € RY, ||z]|¢ = max; |z;|. To unify notation, we write || - ||g
instead of | - | when J = 1. For g € C,([0,00)7,|| - ||@), we define the mapping
gw :[0,00) — R by

def
gw(xzo,...,x5) = glxy — o,..., 25 — Tp) .
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Note that if g € C,([0,00)7,||*|la), then gy € Cp([0,00)7+%,||-||@). This stems
from the fact that, for (zo,...,zs) € [0,00)7+1:

llgw (o, . ..,z )|le=llg(x1 — 20, ..., Ts — zo)lle

P
<ag + by (Il(z1 ~ 20,-.,25 = 20)lls)
P
<ag + by (@0, -, 20)lla)
The main assumption we need for the following is:

(W) The matrix A(k) in (5.3) is a.s. regular and any finite element is non-
negative. The initial state is 9 = e.

Condition (W) implies z(k) € [0,00)’*1, for & > 0. Hence, for any g €
Cp([0,00)7, || - ||) it holds that

g(W(k)) = gw(z(k)) and gw € Cp([0,00)" ™, llg).  (5.5)

By Corollary 4.6.1 together with Corollary 5.1.1, we obtain the following result
for waiting times.

Lemma 5.1.1 Let z(k) and W (k) be defined as in (5.3) and (5.4), respec-
tively, and assume that condition (W) is satisfied. Let A(k) = Ag(k) have input
Xoa(k), Xa2(k) ..., Xm(k), with Xg1(k), X;(k) € Rmax, for 2 <4 < m, and let
Xo,1(k) be Cp(Rmax: || - ||@)-analytic. If

o {(Xp,1(k), X2(k),..., Xm(k))} is an i.i.d. sequence,
o Xo.1(k) is stochastically independent of (X2(k),..., Xm(k)),

o (Xo(k),...,Xm(k)) does not depend on 6 and the entries X;(k), 2 <i <
m, have finite pt* moment,

® a finite constant c exists such that for any x € R,
1A(z1, .. zm)lle < cll(@, .. em)lle

then W (k) is Cp([0,00)7,]| - ||@)-analytic. In particular, if, for 6y € ©, the
Taylor series for Xo,1(k) has domain of convergence Uy,, then the domain of
convergence of the Taylor series for W (k) is Uy, as well.

We illustrate Lemma 5.1.1 with the following example.

Example 5.1.3 Consider the open queuing system in Fxample 1.5.2 and sup-
pose that for some j € {0,...,J} service time 0;(8, k) depends on 8, whereas all
other service times and (in case j = 0 the interarrival times) are independent
of 0 and have finite pt" moment. Furthermore, assume that {o;(k)} is 4.i.d. for
any j and that the sequences are mutually independent. We consider the ho-
mogeneous model for departure times from the queues as given in (1.25). The
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matriz Ag(k) given in (1.24) has input 0;(0,k+1) and o;(k+1), for0 <i < J,
with i # j. Hence,

Aa(k‘) = A( Uo(k; + 1),. . .,O'j_l(k + 1),
oi(0,k+1),0501(k+1),...,00(k+1)).

Let 0;(0,k) be exponentially distributed with mean 1/0. In accordance
with Example 4.6.1, 0;(0,k) is Cp(Rmax, || * |l@)-analytic. The condition on
|A{oo(k),...,05-1(k),0(0,k),0541(k),...,00(k))||le in Lemma 5.1.1 is satis-
fied. W (k) is thus Cp([0,00)7,]] - ||@)-analytic and, for any g € Cp([0,00)7, || -
|l@), the Taylor series for Eg[g{W (k))] at 8o has at least domain of convergence
(8,269 — &), for any 8o € (0,00) with 0 < § < By, see Example 4.6.1.

If 3 = 0, then the arrival process is Poisson with rate 0 and we obtain a
Taylor series expansion with respect to the rate of the Poisson process. Under
additional assumptions on the sequences {A(k) : k > 0} Baccelli et al. show in
[15] that an analytic continuation of Eg[W; (k)] to the complex plane exists which
is analytic in zero. Moreover, provided that the service times are deterministic,
they explicitly calculate the remainder term of this series expansion.

Remark 5.1.1 Lemma 5.1.1 applies to functions g that evaluate several waiting
times simultaneously. For example, taking gw (xo, ..., %) = g(z;— o, T; — o),
for i s j, leads to the evaluation of the correlation between Wi(k) and W;(k).

Lemma 5.1.1 applies to general renewal processes and thereby extends the
result in [15], where analyticity of Eg[W;(k)] is shown under the assumption
that the arrival process is a Poisson process with intensity 6.

In the remainder of this section, we give an explicit representation of the
Taylor series for W(m), for m > 0. Let the conditions in Lemma 5.1.1 be in
force; in particular, X (k) is the only input variable that depends on 6. In
order to simplify the notation we write A(k) = Ag(k) = A(k, Xp1(k)). We
assume that {A(k)} constitutes an i.i.d. sequence. For [ € L[0,m — 1;n] and
i € Z[l] let (9 (k) follow the recurrence relation

D (k+1) = Ak, X{EP (k) @ 2D (k), 0<k<m,
with 2(b9(0) = e, and, for 1 < j < J, define the waiting times by
wi(k) = 2 (k) ~ 2§ (k), 1<k<m,
c.f. equation (5.4). In words, for generating (4% (k 4 1) replace all occurrences
of Xp,1(k) in A(k) by X5 (k).

Let Xp,1(k) be Cp-analytic and denote the domain of convergence of the
Taylor series for Xy 1(k) at 6y by Up,. Hence, for any g € Cp, and any § € Uy,
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we obtain:

> g —0y)"
Eolg(W (m))] Z Z ——_lo!gl!.. o) '

n=01e€L[0,m—1;n] Im-1!
x 3 Hcgzy,moo[ wtidm)) — oWt (m))] .
i€Z{l] k=0

For example, taking X (k) to be exponentially distributed with mean 1/6, we
obtain in accordance with Example 4.1.4:

! 1!
cfx';()),l - (Bo)t’ I=(g, + ,lm-1) € LI0O,m — 1;n].

Inserting the above equality into the Taylor series for Eg[g(W (m))] yields

mlgven) =3,y ot

n=0[eL[0,m—1;n]

xS Bop [gW O (m)) - oW (m))] .
i€zl

It is worth noting that the complexity of the resulting Taylor series is inde-
pendent of g. This stems from the fact that the weak approach works essentially
uniformly for a class of performance functions and results are independent of
any particular choice of performance function. This improves the result in [5],
where expansions for second order moments were given that have considerably
higher complexity than the expansions for first moments.

5.1.3 Variability Expansion

In this section we discuss an approach to performance evaluation of finite hori-
zon performance indicators of stochastic max-plus linear systems, introduced
in [63], called variability ezpansion. For applications of this technique to model
predictive control of max-plus systems see [99, 100]. The basic setup for variabil-
ity expansion is as follows. Let {A(k)} be an i.i.d. sequence of square matrices
over the max-plus algebra and consider the max-plus recurrence relation

a(k+1) = Ak)@z(k), k>0, (5.6)

with z(0) = zo. Our goal is to evaluate E[g(z(m))] for fixed m and given per-
formance indicator g € C),. To this end, we introduce a parameter 6 and replace
with probability 1 — @ the random matrix A(k) in the above recurrence rela-
tion by its mean. Parameter @ allows controlling the level of randomness in the
system: letting € go from 0 to 1 increases the level of stochasticity in the sys-
tem. For example, § = 0 represents a completely deterministic system, whereas
0 = 1 represents the (fully) stochastic system (that is, the original one). De-
note by {zg(k)} the O-version of {z(k)}, for § € [0,1]. For § = 1, it holds
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that Ey[g(z(m))] = Elg(z(m))]. In order to evaluate E;[g(z(m))], we consider
the Taylor series for Eg[g(x(m))] at 6 = 0. For the sake of sake implicity, we
illustrate our approach with the waiting time in the G/G/1 queue.

Consider a G/G/1 queue with i.i.d. interarrival times {o9(k)} and i.i.d. ser-
vice times {o1(k)}. Denote by oo the mean interarrival time and by o the mean

service time, and assume that p def o1/0¢ < 1. The system is initially empty
and the waiting time of the k** customer, denoted by W (k), follows:
Wk+1)=01(k)® (—0o(k+ 1)) @ W(k) D0
:max(al(k:)——ao(k+1)+W(k),0), k207

with W(0) = 0 and 01(0) = 0, see Example 1.5.4. We write the above equation
as a homogeneous equation, like (5.6). To this end, we set, for k > 1:

Alk) = (al(k)—a;(k+l) g) .

Remark 5.1.2 There are numerous ways of arriving at a homogeneous repre-
sentation for W (k). For ezample, let x(k) model the k** beginning of service at
the station, then

zk+1) = oy(k)@z(k)dT(k+1), k>0,

with z(0) = 0 and 01(0) = 0, where 7(k) denotes the arrival epoch of the k**
customer. Including the source into the state-vector, we arrive at the equation

.’1)0(]6 + 1) _ Uo(k + 1) £ ® IL'()(kJ)

z1(k + 1) oolk + 1) o1(k) z1(k) /)’
where x1(k) is the time of the k** beginning of service at the station and zo(k) the
time of the k** arrival of a customer. As in the previous section, the waiting time

of the k" customer equals 1 (k) —zo(k) and it holds that W (k) = z, (k) —xo(k),
k> 1, see (5.4) on page 183.

Let w(0) = (0,0} and set
wk+1) = A(ky@w(k), k>0,

then w(k) = (W(k),0). In words, the first component of w(k) is the actual
waiting time of the k** customer. Set gw (w(k)) = g(W(k)), then

J=0

k-1
g(W(k)) = gw(w(k)) = gw (@A(j)®w(0)) , k>1.

The deterministic variant of the system is obtained by replacing the random
entries of A(k) by their means, that is, by considering the transition matrix

_ (o100 0
A_( - 0).



188 Taylor Series Expansions

In order to construct a version of {W(k)} that combines deterministic transitions
according to A with random ones according to {A(k)}, proceed as follows. Let
A(k) have distribution p and recall that the Dirac measure in z is denoted
by 6. Let Dg(k) € R2X2 for k € N, be an i.i.d. sequence with distribution

Ope+ (1 —0)da. In words, with probability 8, Dy (k) behaves like A(k), whereas,
with probability (1 — 8), Dy(k) is equal to A. For 6 € [0,1], set

wo(k +1) = Dg(k) @we(k), k>0,

with wg(0) = (0,0). We call the transition from wp (k) to wg(k+1) deterministic
if Dg(k) = A and stochastic otherwise. We write Eg[gw (w(m))] to indicate that
the @-version is considered. For fixed m > 0, the performance characteristic of
the transient waiting time of the f-version is thus given by Eg[gw (w(m))], where

Elgw (w(m))] = E1[gw (w(m))] and
Eolgw (w(m))] = gw (A™ ® w(0)) .

Let p > 0 be such that, for any g € Cp and k < m, E[g(A(k))] and g(A) are
finite. Then, for any k < m,

Elg(De(k))] = OE[g(A(K))] — (1 -0)g(A),

which implies Cp-analyticity of Dg(k) on [0,1]. In particular, for any k < m,
Dgy(k) = (1, A(k),A) and all higher order Cp-derivatives of Dg(k) are not sig-
nificant, in symbols: s(Dy(k)) = 1.

Applying Corollary 5.1.1 with B(k) = (¢, -+ ,€) yields that @} Dg(k‘) is
Cp-analytical. Recall that we have assumed that g € C}. Following the train of
thought put forward in the previous section, this implies gw € Cp, see (5.5).
Hence, for any 6 € [0, 1], the Taylor series for Eg[gw (w(m))] at 6 has domain of
convergence [0, 1]. The n*” derivative at a boundary point has to be understood
as a sided limit; specifically, set

’l’L

lef’SEe_"E”[gW m)l = S5 Eolgw (w(m))]

and
n

lim < algw (w(m))] = - Balow (w(m)],

then E{g(W (m)}] = E1[gw (w(m))], the ‘true’ expected performance character-
istic of the m*® waiting time, is given by

h n
Elg(W(m)] = 3 - Bolgw (w(m))] + s (m)

n=0

where, for h < m,

1 h+1
Rana(m) = 5 [ =0 o] Bolow(w(m)a
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and Rp1(m) = 0 otherwise, see Theorem 5.1.1.

Letn<m. For0<l <lb< o<l <m~-1,1let nly,...,ln) € {0,1}™
denote the vector with entry 1 at position Iy, 1 < k < n, and zero otherwise. This
leads to the following expression for the n** order derivative of Eg[ gw (w(m))]

& Ealow (w(m)

m—n m-n+1 m~—1

=n!2 Z Z

11=0 lo=l;+1 Ipn=lp_31+1

m—1 (CICTRRA )|
>, El|gw <®De(k)> ® w(0)
1€ZN (1, ln)] k=0
m—1 (s ln)yi™)
- Y. E|w (®De(k)> ®w(0) ||
1€Z[n(l1,in)] k=0

whereas the n** derivative is zero for n > m.

Letting @ tend to zero, those Dy(k) for which I = 0 converge in total varia-
tion to A. In the following, explicit representations of the first three derivatives
of Eg[gw (w(m))] at & = 0 are given.

For 0 < j <m, set

Vo(m;j) = E [gw (A™ 771 ® A(j) ® AT ® w(0))]

and
Vo(m) = gw (A™ ® w(0)) .
Then -
2 Eolow (w(m))] = X (Vo) = Vy(m) 67)

In the same vein, set, for 0 < j; < jo < m,
Vy(m; g, ja) = E [gw (A™271 @ A(ja) ® A% @ A(j1) ® A @ w(0))]
then

d2

WEO[QW (w(m))]

m—2 m-1
=23 3 (Valmiduga) + Vilm) = Vylmiin) = Vami o))
71=0j2=51+1
For the third element set, for 0 < j; < j2 < j3 < m,
Vy(m; g1, 42, 43) = ]E[QW (Am_j3_1®A(j3) ® Ajs—iz-1

®A(j2) ® A"l @ A(j) @ Al @ w(O))]
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and the third-order derivative is obtained from

3
o Eolgw (w(m))

m-3 m-—2

62 Z Z <V m; J1, J2, Ja) + Vg(m; 1) + Vg(m; j2) + Va(m; 53)

J1=0ja=j1+1 ja=j2+1

— Vo(ms g1, j2) — Vy(msda, g3) — Vg(m;ja,ja) — Vg(m)) -

The derivatives can be verbally described as follows. The factor is n! when the

th order derivative is evaluated. The outer summation ranges over all possible
combinations of marking n out of m transitions. The inner sum ranges over all
possible combinations of letting the n marked transitions be either stochastic
or not. The sign of an element in the inner sum is given by —1 to the power of
the number of deterministic substitutions among the n marked transitions.

The resulting Taylor series approximation of degree h = 3 is given by

[ g(W (m)) |~ 5 Eolgw (w(m)
2 3
+ 5 <z Bolw (w(m))] + & Bolgw (w(m))).

Proceeding as above, we can define factors Vy(m;j1,...,Jk), for 1 <
k < m. The n'* order derivative of Eo[gw{(w(m))] is then given through
Vo(m;je, ... dk), for 1 < k < n. Let

m—k m—k+1

m=~1
V;(m,k) = Z Z Z %(m;jl,'-'vjk)v

J1=0j2=j1+1 Je=jr—1+1

for k < m, and Vy(m,0) = Vy(m). The term V,(m,!) yields the total effect of
making [ out of m transitions stochastic. For the nt* derivative of E[gyw (w(m))]
we mark in total n transitions out of which [ are stochastic. Hence, there are

m=1

n—1
possibilities of reaching at (m —!) deterministic transitions provided that there
! stochastic ones, and we obtain

n

A Eolow (w(m))]

~ ; (’T’Z: l’) (=)™, (m, 1).



5.1 Finite Horizon Experiments 191

Inserting the above expression into the Taylor series and rearranging terms gives

h n
E[g(W wZZ( )( 1)V, (m, 1)
n=0 =0
h h
:ZZ (n—ll) (-1 )n_lV (m,1)
1=0 n=!
h
=3 C(h,m, 1) Vg(m,l), h<m,
=0
with
L G-m
Clhyml) = —— i—m)
™= ey ALY

where we set the product to one for [ = h. For a proof that

Clhym, 1) = i (’g:ll) (—1)n-"

n=l

see, for example, formula (18) on page 57 in [76].

5.1.3.1 Computation of the Taylor Series Expansion

The coefficients of the Taylor series enjoy a recursive structure which can be ex-
ploited when calculating the series. In the following we will discuss this in more
detail where the key observation is that a stochastic transition only contributes
to the overall derivative if the waiting time introduced by that stochastic tran-
sition doesn’t die out before the following stochastic transition occurs.

For 0 € i) < i2 < +++ < ip < m, let W(m;iy,da,...,is) denote the mt*
waiting time in the system with deterministic transitions except for transitions
i1,42,"*+ ,%n. Let W(-) be the projection onto the first component of the vector
w(k) and introduce the variables

Wm;i] = WA™ 1@ A1) @ A'®@w(0)), 0<i<m,
Wlm;in,ig) = W(A™ 271 @ A(ip) ® A7 @ A(i) ® A" @ w(0)),
for 0 <41 < 49 < m and

Wim;iy, iz, iz] = W(A™ %71 @ A(i3) ® A~ 271 @ A(4y)
QA2 @ A(i)) ® A" @ w(0)),

for 0 € i1 < ig < i3 < m. In addition to that, set

Wim] = W(A™ ® w(0)) .
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Consider the G/G/1 queue with mean interarrival time o¢ and mean ser-
vice time oy, and set ¢ = 01 — 0¢. Then, ¢ is the so-called drift of the ran-
dom walk {W (k)} and because we have assumed that the system is stable, i.e.,

P def o1/0p < 1, the drift is negative. This can be phrased by saying that a de-
terministic transition decreases the amount of work present at the server by c.
Denote the density of the interarrival times by f4 and the density of the service
times by f5 and assume that f4 and f5 have support (0, c0).

We now turn to the computation of the derivative of E[g(W (m))] with re-
spect to 8, see (5.7). First, notice that

Vo(m) = g(W(A™ ® w(0))) .
For m > 0, it is easily checked that
Vy(m;4) =g(0) P(W[m; ] = 0) + E[lwm.>09(Wm;i])]
:/ / ‘ g(s —a+ (m—i—1)c) f5(ds) f4(da)
0 a—(m—i—1)c
+9(0) P(W[m;4] = 0),

where oo pa—{m—i—1)e

m;i) = = S(ds) f4(da

PWlmsi=0) = [~ [ 75 (ds) £4(da)

and 1y [m;;)>0 denotes the indicator mapping for the event {W[m;1] > 0}, that
i8, 1wpmy>0 = 1 if W{m;4] > 0 and otherwise zero.

We now turn to the second order derivative. For 0 < iy < i3 < m, W{ig; 1] >
0 describes the event that a stochastic transition at ¢; generated a workload at
the server that (possibly) hasn’t been completely worked away until transition
5. With the help of this event we can compute as follows

Vg(mjin,ig) = E[ g(W[m; iy, ia]) ]
=E[ IWligsia]>01Wimgiaia)>0 9(W [m; i1, i2)) |
'HE[ LW [iz5i1]=0 1w [miir i) >0 g(Wm; iy, Z2])]
FE[ 1w igsia]>01Wimsi igj=0 9(W [m; i1, 42]) |
FE[ 1w [ig5i1]=01W miiy ia)=0 §(W [m; i1, d2]) | -
On the event {Wiz; 1] = 0} the effect of the first stochastic transition dies out
before transition 2. By independence,
E[ 1wiziirj=01wimsiy ia)>0 9(W [m; 61, d2]) |
= E[ 1w{igjisj=0lwmsizj>0 9(W[m; ia]) ]
= P(Wliz;i1] = 0)E [Lw{msiz>0 9(Wm;ia]) ]
and
E[ 1w(isiis)=0 1 Wlmsiy inJ=0 (W [m; i1, ia]) ]
= g(0)P(Wliz;ir] = 0) P(W(m;iz] = 0) .
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Moreover, it is easily checked that

E[ lw[i2;i1]>01W[m;i1,i2]=0 g(W[m, 41, 22]) ]
= g(0) P(Wliz; 1] > 0 A Wm; i) = 0) .

We obtain Vy(m;i1,41) as follows:

Vg(m; 7:17 22) = ]E[ 1W[m;i1,i2]>0 1W[ig;i1]>0 g(W[m’ il; 12]) ]
+9(0) (P(W[iz;i1] = 0) P(W[m;is] = 0)

+ P(Wligsia] > 0 A Wlmiin, ia] = 0) )

where noticeably some of the expressions in the product on the right-hand
side in the above formula have already been calculated in the process of com-
puting the first order derivative. Specifically, in order to compute the sec-
ond order derivative only m(m + 1)/2 terms have to be computed, namely
E[ 1w (miiy ia]>0 YW ligsia)>0 9(W[m; i1, d2]) | for 0 < 4y < iz < m. These terms can
be computed as follows:

E{ 1 (izi1)>0 1w [msis iaj>0 9(W [m; i1, da]) |

oo poo o oo
=/ / / / g(sl+sz—a1-—a2+(m—i1—2)c)
0 0 a,1+az-—(m—-111—-2)c 0

x £ (s2) % (51) £ (a2) f*(a1) dsy dsy dag day
/ / /a1+a,2 (m—i1—2)c
a1—(iz—i1—1)c

/ g(s1+ 82— a1 —ag + (m—1i1 ~ 2)c)
a1+az—s3—(m—i1—2)c

x f5(s2) F5(s1)f4(az) f4(a1) dsy dsy dag day .

Setting g = 1 and adjusting the boundaries of the integrals, we can compute from
the above equations the probability of the event {Wiz;i1] > 0 A Wlis;i1,42) =
0}, as well.

For the third order derivative the computations become more cumbersome.
To abbreviate the notation, we set

hi(s1, s2,83,a1,a2,03)
= g(s1+s2+83—a1—az~az+(m—1i-3)c)

x F5(s3) £ (52)F% (s1) F* (a3) f* (a2) f4 (@)
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and we obtain

1W[12,11]>01W 13,11,12]>01W[m 181,12,43]>0 g(W[m 11,92, 7’3]) ]

/ / / /a1+a2+a3 —{(m—i1-3)c
A

[eS)
/ h¢1(81,32,33,a1,a2,a3) d83 d82 d31 da3 dag da1
0

/ / / /a1+a2 (i3—i1—2)c
a;—(iz—i1—1)ec
/al +agtaz—(m~i1—3)c~s1
00
/ hi1 (81, 89, 83,01, 42, a3) d83 dSz d81 da3 daz da1
0

oo poo poo par+taz—(iz—i1—2)c
0 JO JO Jar—(ia—i1—1)c
/a1 +ag+az—(m—i1—3)e—s1
a

1+az—(ig—i1—2)c—s1

/00
a1+a2+a3—31~—32—(m——i1 ——'3)6
xhi, (81, 2, 83, @1, G2, a3) dsg dsg dsy das das day

/ / / /a1+az+a3-—(m-—11——3)c
a1+az—(iz—i1—2)c
/al +a2+a3—(m—i1—3)c——81
[ed]
/ hil (31,32,33,a1,a2,a3) d$3 d82 d31 da3 da2 da1
0

o0 poo poo paytastaz—(m—i;—3)c
0 J0o JO a1taz—(iz—i1—2)c
/a1 +az+az—(m—iy—3)c—s1

0

/oo
artaz+az—{(m—i1~3)c—81—s2
Xhil (81, 82, 83,41, 42, a3) d83 d82 d.91 da3 da2 da1 .



5.1 Finite Horizon Experiments 195

Following the line of argument used for the second derivative, the third order
derivative can now be expressed as a combination of the above variables together
with the variables already computed while calculating the first and second order
derivatives. The precise formula is:

Vg(m;il,iz,i3)=E[ L (iasi1)>0 LW ssii,32) >0 L Wmiia iz is] >0 Q(W[m;ihimia])]
+IE[IW[i3;i2]>01W[m;i2,i3]>0 g(W[m; iz,is])] P(Wiz;i1] = 0)
+E [1W[m;i3]>0 g(Wim; is])]

x (P(W[z'g;il] > 0 A Wlis; iy, i) = 0)
+P(Wlizs 1] = 0) P(W [ig; iz) = 0))
+9(0) P(Wlm; i1, 42,43) = 0)
where

P(W[m;iy,ia,13) = 0) = P(Wlig; i1] = 0) P(Wlis; iz] > 0 A Wm; s, iz) = 0)
+P(Wlig;i1] > 0 A Wlig;ix,i2) > 0 A Wm; i, ia] = 0)
+P(Wliz;i1] = 0) P(Wlis; ia] = 0) P(W[m; i3] = 0)
+P(Wliz;i1] > 0 A Wlis;i1,42]) = 0) P(W[m;is) = 0) .

5.1.3.2 Numerical Examples

Consider g = id, that is, g(W(m)) = W(m), m > 0. Note that p < 1 implies
that Vy(m) = gw (A™ ® w(0)) = 0. Direct computation of E[W(m)] involves
performing an m fold integration over a complex polytope. In contrast to this,
the proposed variability expansion allows to build an approximation of E[W (m)]
out of terms that involve h fold integration with A < m (below we have taken
h = 2,3). This reduces the complexity of evaluating E[W (m)] considerably. To
illustrate the performance of the variability expansion, we applied our approxi-
mation scheme to the transient waiting time in a stable (that is, p < 1) M/M/1
queue and D/M/1 queue, respectively.

The M/M/1 Queue

Figure 5.1 illustrates the relative error of the Taylor polynomial of degree h =
2 for various traffic loads. For h = 2, we are performing two stochastic transitions
and a naive approximation of E[W (m)] is given through V;4(2;0,1) = E[W (2)]
and the numerical results are depicted in Figure 5.2. The exact values used to
construct the figures in this section are provided in Section H in the Appendix.

To illustrate the influence of h, we also evaluated the Taylor polynomial of
degree h = 3. See Figure 5.3 for numerical results. Here, the naive approximation
is given by V;4(3;0,1,2) = E[W(3)] and the corresponding results are depicted
in Figure 5.4.
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Variability Expansion for h=2 in a M/M/1 queue
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Figure 5.1: Relative error for the M/M/1 queue for h = 2.

Naive Aproximation for h=2 in a M/M/1 queue
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Figure 5.2: Relative error for the naive approximation for the M/M/1 queue for
h=2.
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relative error

relative error

Variability Expansion for h=3 in a M/M/1 queue
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Figure 5.3: Relative error for the M/M/1 queue for h = 3.
Naive Aproximation for h=3 in a M/M/1 queue
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Figure 5.4: Relative error for the naive approximation of the M/M/1 queue for

h=3.
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It turns out that for p < 0.5 the Taylor polynomial of degree 3 provides
a good approximation for the transient waiting time. However, the quality of
the approximation decreases with increasing time horizon. For p > 0.5, the
approximation works well only for relatively small time horizons (m < 10). It
is worth noting that in heavy traffic (p = 0.9) the quality of the approximation
decreases when the third order derivative is taken into account. The erratic
behavior of the approximation for large values of p is best illustrated by the
kink at p = 0.7 for m = 20 and m = 50. However, for m = 5, the approximation
still works well. In addition, the results illustrate that variability expansion
outperforms the naive approach. To summarize, the quality of the approximation
decreases with growing traffic intensity when the time horizon increases.

Comparing the figures, one notes that the outcome of the Taylor series ap-
proximation can be independent of the time horizon m. For example, at p = 0.1,
the values of the Taylor polynomial do not vary in m. This stems from the fact
that for such a small p the dependence of the m** waiting time on waiting times
W(m — k), k > 5, is negligible. Hence, allowing transitions m — k, k > 5, to be
stochastic doesn’t contribute to the outcome of E[W (m)], which is reflected by
the true values as well.

In heavy traffic, the quality of the approximation decreases for growing h.
This stems from the fact that convergence of the Taylor series is forced by the
fact that the nt® derivative of Eo[W (m)] jumps to zero at n = m. As discussed
in Section G.4 in the Appendix, in such a situation, the quality of the approxi-
mation provided by the Taylor polynomial may worsen through increasing h as
long as h < m.

The numerical values were computed with the help of a computer algebra
program. The calculations were performed on a Laptop with Intel Pentium III
processor and the computation times are listed in Table 5.1.

Table 5.1: CPU time (in seconds) for computing Taylor polynomials of degree
h for time horizon m in a M/M/1 queue.

m | h=2 | h=3
5118 [ 39
10 1.8 | 4.4
20 1.9 | 6.1
50| 2.2 | 36.7

Note that the computational effort is independent of the traffic rate and only
influenced by the time horizon. The table illustrates that the computational ef-
fort for computing the first two elements of the Taylor polynomial grows very
slowly in m, whereas the computational effort for computing the first three ele-
ments of the Taylor series increases rapidly in m. This indicates that computing
higher-degree Taylor polynomials will suffer from high computational costs.
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The D/M/1 Queue

Figure 5.5 plots the relative error of the Taylor polynomial of degree h = 2
for various traffic loads. For the naive approximation, the values V;4(2;0,1) are
used to predict the waiting times and Figure 5.6 presents the numerical values.
The exact values used to construct the figures are provided in Section H in the
Appendix.

Figure 5.7 plots the relative error of the Taylor polynomial of degree h = 3

Variability Expansion for h=2 in a D/M/1 queue
0.5 Y T T T T 1 ¥

0.4r e (1= 5 1 1

0.3f oo =20 ‘I‘ b

0.2 N b

0.1

relative error
' [=)
T
1
i
Y
L
’
L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.5: Relative error for the D/M/1 queue for h = 2.

for various traffic loads. The naive approximation is given by V;4(3;0,1,2) and
Figure 5.8 depicts the numerical results.

Figure 5.5 up to Figure 5.8 show the same behavior of variability expansion as
already observed for the M/M/1 queue. Like for the M/M/1 queue, the quality
of the approximation decreases with growing traffic intensity when the time
horizon increases. It is worth noting that variability expansion outperforms the
naive approach,

The numerical values were computed with the help of a computer algebra
program. The calculations were performed on a Laptop with Intel Pentium
11T processor and the computation times are listed in Table 5.2. Due to the
fact that the interarrival times are deterministic, calculating the elements of the
variability expansions for the D/M/1 queue requires less computation time than
for the M/M/1 queue, see Table 5.1.
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Naive Approximation for h=2 in a D/M/1 queue
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Figure 5.6: Relative error for the naive approximation of the D/M/1 queue for
h=2.

Variability Expansion for h=3 in a D/M/1 queue
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Figure 5.7: Relative error for the D/M/1 queue for h = 3.
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Naive Approximation for h=3 in a D/M/1 queue
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Figure 5.8: Relative error for the naive approximation of the D/M/1 queue for
h=3.

Table 5.2: CPU time (in seconds) for computing Taylor polynomials of degree
h for time horizon m in a D/M/1 queue.

m | h=2 | h=3
51081 18
10| 09 | 2.0
20| 14 | 47
50 | 1.9 | 47.3

5.2 Random Horizon Experiments

Analytic expansions of n-fold products in the max-plus semiring were given in
the previous section. This section extends these results to random horizon prod-
ucts, that is, we consider the case when n is random. For a motivation, revisit
the multi-server system with server breakdowns in Example 1.5.5. Suppose that
we are interested in the point in time when the server breaks down twice in a
row. The time of the k*" beginning of service at the multi server station is given
by z3(k). The event that the second of two consecutive breakdowns occurs at
the k" transition is given by {A(k — 1) = D1 = A(k)} and the time at which
this event occurs is given by z3(k). Set

T(Dth) = T(Dl‘Dl)(e) = inf{k: Z 1: A(k) = D1 = A(k - 1)} .
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Then Eg|z3(7(p,,D,))] yields the expected time of the occurrence of the second
breakdown in row. Our goal is to compute Eq|x3(7(p, p,))] via a Taylor series.

The general setup is as follows. Let {Ag(k)} have (discrete) state space A.
Fora; € A, 1 <i< M,seta=(d1,...,anm) and denote by

7'6,(9) = inf{kZM—l:Ag(’C-—M-l—l)—'——le,...
oo Aglk — 1) = ap—1, Ag(k) = am} (5.8)

the time at which the sequence @ occurs for the first time in {As(k) : & > 0}.
This section addresses the following problem.

The Random Horizon Problem: Let # € © be a real-valued parameter,
O being an interval. We shall take 6§ to be a variational parameter of an
ii.d. sequence {Aq(k)} of square matrices in Ry with discrete state space

A and study sequences {zg(k)} following
zo(k+1)=A¢(k)y@zo(k), k>0,

with x¢(0) = xo for all . Let 73(6) be defined as in (5.8). For a given per-
formance function g : R, — R compute the Taylor series for the expected
performance of the random horizon experiment, given by

Eo[g(x(7a))] - (5.9)

5.2.1 The ‘Halted’ Max-Plus System

In Section 4.5, sufficient conditions for the analyticity of Eg[®7e, A(k) ® zo)
were given, for fixed m € N. Unfortunately, the situation we are faced with
here is more complicated, since 7; is random and depends on 8. To deal with
the situation, we borrow an idea from the theory of Markov chains. There, the
expectation over a random number of transitions of a Markov chain is ana-
lyzed by introducing an absorbing state. More precisely, a new Markov kernel
is defined such that, once the chain reaches a specified criterion (like entering a
certain set), the chain is forced to jump to the absorbing state and to remain
there forever. Following a similar train of thought, we introduce in this section
an operator, denoted by []s, that yields a ‘halted’ version of A(k), denoted by
[A(k)]a, where [A(k)]s will be constructed in such a way that it equals A(k) as
long as the sequence @ has not occurred in the sequence A(0), A(1),..., A(k).
Once @ has occurred, the operator [\]; sets A(k) to E, the identity matrix. In
other words, []z ‘halts’ the evolution of the system dynamics as soon as the
sequence & occurs and we denote the halted version of {A(k)} by {[A(k)]a}.

In the following we explain our approach with the multi-server example, with
@ = (D1, D1). Suppose that we observe the sequence:

(A(k) ik 2 0) - (D17D2aD17D2)D2aD27D1)D17D1aD2)-'~) . (510)
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Hence, 7(p,,p,) = 7 and the nominal observation is based on the cycle
(A(0), A(1),..., A(7(p,,py))) = (D1, D2, D1,D32,D2,D2,D1,Dy).

We call
(DlyDZaD17D2,D2)D2aD17D1)

the initial segment and
A(1(py,py) + 1), A(T(Dy,Dy) +2), -+
the tail of {A(k)}:
D1, D3, D1, D3, D3, Dy, D1, Dy, D1, Dy, ...

inital segem‘gnt of {A(k)} tail of {A(k)}

The halted version of {A(k)}, denoted by {{A(k)|(p,,n,)}, is obtained from
{A(k)} through replacing the tail segment by the sequence F, E, . . ., in formula:

D17D27D17D2)D27D21D11D1v EyEy"'
” N e’

inital segement‘:)f {lAk))(p,,pp)} tail of {[A(k)(p,,p1)}

which implies that

m min(m,T(p;,D,))
9 <®[A(k)](D1,D1) ® 500) =g ( & A(k) ® xo) ,

k=0 k=0

for any g and any initial value xg. Moreover, letting m tend to oo in the above
equation yields:

00 T(Dy,Dy)
g (®[A(k)]<pl,ol> ®xo) =g ( &R Ak ®x0) : (5.11)
k=0

k=0

This reflects the fact that [A(k)}(p,,p,) behaves just like A(k) until (Dq, Dy)
occurs. Provided that 7(p, p,) < oo a.s., the limit in (5.11) holds a.s. without
g, resp. g, being continuous. Once (D1, D1) occurs, [A(K)](p,,p,) is set to E,
the neutral elements of ® matrix product.

By equation (5.11), differentiating

(oo}

QAR Dy, py)

k=0

is equivalent to differentiating
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Of course we would like to apply the differentiation techniques developed in
Chapter 3 and 4 to {[A(k)](p,,p,)}. Unfortunately, we cannot apply our theory
straightforwardly because [A(k)](p,,p,) fails to be an i.i.d. sequence. Indeed,
the distribution of [A(k)](p, p,) depends on whether the string (Di, D;) has
occurred prior to k or not.

The trick that allows us to apply our theory of D-differentiation to
{[A(®)](p,,p1)} is to show that the order in which the differential operator and
the operator [](p,,p,) are applied can be interchanged. If we knew that we are
allowed to interchange differentiation and application of the [-J(p, p,) operator,
we could boldly compute as follows:

min(m,7(p,,p;)) !
Q Ak

(@[A(k)](Dl,Dl)>
k=0

(&)
k=0 (D1,D1)

=3 [ QR Ay ® (AH) ® X A(k)} ‘
(D1,Dy)

k=0

Il

=0 | k=j+1 k=0

Notice that for the motivating example of the multi server model we have
A(k) = (1, Dy, Dy). For example, let m = 9 and take j = 6. Then the above
formula transforms the realization of {A(k)} given in (5.10) as follows:

(A(0),..., A(5), A*(6), A(T), A(8), A(9))
= (D1, D3, D1, Dy, Dy, Dy, Dy, D1, Dy, D5)

and

(A(0),..., A(5), A7 (6), A(7), A(8), A(9))
= (Dy, D3, Dy, Dy, D2, Da, Dg, Dy, D1, D3)

where the bold faced elements of the realization are those effected by the deriv-
ative. Applying the [](p, p,) operator yields

[(A(O)a v >A(5)7 At (6)9 A(7)7 A(8)> A(g))](Dl,Dl)
= (Dy,Dq,Dy,D3,D3,Dy, Dy, Dy, E, E)

and

[(A(0), ..., A(5), A7 (6), A(T), A(8), AON(p:,D1)
= (D1, Dy, D1, Dy, D3, D3,D3,D1,D1,E).

Notice that the lengths of the cycles differ from the nominal ones.
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Now, consider § = 9 and notice that for this value of j it holds that j >
T(D1,D1)* Then,

(A(0), ..., A(8), A*(9))
= (DlaD27D17D2;D27D27D17D13D17Dl)

and

(A(0),...,A(8),A(9))
- (D17D27D17D21D2yD27D17DlaD1)D2) )

which implies

[(A(0), ..., A(8), A*(9)](p1,01) = [(A(0), ..., A(8), A™(9)))(Dy,D1)
= (D11 Dy, D1, D2,Ds,D2,D1,D1, E, E)

If the positive part and the negative part of a derivative are equal, then the
derivative doesn’t contribute to the overall derivative, which stems from the
fact that for any mapping g € R4%X4 — R it holds that

97 ([A'(9) ® A(8) ® -+ ® A(0)](p,,D1))
=g([A*(9) ® A(8) ® --- ® A(0)](p,,D1))
—9([A7(9) ® A(8) ® -+ - ® A(0))(p,,p,))
=0. (5.12)

In words, for § > 7(p, p,), the derivatives of A(k) do not contribute to the
overall derivative. Hence,

m ! min(m,7(p,,p;)) m j—-1
[(@A(k))] = Y [@ A(k) ® A7) ® Q) A(k)
k=0 (D1,D1)

i=0 =j =
J k=il k=0 (D1,D1)

In the following we show that interchanging the differentiation operator and
the []z operator is indeed Justnﬁed Let ui, 0 <14 < m, be probability measures
on a discrete state space A C R1XJ, and let E € A. Let @ = (a1,...,dm) be
a sequence of elements out of A. For fixed m > 0, denote by A,,,(j) the set of
sequences (ag, - . ., am) € A™*! such that the first occurrence of @ is completed
at the entry with label 7, for 0 < § < m. More formally, for M —1 < j < m, set

An() € { (00,01, am) € A™H
G=min{k > M —1: Gpopgpr =81 .. ) Gfot = Gar—1, G = aM}} .

The set A,,{m) is defined as follows:

m(m) dﬁf.Am\ UA
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Moreover, we set A,,(j) = 0 for any other combination of m and any j. We
denote the (independent) product measure of the p;’s by [1i, p:. In order to
construct the halted version, we introduce the measure-theoretic version of the
operator []; as follows: for 0 < j < m and a € A, (j), we set

[HM} (ags- -+ am) (HM) (a0,--,a) x | I 0 (@js1,...,am)
F1 =0

i=0 i=j+1

J m
[T wite) x I] de(as), (5.13)

=0 i=j+1

m

where 6 denotes the Dirac measure in F and we disregard [];. j+108 for j =m.

Theorem 5.2.1 Let A C RIXJ with E € A, and let p;, for 0 < i< m, be a

max ’

sequence of n times Cp(A)-differentiable probability measures on A, for p € N.
Then, the product measure [[i=, pi is n times Cp(A™)-differentiable and it

holds that
i=0 Jg i=0 a

Proof: For any g € C,(A™1),

Z g{ao, ..., am) [H,u,] (ag, .- am)
3=0 K

(ag 7-~-»am)€Am+1

:Z Z g(ao,...,am)

j=0 (G'Oy---,a'm)eAm(j)

b m
X (H/"‘z) (aO;'-'aaj)X H 6E (a’j+11""am)7
1=0

i=j+1

which implies

22% Z glag ...,am)

X (Hp@) (ao,...,aj) X H 5E (aj_,.l,...,am)
=0 3
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m d"
=ZW Z 1Am(j)(a0...,am)g(ao...,am)

=0 (@0, nam)EA™

X (H]h) (ao,...,aj) X ( H 5E> (aj+1,...,am).
i=0

i=j+1

The sets A,,(j) are measurable subsets of A™*! and independent of §. No-
tice that for g € Cp(A™*!) it follows that 15, (g € Cp(A™F!). Adapting
Lemma 4.2.1 to the situation of the independent product of non-identical prob-
ability measures is straightforward. The above derivatives is thus equal to

m
Z Z la.h(ao ... am)g(ao ..., am)

770 (a0, am)EA™

7 (n) m
X (H/‘l’l) (aO""7aj)>< H op (aj-!-l)"'ya'm)
i=0 gz=g4-1
m
:Z Z g(a'Oa'--yam)
j=0

=0 (ag,...;am)EAR(J)

7 (n) m
X (HM) {ap,...,a5) x ( H 5E) (@j+1,y 02 0m)
=0

t=j+1

and invoking (5.13)

m (n)
= Z g(ao, .-, am) [(H“’) ] (ag,... am),
=0 ~

(a0, mam)EA™HI

which concludes the proof of the theorem. [J
For [ € L[0,m;n] and i € Z[l], let (AGD (k) : 0 < k < m) be distributed
according to [Jye, ,ug’“’”“) and let (A%7)(k) : 0 < k < m) be distributed
(PR™

according to [Ty 4y ), Furthermore, for | € L£[0,m;n] and ¢ € I[l], let
([AED(K)]z : 0 < k < m) be distributed according to [H;:l:o ,ufcl'“i’“)]d and
([A%7)(k)]a : 0 < k < m) be distributed according to [H;’;O ug’“’i’:)] . Assume
that (AGD(k): 0 < k <m), (ALY : 0 <k <m), (ALD(K))a:0<k <m)
and ([A%*7)(k))s : 0 < k < m) are constructed on a common probability space.

For | € L[0,m;n] and ¢ € Z[l] let 'rél’i) denote the position of the first
occurrence of & in (A% (k) : 0 < k < m) and let Tél'i—) denote the position of

the first occurrence of @ in (A%#7) (k) : 0 < k < m). The []; operator translates
to random sequences as follows. Applying ||z to (A%9 (k) : 0 < k < m), resp. to
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(AGD(K) : 0 < k < m), yields

; Alesin) (k) for k < T.(l 2
AGD () = 5.14
(A ()]s = § for o o110 (5.14)

i (i) < (1,¢7)
[A(l,l )(k)}d - A k (k}) for k Ta , (515)
E for k > T(l it )’
and i
o(bi) c(,i’“) for 1 < k < max(r{"", (m ",
[A(k)]a 1 fOI‘ k: > max( (l t) al A4 )) .

The statement in Theorem 5.2.1 can now be phrased as follows:

Elg (é[A(k)]a ®z0)
= > X mhd

leL([0,m;n] 1€I(l)

( [H C[A(k)] 9(®[A“’i)(k)]a ® wo)]
— E [H c&zk)] g<é (l»i")(k)]& ® a:o)J) ’

k=0

d’n

We summarize the above analysis in the following theorem.

Theorem 5.2.2 Let (A(k) : 0 < k < m) be an i.i.d. sequence of n times Cp-
differentiable matrices in RI*J  then it holds that

max ’

<®[A(k)]a) = [(@ A(k)) ]
k=0 k=0 &

= > Z _ (Hcﬁxa)],, ®[A(“) (®)la ®[ lf)(’ﬂ]a)-

lEL[Omn]zEI(l) k=0

Remark 5.2.1 If A € RLY] is n times Cp-differentiable and zo € Ry, is

max

independent of 6, then (A ® x0)™ = A" ® ¢ and

m (n) m (n)
<®[ (k)la ®wo> = (®[A(k)]a> ® 0.

k=0 k=0

The intuitive explanation for the above formula is that, since o does not depend
on 0, all (higher-order) Cp-derivatives of xg are ‘zero.’
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We now turn to pathwise derivatives of random horizon products. Let T(-gn)

denote the index of the (n + 1)*f occurrence of a in {A(k)}, with 'réo) = T;.
Let I € L£][0,m;n] and ¢ € Z[l]. Suppose that ! has only one element different
from zero and that this perturbation falls into the tail {A%¥ (k) : 0 < k < m}.
As we have already explained for first order derivatives, see (5.12), applying
the operator [-]; has the effect that this perturbation doesn’t contribute to the

overall derivative, in formula:

(o]
k=0 &

For higher-order derivatives a similar rule applies: If | has least one element
different from zero that falls into the tail of {A%9 (k) : 0 < k < m}, then this
perturbation doesn’t contribute to the overall derivative. This is a direct conse-
quence of Theorem 5.2.1 which allows to interchange the order of differentiation
and application of the operator [-]z. The following example will illustrate this.

é)A(’ﬂ(k)] ) :

k=0

Example 5.2.1 Consider our motivating example of the multi-server model
again. Here, it holds that A(k) = (1,D1,D3) and all higher-order deriva-
tives of A(k) are not significant. For example, let m = 9, j = 6 and take
& = (D1,D1). Consider I = (0,0,1,0,0,0,0,0,1,0), then I(l) = {i1,%2},
with i1 = (0,0,+1,0,0,0,0,0,+1,0), iy = (0,0,+1,0,0,0,0,0,—1,0), iz =
(0,0,-1,0,0,0,0,0,—1,0) and i; = (0,0,—1,0,0,0,0,0,+1,0)}. Let the rea-
lization of (A(k) : k > 0) be given as in (5.10). Recall that T(p, p,y = 7.
Hence, | places one perturbation before 7(p, p,) and the second perturbation
after T(p, p,). Then,

(A% (k) : 0 < m) = (D1, D2, D1, Dy, Dy, Da, Dy, D1, Dy, Dy)

inital segem‘;nt of {A(k)}
and

(A%*)(k) : 0 < m) = (Dy, Dy, D1, Dy, D3, Dy, D1, Dy, Dy, D3),

inital segem‘;nt of {A(k)}

where the bold faced elements of the realization are those effected by I. Applying
the operator [ |z for a = (D1, Dy) yields

(A% (k) : 0 < m))(py,py)=(D1, Da, D1, D2, Dy, Dy, D1, Dy, E, E)
:[(A(l,il—)(k) :0< m)](Dx,Dl)'

Hence,

0=y \é A“m(k)] p [é A“m(k)]
k=0 k=0

(D1,D1) (D1,D1)



210 Taylor Series Expansions

1t is easily checked that it also holds that

é A(l*iz)(k)] é A(l»iz—)(k;)]
k=0 k=0

The above examples illustrates that any vector 1 that places at least one pertur-
bation into the tail of (A(k) : k > 0) does not contribute to the derivative.

(D1,D1) (D1,D1)

The building principle for higher-order derivatives, as illustrated in Ex-
ample 5.2.1, has the following implication. Any | € L[0,m;n] has at most
n entries different from zero. Hence, in order to obtain an initial segment of
{AGD (k) : 0 < k < m} that is of maximal length, [ has to be such that it places
a perturbation on the first n occurrences of @ in {A(k)}. In other words, the

initial segment of { A% (k) : 0 < k < m} is at most of length Tén). In formula:

w2 p(@)

leL[0,m;n] i€ ()
— (4,1)
- vz ms([@aw] )
teLfo,r{""Pn}i€Z?)

Following the same line of argument,

wE
wr(@n]) - ([Grea] )
k=0 i k=0 a

Indeed, the initial segment of (A9 (k) : k > 0) cannot be longer than 7'( ™ ie.,
the point in time when sequence G occurs for the (n+1)%* time in {A(k) : * > 0}.
For (1,i™) we argue the same way. The nt" order Cj-derivative thus satisfies

m (n) 7a (n)
tno (|(&am) | ) =5 ( (o) ).
k=0 a k=0

with

(0 (n)

®[A(k>1a) (5.16)
k=0

def

= Z lolll l . H! Z

lEL[O,Té"_l); ] i€l

™ e

™

L i -
T el » QAL (k)la, QA (k)]
k=0

k=0 k=0
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As the following lemma shows, the expression defined in (5.16) yields an
unbiased estimator for the nt" order derivative of Eg[g(®}%, A(k) ®z0)] (which
justifies the notation). In Lemma 4.4.2 we have shown that By p, (@)} (7, D) is

an upper bound for
m (n)
" (® A(k)® xo>
k=0

for any g € Cp, and since ||E||g = 0 this implies that

m (n)
g ((@[A(k)]a® wo> ) < Bg,m,(a@k)} (7 D) (5.17)

k=0
as well. Moreover, note that, for any g € Cp,
m (n) m (n)
9 (@[A(k)]a® w0> =19 (®[A(k)]a) ®xo ||,
k=0 k=0

see Remark 5.2.1.

When we replace m by 7'( ), we have to take into account the fact that the
horizon of the product depends on the order of the derivative. To this end, we
set

Bg,‘ra,{A(k))(nyp)
(" 1)

¥ Z WL _nen)! l(n n! Z H C(fql()k)]“

10,7 Vin) i€T[l] k=0

™ P
x | 2, +0, (Z (a%O@®)al| + ||950||e>>
k=0

by | [ @]+ lwolle | | 519)
®
k=0
and, in particular,

Ta p
By ra At} (0,0) € ag + by (ZHA(/C)H@ + ||wo||ea) .
k=0

Following the line of argument in the proof of Lemma 4.4.2, we deduce from
(5.17) that for any g € Cp:

Ta (n)
q (<® A(k)® :L‘o) ) < Bg,.,ﬁ,{A(k)}(n,p) , nz=0, (5.19)
k=0
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where, for n = 0, we set in accordance with (4.8):

Ta Ta (0)
g <®A(k)®xo) =g ((@A(k)®m0> ) :
k=0 k=0

We obtain the following result.

Lemma 5.2.1 Forn > 1, let A(k) (k > 0) be mutually stochastically indepen-
dent and (n+1) times Cp-differentiable matrices in RLXJ. If, for 0 < m < n+1,

sup Eg | B, -, m, < 0o
eeg o[ g, ,{A(k)}( P)]

then

n Ta Ta (n)
de"]Eo [g <® A(k‘) ® .’Co)] = Eg I:g'r (@[A(k)]a) ® :L‘o) s
k=0 k=0

where the expression on the right-hand side is defined in (5.16).

Proof: We prove the lemma by induction. For i = 0,1, 2, it holds for any
For g € Cp and m € N that

m (%)
g’ ((@[M’ﬂ]a) ®-’Eo) < By i 1AM} (6 D) . (5.20)
k=0
In particular, it holds that
<®[A(k ®xo> < Byra A3 (0,D) - (5.21)

By definition,

Jim g <®[A(k)]a ® wo) =g (é[A(k)]& ® wo) )
k=0 k=0

with probability one. We have assumed that Eg[By ;. 1a(x)}(0,p)] < co. This
together with inequality (5.21) justifies applying the dominated convergence
theorem, which yields

im_ E, [g (é)[A(k)]a 6 o)] ~E, [g (éwk)}a ®$0)J
k=0 k=0
g (émwa ¢ 330)

k=0

=Ey
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Theorem 5.2.2 (the Leibnitz rule for the []; operator) implies that, for any m
and ¢ = 1,2,

m (3
=Eq |g" ((X)[A(k)]a> ® oo

k=0

g [g (gmwna ® mo)

Hence, following the line of argument in the proof of Lemma 4.4.2, we obtain
for any m and i € {1,2}:

m

di
sup —E AK)s @ x < supEy|B, ., i,p)],
sup 9[9 (g[ (K)]a o)] sup 6{Bg,ra,{A(k)} (4, P)]

where we make use of (5.20). We have assumed that
suppco Eo[By,rs,(A(k)} (4, p)] < oo for ¢ = 1,2. The proof of the statement
of the theorem for n = 1 thus follows from Theorem G.3.1 in the Appendix.

The proof of the lemma now follows by finite induction. O

The key condition for unbiasedness in the above lemma is that
suppce Eo[By,rs,{a(k)} (7, p)] is finite and we provide an explicit upper bound
for supyce Eo[Bg,rs,{A(k)} (7, p)] in the next lemma. For the definitions of ||A||e
and c4(g), see Lemma 4.4.2.

Lemma 5.2.2 Let {A(k)} be an i.i.d. sequence of n times Cp-differentiable ma-

trices in RIS with state space A. Let ps(0) denote the probability that sequence

@ occurs in {A(k)} and let @ be of length M. Provided that ||A||g is finite and
that o = e, it holds that

E¢[By,rs,{ak)} (M 0)] < 2™ (ca(o))” (ag + by (Il Alle)” a(pa(6), M, nm)) )
where

! M™FP (n 4+ 1)P forpa(@)=1,p>1,

ﬁB)Mvv = n-1
a(pa(0), M, m.p) {(n+1)uun+1(mul)(—p-é—z@WH for pa(6) € (0,1), p=1.

Proof: For | € L[0, Tén-l);n], let

TSn) Tén) Tén)
V{stn?) = 3 ¢ (( sy [A“'”(k)]a,®[A<l’i‘><k)1a)> :

€ Z(l] k=0 k=0 k=0

Following the line of argument in the proof of Lemma 4.4.2, we show that, for
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any g € Cp:

V (g,l,'rén))

< 2% ea)”
P

e e P
| 205t | L[fla0 0] )+ | 2 fJ1a ek

< 2"(ca)" (ag + by (T‘_gn))v< I[Allg )") .

It remains to be shown that

n! m)\?
Bol X gt W ()| € a0 Monp).
te£fo,7{" " Vin] Ta

Let (;(k) denote the number of transitions in {A(m) : m > k + 1} until

& has occurred for the first time. The key observation for the proof is that

I e L]o, Ta("_l);n] only contributes if I < 7; and if the following condition
holds:

le—i <l g1 + Ballk—1), 1<Ek<n, (5.22)

with [_; = 0. In words, a perturbation I at transition k& may not occur after

the sequence & has occurred; see Example 5.2.1 for details. Let £(n) denote the

set of vectors [ € L]0, Tén_l);n] that satisfy condition (5.22}), that is, the set of
perturbation vectors [ that possibly contribute to the nt® derivative, then

nt (m)?
]Ee Z :lV(g),l,'r‘-gn));EO(Tf1 )

ol 1 s
lGL[O,Té"_l);n] ot Té b
n p
<n!Ey Z Liccn) (Té )>
leLfo,r{" " Vin)
It pa(6) = 1, then 75 = M — 1 and Ba(k) = M for any k and 7\ < (n + 1)M.

This yields

B Y heew ()

lEE[O,‘ré"‘l) )

< (n+ 1)1) MP E, Z 1l€£(n)
lEll[O,'ré"_l);n]
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A necessary condition for [ € £(n) is that

7_én~1)
Dilk=n A hp-L<M, |b|<M,

which implies:

Eg > Liegny| € M™
teLfo,7{" " Vin]

and, combining the above results, we obtain

Bol ) Tl Wi (")
1eL[o,r{"in) &

< nIM™P(n+1)P,

which proves the first part of the lemma.

We now turn to the proof of the second part of the lemma whereby we assume
that 0 < pz(0) < 1. For this part of the proof we work with the assumption
p = 1, that is, we consider g € C;. We divide {A(k) : k > 0} into blocks of length
M. Let 75(1) = 75 denote the number of blocks until the first M-block equals
é, i.e., for p(#) = 1 we have 73(1) = M and 75(1) = M for p(d) < 1, and let
75(k) denote the number of blocks between the (k—1)** and k** occurrence of a
M-block that equals @ (including the @ block itself). Consider | € £[0, T(n 1), n].
Recall that k(I) denotes the position of the highest non-zero element in I. Let
k(1) fall into segment m, that is,

m—1 m
Mra(m—1) <k(l) <Y Mrs(m),
k=1 k=1

where 7;(0) = 0. Such [ doesn’t contribute to the derivative if one of the first
(m — 1) M-blocks equals @. In other words, we have to place at least one per-
turbation in each M-block (in order to destroy &). If we place at least one
perturbation in each segment, then the n‘* derivative can at most effect the
first n M-blocks. We now introduce the set

H(n) = {he {0,...,n}" thzn/\hk -——O=>hm=0form>k} .
k=1

We now split up L[0, 'r,-ln—l);n] in the following way: we first decide how many

perturbations we place in the k*" segment (given by hy) and then we consider all
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possible combinations of distributing hj; perturbations over the M7;(k) places
of this segment:

n! (n)
Eo 2 Il L ! Ly (g 7§20
Ta

lEC[O,Tén_l);n]

n
<k | > I X e 2 M)
heH(n) k=1 lE{O,...,hk}M"ﬂ(’c) 1o bMTs(k)" j=1
S lm=hy,
Observe that
hy!
T 0
1€{0,... B} Mrat T Mra(k):
lm=hk
see Section G.5 in the Appendix. Hence,
n! (n>
By 2 Ll np! Ly (gri)2oTa
lG,C[O,'ra("*l);n] Ta
n n+1
<SEo| > I Mrak)™ > Mrah)
heH(n) k=1 =1
n n+1
SM™WEy | 3 J] ()™ Yo mal)
heH(n) k=1 j=1

Because 73(1) is geometrically distributed with probability of success pz(6), it
holds that

m!

Ep [(1a(1))™] < (RO

m>1,

see Section C in the Appendix. Using the fact that {7;(k)} is an i.i.d. sequence,
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we obtain
n+1
| 5 flowEno)
heH{n) k=1

k=1

=E9[ > (Z II (Ta(k))hk) (ra (@)™ +ra(n+ 1) T (rak)™
j #J
3 Z( 1 Eo [(ra())™] Eo [(ram)’““])
k=1,k#j

heH(n) j=1
n

+ 3 Eplratn+1)] H o [(ra ()]

heH(n) k=1

S 0 IT R [te@)™] B [ty

heH(n) j=1 \k=1,k#j

+ Y Eolra(U)] [T Eo [(ra(1)™]

I

heH(n) k=1
_ = hy! (hj +1)! 1 & !
B he;(n) (; (k !—Lﬁ] (pa(0))he (pa(g))h"H) M pa(6) ,CI;Il (pa(o))h’“)
(n+1)!
< Y mep 2t
h;%n) (pa(0)"t

where the last inequality follows from the fact that (ny + n2)! > (n1)! (ng)!
for ny,ne € N. It is easily seen that H(n) has 2"~1 elements, for a proof see
Section G.5 in the Appendix. Hence,

__—n! _ (n)\P
Eq Z 171 B |1V(g,l,rg">)¢o(7a )
AT
lGE[O,Tén_l);n] Ta
+lon-1_(n+1)!
S (DM R

which concludes the proof of the lemma. (3

We will use upper bounds for Eg[Bg ., (ax)}(n p)], like the one in
Lemma 5.2.2, for two purposes: (a) to calculate an upper bound for the re-
mainder term of the Taylor polynomial, and (b) to compute a lower bound for
the radius of convergence of the Taylor series. The following lemma gives an
alternative upper bound for Eg[By ;. (a(k)} (7 p)] at p = 1. The main difference
between the two upper bounds is that the bound in the following lemma turns
out to perform numerically better than that in Lemma 5.2.2. However, this
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superiority of the new bound comes at the cost that this bound will be only
implicitly given.

Lemma 5.2.3 Let {A(k)} be an i.i.d. sequence of n times Ci-differentiable
matrices in RYX] with state space A such that || A||g is finite. Let pz(0) denote

max

the probability that sequence & occurs for 6 and let & be of length M. Provided
that zo = e, it then holds for 0 < pz(6) < 1 that

Eo[By,ra (At (1, 1)] < 27 (€a(0)” (ag + by [[Alle b(pa(0), M, n)) )

where

n ‘ n+l—j & [ - gt
ef q q
b(g, M,n) & M+ Z(—l)’ ntl—j ggi ( ntl—j ) ’
= (1= q)nti=7 dg? \ gnti

forg< 1l and forq=1

b(1, M,n) & MY (n 41 - 4)7H
i=0

Proof: Let V (g, l,'r&(")) be defined as in the proof of Lemma 5.2.2. We argue
as for the proof of Lemma 5.2.2, however, we will provide an alternative upper
bound for

n! (n)
E 2 ST W (g rgmyzaTa
lEC[O,T,E"_l);n] Ta

Recall that M denotes the length of @. From the definition of the stopping time
i it follows that
a
W< 0.
We divide the sequence {A(k)} into blocks of length M. The probability that

a block is equal to @ is ¢ def pa(6). Assume that 0 < ¢ < 1. Let 8; € N be
distributed as follows

P(Bi=k)=(01-qf'q, k>0.

In words, {81 = k} is the event that the k*" M-block in {A(k)} is the first
M-block that equals @. Since 7-;50) denotes the first occurrence of an a-block,
this implies

T(-EO) <MpB, as.
Let B(k,q;-) denote the binomial distribution with parameter g, that is,
B(k,q;n) is the probability of observing n successes in k independent trials,
where the probability of success per trial is ¢, more formally

B(k,q;n) = b (1-g* ™", k>n>0.
n
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For technical convenience we set B(k,g;n) = 0 for k < n. The event {8,41 =
k+ 1} is constituted as follows: there are n blocks among the first k blocks that
are equal to @ and the (k + 1) block (which is the last block) is equal to &.
Hence, for n > 0, the distribution of 8,41 is given by

P(fBrny1 =k+1)=DB(k,q;n)q
=(k> (1 - g)* g™,

n

which is the negative binomial distribution shifted by n. An upper bound for
the moments of 3,41 is computed in Section D the Appendix.

The stopping time 'ré"> is of maximal length if we place a perturbation
on each of the first n occurrences of @; see Example 5.2.1 for details. In this
case, Tén) < Mpp+1 and there are M™ possibilities of destroying the first n
occurrences of @ through placing perturbations. Hence,

n! (n)
E 2 oGl Lol WV(atr§zoTa
lEL[O,Té"“l);n] Ta

all pert. fall on the first n strings &
< M™HE ]

If we place n — 1 perturbations on the first n — 1 occurrences of & (there are
M"™1 possibilities of doing this), then 'ré") is at most M 3,. Moreover, there is
one perturbation we are free to place on any of the Mg, places. Hence,

n! ()
E 2 T ool WViekr{)#0Ta
lEC[O,'rén_l);n] Ta
all but one pert. fall on the first n—1 strings &

< M™Eo[(MBn)Y
= M"HMEq[3?].

In general, for 0 < j < n,

> S (n9y 2o T

Ili!. . L (n-ny! “Viglrg™)#0°a
IG[,[O,T‘-E"_I);n} Ta

(n—j3) pert. fall on the first ; strings &

< M™HE BT,

with the understanding that for j = n the sum is w.r.t. the case that no per-
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turbation is placed on the first occurrence of @, which gives

n! )
E Z lO'll' ) (n—l)! 1V(g,l,rl§"));é0T&
lGE[O,Té"_l);n] Ta

IN

MY TR (615 ) (5.23)
3=0
n+1—j dj+1 (1 _ q)n+2

n+1 J+1
M Z 1——q)"+1 J qu+1 qn+1—j

IA

Inserting ps(6) for ¢ concludes the proof of the lemma for the case ps(0) > 1.
For p;(0) = 1, it holds that 8, = n, for n > 1. Inserting this equality into
(5.23) yields the second part of the lemma. O
We summarize our analysis in the following theorem.

Theorem 5.2.3 Let {A(k)} be an i.i.d. sequence of n times C-differentiable
matrices with state space A C RJXJ such that || Allg is finite. Let & be of length

max

M and let & occur with probability pz(8) and assume that

def (m)
C = su max ¢ < 00.
A(0) 96[00,£+A] 0%, CA©)

Provided that xo = e it holds, for any g € Cp:

Ego4a [9 (é A(k) ® 5'30)]
k=i
\ Ai )
- Z —T-n—!—lEoo g (@[A(k)]a> ® xo ] + TRy ’g)(GO»A)’

whereby

59 (60, 4) < RGP (60, 0)
def Ah+1 gh+1 Ch“
T Tyl CAOC

M fota A
5O b Mlle [ ((00+ A= 0 palt), M.+ 1))t
0

with f(g, M, h+1) either equal to b(pz(0), M, h+1) as defined in Lemma 5.2.3,
or equal to a(g, M, h+ 1,1) as defined in Lemma 5.2.2.

Proof: We only prove the statement for f(g, M, h+1) = b(pa(0), M, h+1) since
for f(¢, M,h+1) = a(pa(#), M, h+1,1) the proof follows from the same line of
argument.
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Note that for ¢ € (6o, 0p + A) it holds that

Eg [9 <® A(k) ®x0)
0=t k=0
s (h+1)
=|E; |g" <®[A(k)]a) ®:co)

k=0

dh+1
d9h+1

(5.19)
< E [Bg,ra,{A(k)}(h +1, 1)]

< 241l (as + by [l Allo b(pa(), M, h+ 1)) ,

where the last inequality follows from Lemma 5.2.3. Hence, the remainder term
is bounded by

l Go+A

O [ 00+ 8 - 0 (a4 by 1Alls e (0) M, + 1)
H 9o

see equation (G.2) on page 294 in the Appendix. Rearranging terms, the upper

bound for the remainder equals

1 Go+A
Whﬂ Clito) ag / (6o + A —t)hdt
. 00

2"+ YT, by [1Alle /w
* Al A

Ah+ightl C’;(fg) ag

(h+1)!

2h+1 CZ‘E'O]-)

hl

which concludes the proof of the theorem. O
We conclude this section by showing that Cp-analyticity of halted sequences
is preserved under the ®-operation.

Theorem 5.2.4 Let {A(k)} be an i.i.d. sequence in RIXJ. If A(k) is Cp-
analytic on ©, then Az(k) is Cp-analytical on © for any k, and [Az(k+1)]a ®
[A(k)]a is Cp-analytical on © for k > 0. Moreover, if, for 6y € ©, the Taylor
series for A(k) has domain of convergence Ué‘;, then the domain of convergence
of the Taylor series for [A(k)]s is Ué‘(‘) for any k. Moreover, the domain of con-

vergence of the Taylor series for [A(k + 1)]a ® [A(K)]a is Uz, for any k.

((90 + A — ) (pa(t), M, h + 1))dt

o

by |4l /""*A (B0 + & —"b(pat), M, + 1))t
2

Proof: Observe that all arguments used in the proof of Corollary 4.6.2
remain valid when we integrate over a measurable subset of the state space.
Hence, if we split up the state space in disjunct sets representing the possible
outcomes of [A(k + 1)]z ® [A(k)]a, then the proof follows from the same line of
argument as the proof of Theorem 4.2.1 and Theorem 4.1.1, respectively. O
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Remark 5.2.2 The framework of this section can be extended to the more gen-
eral case of halting the evaluation of the sequence x(k) whenever x(k) hits a
certain set. For example, let B C IPR. . and halt the system when z(k) € B.
Take

Tzo,8(0) = inf {m : ®Ag(n) ®x € B} (5.24)
n=0

as stopping time, and let Ay, 5o g(J) in the definition of the halted version, see
(5.18) on 206, be defined as

P
(ag,a1,...,am) € A™ : j = min k:®an®z0=B
n=0

Then, the results in this section readily extend to (higher-order) Cp-
differentiability and Cp-analyticity, respectively, of

T:l:[),B(o)

® Ay (k) ®xg .
k=0

We illustrate the above setup with the following example. Consider an open
queuing system with J stations, see Example 1.5.2. Denote by B the set of
state-vectors x such that xj — xo is greater than a threshold value h. Assume
that the system is initially empty and model the evolution of the system via a
homogeneous recursion, see Section 1.4.3. Consequently, when 5;"(%5 enters B,
then the total sojourn time of the k** customer exceeds h. Hence, x(Tsy,5(6))
yields the time at which the first customer that leaves the system wiolates the
sojourn time restriction.

5.2.2 The Time Until Two Successive Breakdowns

Let {A(k)} be a sequence of i.i.d. Bernoulli-(#)-distributed matrices with state
space A = {D1, Do} C RJX! as defined in Example 1.5.5. Take @ = (D;, D;) the
event that two successive breakdowns occur, then the probability of observing
the sequence is p(p,,p,)(f) = 62. Only the first-order Cp-derivative of A(k) is
significant with AG+D (k) = Dy, A~V (k) = Dy and ¢V = 1.

We are interested in the expected time at which (for the first time) the
second breakdown of two consecutive breakdown occurs. As already explained
at the beginning of Section 5.2, for z € R,., we take g(x) = (z)3 and the
quantity of interest is Eg[g(x(7(p,,p,)))]- In particular, |g(z)| < ||z||g, and we
may take ag = 0,by =1

For 6 € (0,1], 72 = 7(p,,p,) i a.s. finite and the Cy-derivative of z(7(p, p,))
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at 0 reads
T(D3.,D1)

(1)
[A(R)]D1,01))  © 0
k=0

= > X

lEE[O‘T(Dth);ll iEI[l]

T((117)1,D1) ) T((BxxDﬂ .
1, ® [A(l’l)(k")](DhDO ® o, ® [‘A(lYz )(k)](Dl,Dl) ® T
k=0 k=0

In particular, at 6y = 1 it holds that
(A(k?) . k? Z 0) = (Dl,Dl,Dl,. . ) 3

which shows that 7(p, p,) = T((%)I,Dl) =1 and T((ll))lyDl) = 3. This gives

T(Dy,Dy) )
( X [A(k)]wl,pl)) ® o

k=0

3 3
= > Y (17 QRNAYD (k)] (py,p1) » ®[A(l’r)(k)](m,m)> ® Zo -

leL[0,1;1} ieZ[l) k=0 k=0
Moreover, taking the Cp-derivative at 6, = 1, we obtain
£[0,1;1] = {(0,1),(1,0)}
and
7[(0,1)] = {(0,+1)} and Z[(1,0)] = {(+1,0)}.

To illustrate the construction of the first order C)-derivative, take, for ex-
ample, | = (1,0) and ¢ = (+1,0). The positive part of the Cp-derivative of A(k)
is D;, which gives

(AOHL0) (k) s k> 0) = (A(k) 1k > 0) = (Dy,Dy,Dy,Dy,...).

The operator [](p,,p,) sets AL (k) to E after the first occurrence of
the sequence (D1, D1) and applying the [|(p, p,) operator gives

([A((l’o)’(+1'0))(k)](Dl,Dl) :k>0) = (D1,Dy,E,E,...).

The second occurrence of (D, D1) in {A(k)} happens for 6 = 1 at T((;))I'Dl) =
3 and for any I € L[0,7(p,,p,);1] and i € ZI[I] the initial segment of
{[ACRDGLO (k)] by pyy : k > 0} will be at most of length 3. We thus ob-

tain
3
®[A((1’O)’(+1’O))(k)](ul,Dl) Qry=E®E®D; ® D ® xo
k=0
=Di®D1®uxg.
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The negative part of the Cp-derivative of A(k) is Dy and we obtain for I = (1,0)
and ¢ = (—1,0):

(A1) (k) s k> 0) = (Dg, D1, Dy, D1,D;...)
and applying the [](p, p,) operator gives
(AL ey 1y by 1k >0) = (D2, D1, Dy, E,E,...).

Hence, the first occurrence of the sequence (D1, D7) is at k = 2, which yields

3
®[A((1,0),(—1,0))(k)](Dth) Qro=E®D;® Dy ®Dy®xg
k=0
=D D1 ®D: @z .

In the same vein, we obtain for I = (0,1) and ¢ = (0, +1),

3

®[A((0’1)’(0’+1))(k)](Dl,Dl) ® zo= D1 ® D1 ® z0
k=0

and for ! = (0,1) and ¢ = (0, —1),

3
®[A((0’1)’(0’—1))(k)](Dth) Raog=D19D, DD, Qxp .
k=0

For any g € (), it therefore holds that

%El[g(w(nm,m)))] =2¢(Dy ® D1 ® zo)

——g(D1 QDI RD® .’Do)

—9(D1 ® D1 ®Dy® D1 ®xp) .
Following the above line of argument, the second order Cp-derivative reads in
explicit from

d2

W&[Q(HE(T(Dl,D,)))] =g(D1 ® D, ® %o)
+9(Dy® D1 ® Dy ® Dy ® o)
+9(D1® D1 ® Dy ® D1 ® D2 ® z0)
+9(D1 ® D1 ® D2 ® D2 ® Dy ® o)
+9(D1®D; ®D2®D1® Dy ® D1 ® x)
—29(D1 ® D1 @ Dy ® )
—-39(D1®D1®D2® D1 @),

for any g € C,. Explicit expressions for higher-order C,-derivatives can be
obtained just as easy.
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Figure 5.9: Taylor polynomial of degree h = 3 at 6y = 1 for the expected time
until two consecutive breakdowns.

Figure 5.9 shows the Taylor polynomial for degree h = 3, where we let 0 = 1
and ¢’ = 2. The thin line indicates the true value of Eg[z3(7(p,,p,))] and the
thick line shows the Taylor polynomial. The figure shows that the approximation
is fairly accurate for values of A up to 0.4. To illustrate the influence of the order
of the Taylor polynomial, we plot in Figure 5.10 the Taylor polynomial at §y = 1
of degree 5, where we again take ¢ = 1 and ¢’ = 2. The thick line shows the
Taylor polynomial and the thin line gives the true value. Figure 5.11 plots the
actual error for h = 3, where the actual error is obtained by taking the difference
between Eg[x3(7(p,,p,))] and a Taylor polynomial of degree h = 3. Figure 5.12
shows the error for predicting Eg[23(7(p,,p,))] by a Taylor polynomial of degree
h=5.

We now discuss the quality of our bound for the remainder term. Table 5.3
lists the bound for the remainder term for h = 3 and h = 5, respectively, for
various A’s where we evaluate the remainder term by b(62, h + 1, M) given in
Lemma 5.2.3. Comparing the values in Table 5.3 with the true error as shown in
Figure 5.9 (Figure 5.11) and Figure 5.10 (Figure 5.12), respectively, we conclude
that our upper bound for the remainder term is of only poor quality. As a
last point of discussion, we turn to the upper bound for the remainder term as
obtained by the mapping a(62, h+1, M, 1) given in Lemma 5.2.2. Table 5.4 shows
the numerical values for the (upper bound of the) remainder term. Comparing
the values in Table 5.3 with those in Table 5.4 shows that the upper bound by
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Figure 5.10: Taylor polynomial of degree h = 5 at 8y = 1 for the expected time
until two consecutive breakdowns.
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Figure 5.11: Error for the Taylor polynomial of degree h = 3 at 6y = 1 (see
Figure 5.9).



5.2 Random Horizon Experiments

227

Figure 5.12: Error for the Taylor polynomial of degree h = 5 at 0y (see Fig-

ure 5.10).

Table 5.3: Bound for the remainder term using b(82,h+ 1, M) (fo =1, h = 3,5

and M = 2).
A R‘(l(Dth):(‘)s)(l,A) Ré(Derl)r(')S)(l,A)
0.05 4.0779 x 10-1 3.2365 x 1072
0.1 8.3073 3.2675
0.15 55.3554 58.3219

Table 5.4: Bound for the remainder term using a(6%, h+1,M,1) (6o =1, h = 3,5

and M = 2).
A R‘(t(DlyDl)v(')Ii)(l,A) R((S(DlyDl)v(')S)(l’A)
0.05 1.9327 7.4427 x 107!
0.1 47.9138 91.6786
0.15 386.7890 2094.8819

b(6%,h + 1, M) out-performs the one by a(63,h + 1, M, 1).

We now turn to our lower bound for the radius of convergence of the Taylor
series. According to the formula of Cauchy-Hadamard, see (G.4) in Section G.4
in the Appendix, the radius of convergence of the Taylor series, denoted by r,
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is given by

-1

1 |d
r = (llmsup< dOnEl[m3(T(D1,D1))]]> )

At 8y = 1, the upper bound for the nt* order Ci-derivative in Lemma, 5.2.2 ap-
plies, and the expression on the right-hand side of the above formula is bounded

by
2n+1 % -
r> limsup( ' a(1,2,n,1))
n!

Inserting the explicit representation for a(1,2,n,1), we obtain a lower bound
for the radius of convergence through

A -l

r> (limsup (2" (n + 1)2”“)“) = %, (5.25)
n

where we use the fact that ||Al|lg = 2 and a(), = 0,b.), = 1. Hence, we obtain

1/4 as lower bound for the radius of convergence.

As we have already noticed, the quality of the approximation increases with
the order of the Taylor polynomial, see Figure 5.9 and Figure 5.10. Specifically,
the Taylor series of degree 5 provides a feasible approximation for A < 0.6,
whereas that of degree 3 only yields good results for A < 0.4. This illustrates
that our lower bound for the radius of convergence of the Taylor series, which
turns out to be 0.25 (M = 2), is a rather conservative lower bound. It is worth
noting that for A large enough, our upper bound for the remainder term is in-
creasing with respect to the degree of the Taylor polynomial. This effect already
occurs while A < r, which illustrates the imperfection of our bound because for
these values of A convergence of the Taylor series implies that eventually the
remainder term has to decrease when the degree of the Taylor polynomial is
increased.

In the general case (that is, 6p < 1, M and || A||g arbitrary), the lower bound
for the radius of convergence of the Taylor series for Eg[z3(7(p,,p,))] at 6o reads

1 . (2"||A||®cz(0)

= limsup '
n!

T(go) n

I

n n— ]'
X ((n—i—l)!M tn+1)2 IWT”)) )
0

which gives

1 M
96) =
T’( 0) 4MCA(0)
1
pa(fo
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as lower bound for the radius of convergence. Hence, for M = 2 and c4(g) = 1,
1
8

for 6y € (0, 1]. Observe that r(1) = 1/8 is smaller by a factor of 2 than the lower
bound r = 1/4 in (5.25).

7‘(90) = 9(2) 5

5.3 Taylor Series Expansions for the Lyapunov
Exponent

In this section, we study sequences {A(k)} = {Ag(k)} with 6§ € ©. We adjust
conditions (C1) to (C3) in Section 2.5.1 (see page 100) accordingly:

(C1) For any 8 € ©, the sequence {Ag(k)} is i.i.d. with common countable
state space A.

(C2) Each A € A is regular.

(C3) There is a set C of matrices such that each C € C is primitive. Further-
more, each C € C is a pattern of {Ag(k)} for any 6 € ©.

By assumption (C3), we may choose a pattern C and take a as the ¢(C)-
fold concatenation of C, where ¢(C) denotes the coupling time of C. Under
(C1) to (C3), the Lyapunov exponent of {Ag(k)}, denoted by A(f), exists, see
Theorem 2.6.2. The goal of this section is to represent the Lyapunov exponent
of {A(k)} by a Taylor series.

In Section 2.6.2, we showed that the Lyapunov exponent of a max-plus linear
system can be written as the difference between two products over a random
number of matrices. In this section, we combine this representation with our
results on Taylor series expansions over random horizon products as established
in the previous section. We thereby will obtain Taylor series expansions for the
Lyapunov exponent of max-plus linear systems. This approach has the following
benefits:

¢ # may influence either particular entries of the max-plus model or the
distribution of the entire matrix.

e The Taylor series can computed at any point of analyticity, which is in
contrast to the results known so far, where only Maclaurin series have
been studied.

e Lower bounds for the radius of convergence of the Taylor series for the
Lyapunov exponent are deduced from more elementary properties of the
system, which allows us to establish lower bounds for the radius of con-
vergence in a very simple manner.

e Upper bounds for the remainder term are obtained in explicit form.
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We illustrate our approach with the Bernoulli scheme in Example 1.5.5.

The Lyapunov Problem: Let § € © be a real-valued parameter, © being
an interval. We shall take @ to be a variational parameter of an i.i.d. sequence

{A¢(k)} of square matrices in Ry and study sequences {zs(k)} following

zo(k+ 1)=Ag(k) @ zo(k}, k>0,

with z¢(0) = zo for all . We assume that {Ag(k)} satisfies (C1) to (C3), for
# € ©. The aim of this section is to write the Lyapunov exponent of {A4¢(k)},
given by

M6 ®e = Jim TE{(wo()], 1<i<J, (5.26)

as a Taylor series.

In Section 5.3.1 we will establish sufficient conditions for analyticity of the
Lyapunov exponent. In Section 5.3.2, we apply these results to the Bernoulli
scheme. Finally, Section 5.3.3 discusses the relation between our result and the
Taylor series known in the literature.

5.3.1 Analytic Expansion of the Lyapunov Exponent

As explained in Section 2.6.2, under appropriate conditions, the Lyapunov ex-
ponent can be represented by the difference between two products of matrices,
where the range of each product is given by stopping time . The main difference
between the setup of Section 2.6.2 and the current section is that in the setup in
Section 2.6.2 time runs backwards, whereas in (5.26) time runs forward. Thus,
in order to use results of the previous section for the current analysis we have
to reverse time. When {A(k)} is i.i.d., this can be done without any difficulty
and we will freely use results from the previous sections in reversed time.

Following Section 2.6.2, analyticity of the Lyapunov exponent can be de-
duced from analyticity of the product E[®g=_n A(k) ® zo], where 7 is the time
of the first occurrence of & going backward from time 0.

We write 73 for the number of transitions in {A(k) : 0 > &} until the first
occurrence of @, that is, n; is the counterpart of 7;. Following Section 2.6.2 we
let 7z > 0 and the actual time of the first occurrence of @ in {A(k) : 0 > k}
is thus given by —n;. In the same vein we adjust the notation introduced in
the previous section(s) to time running backwards. For k < 0, we define [A(k)]a
such that [A(k)]a = A(k) as long as @ hasn’t occurred in {A(k) : 0 > k} and
[A(k)]a = E otherwise, that is, [A(k)]z = A(k) for 0 > k > —n; and [A(k)]; = E
for —ng > k.

Furthermore, denoting by né") the index k such that at & the (n + 1)
occurrence of the pattern & in {A(k) : 0 > k} takes place, we adapt definition
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(5.16) to time running backwards as follows:

. )
( X [A(k)]a) (5.27)
k=—na

= Y =rrm

teLl-n{""V,0m) "M

i€Z[l)
9 1 ° . 0 —
T & & M9®mE, @ U k)
k=) k=™ k=)

The bound By . 14(k)} (1, p), defined in (5.18) reads in reserved time
By s (M P)

= Z I - 1)l IZ H [(11426)].1

teLl-n{"V,on] ~Ma 0" iezl] =

—n$"

0
x2ag by [ 30 ||a%Rw)||+ llmolle
k___n(")

p

0
+h | 30 |[AR®)]| + lwolle
k___n(")

?

for n > 1, and, for n =0,

k=-ns

p
0
def
B a4 (0,9) = 2ag + b, ( Z [[AR)lg + Ilmoll@) :

Following the line of the proof of Lemma 4.4.2 it follows for any g € C, that

o (n)
( X [Ak)a ® xo) <

< By yaia(y (D),
k=—ns

forn > 1, and

. ©
g ( & [A(k)]a@’zo) < By

< Bg s 14t (0,p)
k=—n;

where we set

. . ©
R Ak @z = ( %) [A(k)]a®wo> .

k=—nz k=—n5
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The following lemma. is a straightforward adaptation of Lemma 5.2.1.

Lemma 5.3.1 Forn > 1, let A(k) (0 > k) be mutually stochastically indepen-
dent and (n+1) times Cy,-differentiable matrices in R1% . If, for0 < m < n+1,

sup Eg[B? m, < oo,
SUp Bo[B{g s, acry} ()

) . . o)
%—;Eo [9( X A(k)®xo)} = Eo |g" ( X [A(k)]&) ®zo ||,

k=—ns k=—na

for any g € Cp.

Before we can state the main result of this section, we provide an upper
bound for

0 (n)
(A(l) & ® A ®wo) .
k=-na

However, before we state the result we note that one has to distinguish

. )
(A(l)@ (034 [A(k)]a®m0>

and 0 -
([A(l)]a ® @ [Ak)a mo) .
k=-na

In the former expression []; is applied to { A% (k) : 0 > k} whereas in the latter
it is applied to {A®D (k) : 1 >k}, for [ € E[—né"—l), ..., 1;n] and i € I]l]. To
illustrate the difference, we consider the multi-server example. Let

(A(1), A(0), A(-1), A(-2),...) = (D1,D4,D1,D9,Dy,...)

and consider | = (1,0,0,...) € L[-n{"™V,...,1;n], i = (1,0,0,0,...) € I[l].
Then, .
(A%)(k) :1> k) = (D1,D1,D1,Dq,Dy,...)

and )
([A(l'l)(k)]a 1> k) - (DlaDhEyEvE"") )

whereas
(AW (1), [AYD (k)] : 0 > k) = (D1, D1, D1, E,E,...).

The following lemma, which is a variant of the Lemma 4.4.2, provides the desired
upper bound.
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Lemma 5.3.2 Let {A(k)} be an i.i.d. sequence of n times Cp-differentiable
matrices in RLXJ. For any g € C, it holds that

max
0 (n)
g |41 e® ® [A(k)]a ® zo < By e A} (D) 5
k=—na

where

By na (ageyy (0 P)

= Z PN AT Z H Cm)]a

(n~ x)'

leL]- r]("ﬁl)ln] ~Na ieZ[l] k——n )

r

1
x| 20+ | 3 |[AYE)]| | + liwolle
Ic—~—n(
P
1 L —
o | 3 [[ADO®|| + lsole
P ®

Proof: The proof follows from the same line of argument as the proof of
Lemma 4.4.2 and is therefore omitted. (]

We now turn to the Lyapunov exponent. Note that in case of the Lyapunov
exponent we take as performance function g the projection on any component
of the state-vector; more formally, we take g(z) = (x); for some 5 € {1,...,J}.

Theorem 5.3.1 Let assumptions (C1) to (C3) be satisfied. If A(0) is Ci-
analytic on © with domain of convergence U(y), for 6y € O, and if, for some
je{l,...,J}, ]E(?D[B(l-)j,na,{A(k)}(")1)] is finite for any n and

o0

1 1
D a5 Eo[ B, g (an(mD]10 = 0l" <o
0

L=

then
klln;o Eolx(k+1) —z(k)] = ) Qe

exists and is analytic on ©. For 6y € O, the domain of convergence is at least
U(0o). Moreover, the nt" derivative of the Lyapunov exponent is given by

(n) 0 (n)
MOy ®e=Es || A ® Q) [AK)a| ®zo| —Eo || X [AK)a] ®zo

k=—na k=—‘77&

dn
dom
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Proof: Theorem 2.6.2 implies

k=—na k=—na

A(0)=E, (A(l)@ (%) A(k)®xo) - ( (%) A(k)@xo) ]

0 0
=Ry (A(1)® ® [A(k)](i@wo) - ( ® [A(k)]a®$o) } :

k=—00 j k=—o00

for any component j. Hence, for the proof it suffices to show the analyticity of

0
” [( ® Am@wo)
k=-na j

and

0 0
Ey |:<A(1)® ® A(k))@l’o) :I = n}i—rsnoo]Ee {(A(l)@ ® [A(k)]d@:m) :|

k=—na k=—m j
(5.29)

0
= am Eo [( X [Ak)a ®mo) ] (5.28)
J

k=—m

separately. Note that
Eoo[BL); ma, 1k} (0 D] < Eog[BLy, e gaeyy (s DI 020,

for any component j, In accordance with Theorem 5.2.4, the finite products on
the right-hand side of (5.28) and (5.29) are analytic and we obtain, for ¢ = 0,1,

E9[® A(k)@mo} = JE’&OZW

k=-na n=0

Eg [ ® [A(k)]a@xo] 9—9—‘71;3‘?2
G=00 '

k=—m

k=—m

= ,,}EHOOZE% {( X [A(k)]a> ®$o} %QQL- (5.30)

We now show that we may interchange the order of limit and summation. In
accordance with Lemma 4.4.2 and Lemma 5.3.2, for any m and any component

7 it holds that
(9 — 60)" i ™
B [((@mmw)]a) m) }
J

< 3 E. (B 10 = 6"
< Z 0o [B(-)jma,{A(k)}(n’ 1)] n! ’

n=0

>

n=0
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which is finite by assumption, for any 8 € Uy,. Hence, by dominated convergence,

oo n i (n)
Jim 30 E i e [(( ® (4ol ®xo) ]

n=0 k=—m

N ) ; (m)
_ Zw;ﬁ)_gi_rpwﬂigo (( ® [A(k)]a> ®wo) } ,
n=0 ' .
3

k=—m

for 1 < j < J. Following the line of argument for the proof of Lemma 5.2.1, we
now show that

Jm_Bo, [( ( ® [A(k)h) m) }zmo ( ® [A(kna) ,
k=—m j k=—ns ;

for 1 £ j < J, which concludes the proof of the theorem. O

By Theorem 5.3.1, we obtain an explicit representation for the (h + 1)%¢
derivative of A and, thereby, an upper bound for the error term of a Taylor
polynomial of degree h.

Theorem 5.3.2 Under assumptions (C1) to (C3), denote by & the sequence of
matrices constituting the pattern. Let A(0) with state space A be (h+1) times C;-
differentiable and let p5(0) be the probability that the sequence & occurs. Assume
that || Alle and Ca(oy are finite. Provided that xo = e, it then holds that

N n 0 (n)
)\(90+A)®e=2% Eqg, (A(1)® (%4 [A(k)]a> ® %o

m=0 k=—ng

k=—nz

0 (n)
— Eqg, ( ® [A(k)]a> ® o
A
+ rh+1(00, A) y
for 80,00 + A € O, with
|r,’)+1(60,A)| < R2+1(90:A)
def 9h+2 Bo+A
= = C,’?(Lgl) ||-A||ea/ (6o + A — )" (1 + f(pa(t), c,h + 1)) dt,
. 0o

where ¢ denotes the length of @ and f(,c,h+1) is either equal to b(-,c,h+1) as
defined in Lemma 5.2.3, or is equal to a{-,c,h+1,1) as defined in Lemma 5.2.2.

Proof: We only prove the statement for f(ps(6), M,h+1) = b(pa(6), M,h+1)
since for f(q,M,h + 1) = a(ps(6), M, h + 1,1) the proof follows from the same
line of argument.
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By Theorem 5.3.1, the (h + 1)®¢ order derivative of A is given by

dh+1
— |  Af)®e
dgh+1 =60
0 (h+1) 0 (h+1)
=Eq, [|AD® @ [AK)a ®ao| —Eg || Q) [AK)a ® 0| ,
k=—ns k=—ng

and in accordance with Lemma 5.3.2 and equation (5.19) on page 211 this
implies
dh+i

prre=d IRAC))

1 0
<Eso [ By, maavn B+ 1, D] +Eou [ B, macin (b + 1, 1]

0=0¢
<20y [BLy, ma ey (h+ 1D (5.31)

for any component j. Following the line of argument for the proof of
Lemma 5.2.3, we show that

]EB [B(1~),',na,{A(k)}(h’ + 1, 1)] < 2h+IC’XE—01) ||.A||Q) (1 + b(pa(@), C, h+ 1) ) .

Following the line of argument in the proof of Theorem 5.2.3, we calculate with
the help of the above inequality an upper bound for the remainder term, which
concludes the proof of the theorem. O}

An example illustrating the above theorem will be given in the following
section.

5.3.2 The Bernoulli Scheme

Let {A(k)} be a sequence of i.i.d. Bernoulli-(#)-distributed matrices with state
space A = {Dj,D;} C RJXI as defined in Example 1.5.5. For the numerical
examples, we set 0 = 1 and ¢/ = 2. Assumptions (C1) to (C3) hold. More
specifically, Dy is a primitive matrix that may serve as pattern. Since D is
already an element of A, we have N = ¢(D2) in Definition 2.5.1, where ¢(D2)
denotes the coupling time of Dy. We now take @ as the ¢(D3) fold concatenation
of Dz:

dq—if(DZ)"‘yDZ)v
e —r’

c(Dg) times

that is, ¢ def ¢(Dg) is the length of G. and the probability of observing & equals
(1-6)e.

We calculate the first-order derivative of A(f) at ¢ = 0. This implies that
A(k) = Dy for all k. Furthermore, the coupling time of D3 equals ¢ and since
at 6§ = 0 the sequence {A(k)} is deterministic: » = ¢ — 1. The first-order C)-
derivative of A(k) is (1, Dy, D3) and all higher-order Cj-derivatives are not sig-
nificant, see Section 5.2.2.
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In the remainder of this section, we denote for z,3 € R’ the conventional
component-wise difference of  and y by £—y and their conventional component-
wise addition by x + y. The symbol > has to interpreted accordingly. In accor-
dance with Theorem 5.3.1, we obtain

d c o c
i Mo)®e=) Di @D ®Di®z0 — »_ D5t ® 3o
6=0 j=0 J=0
c—1 i c—1
=Y DD ®@D§®T + Y Ds® o,
j=0 Jj=0

compare Section 5.2.2. We set Xy = D§ ® z¢ and, since ¢ is the coupling time
of Dy, it follows that X is an eigenvector of Dj. In accordance with (2.48) on
page 113, we obtain

d

do

[
) ®@e=> (Dg—j ®D1®Xo ~ D2 ® Xo)
6=0 j=0

- Cz_‘j (D5 @ Xo - Xo)
=0

Higher-order C;-derivatives are obtained from the same line of thought. The
Taylor polynomial of degree h = 3 is shown in Figure 5.13 and Taylor polynomial
for h = 5 is shown in Figure 5.14, where the thin line represents the true value,
see Example 2.4.1.

Next we compute our upper bound for the remainder term. Note that
Ca@y = 1 and that |[A|lg = [|D1]le @ ||D2|le. We thus obtain for the re-
mainder term of the Taylor polynomial of degree h:

2h+2

R 11 (00, 8) = == (IID1lle @ 1| D2le)

Oo+A
x/ (0o + A — 1) (14 b((1 — )%, ¢, h + 1)) dt,
0o

with 6p € [0,1) and 8y < 0y + A < 1. In the following, we address the actual
quality of the Taylor polynomial approximation. At 6y = 0, A(0) is just the
Lyapunov exponent of Dy, and we obtain A(0) = 1. From

MO+ A) < A0) + R}N0,A)

we obtain an immediate (that is, without estimating/calculating any derivatives)
upper bound for A(A). For example, elaborating on the numerical values in
Table 5.5 (left), it follows A(0.01) < 3.0130. Unfortunately, this is a rather
useless bound because, for ¢ = 1 and ¢’ = 2, the Lyapunov exponent is at most
2 and thus 1 < A(0.1) < 2.

Table 5.5 shows the error term for the Taylor polynomial at 6y = 0 and
fo = 0.1 for A = 0.01 and for various values of h. Comparing the results in
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Figure 5.13: Taylor polynomial of degree h = 3 at 6y = 0 for the Lyapunov
exponent.
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Figure 5.14: Taylor polynomial of degree h = 5 at 6y = 0 for the Lyapunov
exponent.

Table 5.5 (right) with the results in Table 5.5 (left), one observes (i) that the
error terms at 6p = 0.1 are larger than those at 6y = 0 and (ii) that the error
decreases at a slower pace at §p = 0.1 than at 8y = 0. This comes as no surprise,
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Table 5.5: 6p = 0, A = 0.01 (left side); 6y = 0.1, A = 0.01 (right side)

h | R}, ,(0.0,0.01) h | R}, ,(0.1,0.01)
0 13.0096 0 20.6007

1 2.1376 1 4.2526

2 | 2.8680 x 10~ 2 | 7.4748 x 107!
3 1 3.4577 x 1072 3 | 1.2096 x 101!
4 | 3.8653 x 1073 4 | 1.8505 x 10~2
5 | 4.1227 x 10~ 5 | 2.7206 x 10~3
10 | 3.7668 x 108 10 | 1.3633 x 10~7

since the system at 8y = 0 is deterministic whereas at 6y = 0.1 we observe a
stochastic system.

The most erratic behavior of the system will occur at 9 = 0.5 and Table 5.6
presents numerical results for this case. According to (5.32) we have to choose
A < 0.00390 (= 0.5%/16).

Table 5.6: 6y = 0.5, A = 0.003 (left side); 8o = 0.5, h = 5 (right side)

A R2(0.5, A)
102 9699.6700
10—3 | 9.0143 x 103
10~4 | 8.9506 x 1079
10~5 | 8.9442 x 10~18

h | Rp,,(0.5,0.003)
5 6.6768

10 | 9.5109 x 10~2

15| 1.1311 %1073

Inspecting the numerical values, one concludes that the error term decreases
at too slow a pace for a Taylor approximation for A(0.503) at 6 = 0.5 at
to be of any use. Finally, we illustrate in Table 5.6 the influence of A and h
on the remainder term at 6y = 0.5. Specifically, Table 5.6 (right) illustrates
that A = 1073 is a reasonable choice, when we assume that one is willing to
evaluate the first five derivatives of A with respect to 6 at 0.5. However, the
numerical values presented in the above tables are only upper bounds for the
true remainder term, which stems from the fact that we only work with a (crude)
upper bound given by b(g,c,h + 1).

In the remainder of this section, we discuss our bound for the radius of
convergence for the Taylor series. Denote the radius of convergence of the Taylor
series at 0 by r(6). According to the formula of Cauchy-Hadamard, see {G.4)
in Section G.4 in the Appendix, a lower bound for radius of convergence of the
Taylor series at 6 = 0 is obtained from (5.31) together with Lemma 5.2.2 as
follows

1y —1
r(o>z(nmsup (52 (1Dsllo @ 1Dalle) 1+ a1, e, 1) ) ) -
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Hence, a lower bound for r(0) is given by

n!

-1
2n+1 %L
(limsup ( (l1D1lle @ || D2lle) (1+n!c"+1(n+1))> > .

For example, let 0 = 1, ¢/ = 2, then ¢(D1) = 4, see Example 2.1.1, and
ID1lle @ lID2lle = max(o,0') =2,

which implies

1\ -1
r(0) = (limsup (%2"*’2 (1+ nta™t(n+ 1))) ")

for the lower bound for radius of convergence. Hence,

1
> L
"0 2 3,

which recovers the result in [7]. The above results were improved in [8] using
a contraction argument for Hilbert’s projective metric inspired by [88]. Elabo-
rating on the ‘memory loss’ property implied by the occurrence of @, Gaubert
and Hong improve in [48] the lower bound for the domain of convergence of the
Taylor series at 8o = 0 in [7, 8].

In the general case (that is, 6 > 0, ¢ and || A||g arbitrary), we obtain

27| 4] |6 Cl g

n!

< limsu
(@) = p(

1 n
1 1 | n+1 n—1
y ( F(n+ DIt (n 4 1)2 p—a(eo)nﬂ)) ,

which gives

7(6o) > pa(0o) (5.32)

1
4CCA(0)

as lower bound for the radius of convergence.

5.3.3 A Note on the Elements of the Taylor Series for the
Bernoulli System

The coefficients of the Taylor series are rather complex and can be represented
in various ways; see for example the representations in [7]. Our analysis leads to
yet another way of representing the coeflicients of the Taylor series and in what
follows we illustrate for the first-order derivative of the Lyapunov exponent
of the Bernoulli system that the expression in Theorem 5.3.1 can indeed be
algebraically manipulated in order to resemble the coefficients in Theorem 1 in
7).



5.3 The Lyapunov Exponent 241

We have already shown that

c

d o
=l Mo @e=Y (D57 @Di1® Xo - Dy® Xo)
=0 j=0
c—1

Y (D5 eDie X - X)),  (5:33)
3=0

where, like in the previous section, we denote for x,y € RY the conventional
component-wise difference of x and y by x — y, their conventional component-
wise addition by z + y and interpret the symbol )" accordingly. Recall that

)\(0)@9 =Dy ® Xo — Xo,
which gives

d

T M) @e=—cA(0)®e — D; ® Xp

6=0

C c—1
+3 Di7 @D ®Xo -y D5 ® Dy ® Xo.(5.34)

j=0 3=0
It is easily checked that
c ) c—1 .
D§®D1®Xo =Y Di7®D1®Xo— » D@D ®Xo.
Jj=0 J=0

Inserting the above equality into (5.34) we obtain

A0)® e=Di® D1 ® Xo — Da® Xo — cA(0) ®e.
=0

Using the fact that Dy ® Xo = A(0) ® Xo, which can be written as Dy ® Xy =
A(0)® e + Xy, we obtain

| AO)®e=Di®Di®Xo ~ Xo ~ (c+DA0) 8,  (5.35)

6=0

which is the explicit form of the first-order derivative of the Lyapunov exponent
at 6p = 0 as given in [7].
For example, let ¢ = 1 and ¢’ = 2, The matrix

le?2ce¢
leece
cece
cee

Dy =
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has eigenvalue A(D;) = 1, and coupling time ¢(D3) = 4, see Example 2.1.1. It
is easily computed that

4454
4 _j 4454
(D2)"=1 3343
4454
The eigenspace of Dy is given by
Ty X1 1
_ T2 4 s o . 1
V(D,) = s ERL.x|TaeR: 5 =a®|, ,
T4 T4 1
see Theorem 2.1.2. Hence, Equation (5.35) reads
4454 le2c¢ 1 1
d 4454 lece 1 1
al,, €=\ 3343 ce2e|®lo] " |o] "P®e
4454 celeg 1 1
7 1
7 1
=6 0 -5R®e
7 1
=1Q®e,

which implies that

Remark 5.3.1 The coupling time of Dy is of key importance for the above
expressions for the derivative of A(8) at 0 = 0. Unfortunately, there are no ef-
ficient algorithms for evaluating the coupling time of a matriz. In particular,
determining the coupling time of large matrices poses a serious problem. How-
ever, inspecting the above formulae for the derivative of A(8), one observes that
the explicit knowledge of the coupling time can be avoided. We will explain this
in the following. Starting point is the representation in (5.35). Notice that

(c+DA0)®e = DI ® Xy — Xo,

which implies
(c+1)A0)®e + Xo = DS @ X, .
Inserting the above into (5.35) yields

d

—| MO ®e=D®D,®Xo — Di' ® Xp.
9 {0
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Forj >0, let
X(j)=Di®Di®X, and Y(j) = Dj"'®X,.

Under the general assumptions, the eigenspace of Dy reduces to the single point

Xo in PR?XY and we denote the number of transitions until X (5) = Y (§) = X,

max
by T, or, more formally,

T = inf{j205m=m=f‘)}'

Note that 7 < ¢. Provided that X_(j_) = )-/(_j)- = Xg, it holds that
Di®X(j) - DF®Y(j) = X(j) - Y(j), k>0.
This implies
D@D ®Xo - DS ' @ Xo=Di ® D1 ® Xo — D5 ® D2 ® X .

Hence,
d

E_é =0

and we obtain a representation of d\/d that is independent of the coupling
time. Moreover, the above representation can be implemented in a computer
program in order to compute the derivative with a sequential algorithm. To see
this, recall that efficient algorithms exists for computing an eigenvector of a maz-
plus matriz (see Section 2.1), and an eigenvector is the only input required for
computing 7. Following the above line of argument, representations for higher-
order derivatives avoiding the explicit knowledge of the coupling time can be
obtained as well.

/\(9) = D£®D1®X0 - D£®D2®X0

5.4 Stationary Waiting Times

In this section we turn to the analysis of stationary waiting times. In particular,
we will provide a light-traffic approximation for stationary waiting times in open
queuing networks with Poisson-A-arrival stream. By ‘light-traffic approximation’
we mean a Taylor series expansion with respect to A at A = 0. Note that A = 0
refers to the situation where no external customers arrive at the system.

Here ‘X’ stands for the intensity of a Poisson process, which is in contrast to
the previous sections where A denoted the Lyapunov exponent. Both notations
are classical and we have chosen to honor the notational traditions and speak
of a Poisson-A-process instead of a Poisson-8-process, which would be the more
logical notation in the context of this monograph. Specifically, since ‘A’ is the
parameter of interest in this section we will discuss derivatives with respect to
A rather than with respect to 6.

We consider the following situation: An open queuing network with J sta-
tions is given such that the vector of beginning of service times at the stations,
denoted by z(k), follows the recursion

2(k+1) = A(k) @ z(k) & 7(k + 1) ® B(k), (5.36)
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with zg = e, where 73, denotes the time of the k** arrival to the system; see equa-

tion (1.15) in Section 1.4.2.2 and equation (1.28) in Example 1.5.3, respectively.
As usually, we denote by o((k) the k** interarrival time, which implies

k
(k)= oo(i), k=1,
=1

with 7(0) = 0. Then, W;(k) = z;(k) — 7(k) denotes the time the k" cus-
tomer arriving to the system spends in the system until beginning of her/his
service at server j. The vector of k" waiting times, denoted by W(k) =
(Wa(k),...,W;(k)), follows the recursion

W(k+1) = A(k) ® Coo(k + 1)) @ W(k) ® B(k), k>0, (5.37)

with W(0) = zy (we assume that the queues are initially empty), where C(h)
denotes a diagonal matrix with —h on the diagonal and e elsewhere, see Sec-
tion 1.4.4 for details. Alternatively, z;(k) in (2.30) may model the times of the
k" departure from station j. With this interpretation of z(k), W;(k) defined
above represents the time spend by the k*® customer arriving to the system
until departing from station j.

‘We assume that the arrival stream is a Poisson-A-process for some A > 0. In
other words, the interarrival times are exponentially distributed with mean 1/X
and {7:(k)} is a Poisson-A-process, or, more formally, 7,(0) = 0 and

k
k) = Y ooi), k=1,
i=1

with {oo{k)} an i.i.d. sequence of exponentially distributed random variables
with mean 1/A.

Throughout this section, we assume that (W1) and (W2) are in force, see
page 87. Moreover we assume that

(W3)’ The sequence {(A(k), B*(k))} is i.i.d. and independent of {7x(k)}.

See (W3) for a definition of B*(k). Whenever, W (k) = B(k — 1), the k"
customer arriving to the system receives immediate service at all stations on
her /his way through the network. Suppose that W(m) = B(m—1). From (5.37)
together with (W3)' it follows that {W (k) : k < m} and W(k) : k > m} are
stochastically independent. The first time that W (k) starts anew independent
of the past is given by

= inf{k>1:W(k) =Bk-1)}

and we call {W(k): 1 < k < 7.} a cycle. Condition (W1),(W2) and (W3)'
imply that {W(k)} is a regenerative process, see Section E.9 in the Appendix
for basic definitions.
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5.4.1 Cycles of Waiting Times

Let ¢ be some performance characteristics of the waiting times that can be
computed from one cycle of the regenerative process {W(k)}. A cycle contains
at least one customer arriving at time 7,(1) and we call this customer initial
customer. This customer experiences time vector B(0), that is, it takes the
initial customer B;(0) time units until her/his beginning of service at station j
and B;(0) = ¢ if the customer doesn’t visit station j at all. This property is not
obvious and we refer to Lemma 1.4.3 for a proof. A cycle may contain more than
just the initial customer and these customers are called additional customers.
The number of additional customers in the first cycle, denoted by [, equals
Br = va» — 1. In words, on the event {#x = m}, the cycle contains one initial
customer and m additional customers. The (m +2)™? customer experiences thus
no waiting on her/his way through the network and she/he is the initial customer
of a new cycle. Observe that for any max-plus linear queuing system, 3 is
measurable with respect to the o-field generated by {(7a(k + 1), A(k), B(k))}.
By conditions (W1) — (W3)’, it holds with probability one that

VA: 0<A<XA = O(k)<Bxk), £20. (5.38)

The reason for this is that, for A < Ag, the ‘A’ system is visited by less customers
than the ‘Ag’ system and waiting times are thus smaller. For a rigorous proof of
this statement use the fact that any finite element of A(k) and B(k) is positive
and that W (k) is thus monotone in 75 (k), see (5.37), and that 75 (k) is monotone
decreasing in A.

The fact that ¢ only depends on one cycle can be expressed as follows:

Br+1
=Y g(W(k)

k=1
=¢g({ma(k) : 1<k < Br+ 1}, {(A(k), B(k)) : 0 < k < Ba})
def

= d({ma(k)}), (5.39)

where g : [0,00) — R is some measurable mapping. For example, ¢, may yield
the accumulated waiting time per cycle. Observe that ¢, depends on A only
through {7)(k)} and §,.

Notice that {W(k)} depends on {7 (k)} only through the interarrival times,
see (5.37). We have assumed that {r\(k + 1) — 7\(k)} constitutes an i.i.d. se-
quence. Hence, we may as well assume that the initial customer arrives at time
zero and set W(1) = B(0). In other words, we shift the arrival process by
00(1) to the left so that 7,(1) = 0 a.s. The arrival process thus describes only

the additional customers and the cycle performance becomes ¢g({7a(k)}) def

$g({0} U {mA(K)}).
In the following we consider ¢, for the truncated arrival processes. Suppose
that the initial customer is the only customer who arrives, that is, 8y = 0 and
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{ma(k) >0:1 <k < B} =0. In this case, the cycle performance equals
pg(0) = g(W(1)) = g(B(0)), (5.40)

which stems from the fact that it takes the initial customer B;(0) time units
until beginning of her/his service at station j. If the arrival stream contains in
addition to the initial one an extra customer, and if this additional customer
arrives at time 7 > 0, we set
def
W(2;r) F A1) C(r)® W(l)® B(1).

For vectors x and y, write z > y if x; > y; for all elements and if there exists at
least one element j such that z; > y;. With this notation, we obtain

bg(r) = g(B(0)) + lw(znerm)g(W(2i7)),
where ¢(B(0)) refers to the initial customer. The indicator mapping in the
above equation expresses the fact that W(2;7) only contributes to the cycle
if W(2;7) # B(1).
More generally, suppose customers arrive from the outside at time epoches
Tlyeeo, Thy With 0 < 1y < 79 < -+« < T, < 00 and k > 1, then the waiting time
of the customer arriving at 7% is given by

Wk+1n,...,m%) = Ak) @ C(riq1 — 1) @ W(k; 71, ..., Tk—1) ® B(k)

and it holds that
k

[
bo(1,. ., )=g(B©0)) + D g(W(i+Lir,...,7w) [] wistin,...r)oBG) -
i=1 =1

Example 5.4.1 Consider the M/G/1 queue. For this system we have B(0) =0
and E[g(W (1))] = ¢(0); the arrival times of customers are given by the Pois-
son process {Ta(k)} and Ta(k + 1) — 7a(k) follows thus an exponential distribu-
tion with rate A\. Assume that the service time distribution has support [0, c0)
and denote its density by 5. The values E[W (2;72(1))], E[W (3; 72 (1), 72(2))]
and E[W(4;7(1),7(2),7(3))] are easily computed with the help of the explicit
formulae in Section 5.1.3.1. To see this, recall that we have assumed that the
interarrival times are 1.4.d. exponentially distributed with mean 1/A. Hence,

Efdg(72(1))]=9(0) + E[lwz;may)>0 9(W(2;72(1)))]
= oooos—-a S(s) Ae~*%ds
=90 + [ [ st -0 A dsda, (51
E[pg(Ta(1), 72(2))]
= 9(0) +E[ Iwairn (a0 9(W (25 7(1)))]
+]E[1W(3;-r,\(1),7,\(2))>01W(2;n(1))>0 Q(W(3§TA(1)aTA(2)))]
= g(0) +,\2/000/000/aim/ooc (g(31+32—a1—a2) + g(sl—al))

XfS(Sz) fS(Sl) e-—)\(a2+a1) d82 d81 da2 da1
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[o3] [¢s) ai1+az o5}
we [T (9051 + 52 — a1 — az) + g(s1 — o))
0 0 ay a+1+az—sy
x f5(s3) f5(s1) e~ Ma2+eD) g, ds) day day (5.42)

and
E[¢Q(TA(1)7TA(2),T/\(3))] - g(O)
=E [ L (2;m (1))>0 9(W (2, 7(1)))

+ 1w (2;r (1)) >0 1w (3smx (1), (2)) >0 9(W (35 7a (1), 72 (2)))
+ 1w (2im (1))>0 1w Bira (1),72(2))>0 1w (4575(1),72(2),72(3)) >0

xg(W (4;73(1), 72(2), (3))) |

/oo /oo /oo /oo
0 0 0 a1+az+taz
/oo
0
[o]
/ h(31,32,33,a1,a2,a3) d83 d82 d$1 da3 da2 da1
0
0o poo poo partaz
4] ¢ 0 ay
/00
ai+aztaz—s1

[o o]
/ h(s1, 82, 83, a1, ag, as) dsz dso dsy dag das day
0
00 poO pOO par-taz
0 0 0 ay
/a1+a2+a3~81
aytaz—s)

/ )
ai1+az+az—s;—s2

h(s1, 82, 83, a1, a2, as) dss dsa ds1 das dag daa
00 poo P00 paltaztaz
0 0 0 ai1tasz

/ )
a1+aztaz—s

oo
/ hiy (81, 82, 83, a1, @2, as) dss dsy dsy dag dag da,
0
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o po0 po0 paytaztas
0 1] 0 a1+as
/a1+az+u3—81
0
/OO
a1+aztaz—s1—s2

X hi, (81, 82, 83, 01, G2, a3) dsg dsa ds1 dag das da;
(5.43)

with
h(s1,82,83,a1,a2,a3) = (g(s1 + s2 + 83 — a1 — a2 — az) +
+g(s1+ 82 —a1—az) + g(s1 — al))
X 5 (s3) f5(52) 5 (1) NN amtea),

A basic property of Poisson processes is that a Poisson process with rate
0 < A < Mg can be obtained from a Poisson-Ag-process through thinning the
Poisson-Ag-process in an appropriate way. Specifically, let {7,(k)} denote a
Poisson-Ag-process and define {7)(k)} as follows: with probability A/Aq an el-
ement in {7),(k)} is accepted and with probability 1 — A/A¢ the element is
rejected/deleted. Then, {A(k)} is a Poisson-A-process. In order to make use of
this property, we introduce an i.i.d. sequence {Y\(k)} as follows

PR = 1) = ma(1) = 3o = 1= P(YA(E) = 0) = ma(0).

Given {Yx(k)}, let {ma,(k)|Ya(k)} denote the subsequence of {r,(k)}} con-
stituted of those 7a,(k) for which Yy(k) = 1, that is, the m** element of
{2 (R)|Ya(K)} is given by

k
Ty (n) if n=inf{]g2 1‘ZYA(Z) _ m} ,

=1

and set
¢g({ma0 ()}, {Ya(R)}) = do({mro (R)IYA(K)}) -
By (5.39), ¢4 depends on {Y)(k)} only through the first G, elements:

¢g({mro (B} {Va(R)}) = dg({mag(B)}, (Ya(1),- -, Ya(B20)) ) -

Remark 5.4.1 Notice that ‘thinning’ only affects additional customers. The
reason for this is that with positive probability all customers of a cycle may
be rejected. QObviously, a cycle has to contain at least one customer and we
guarantee that the ‘A’ version of the cycle obtained by thinning contains at least
one customer through excluding the initial customer form thinning.

The resulting cycle is a legitimate sample of the first cycle under A. To see
this, notice that W (k) depends on 7 only through the interarrival times and
that the thinning decisions are i...d. by (W3)'.
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Thinning the Poisson-Ag-processes according to {Yx(k)} yields

Efgg({ma(k)}) | Bro]
=E[¢g( {mo(B)} (Ya(1), ..., Ya(Br))) [ Bxo)

=E I: Z ¢g({T>\o(k)}an)

n€{0,1}%0
A X Y Brg—2 Mk
g (r> (1 - x) Pro

=E |: Z bg({mro ()}, m) X /‘gl\o (m, - vnﬂxo) ﬁko} )

n€{0,1)"%0

where

h
uﬁ(m, c M) = H (k) 5
k=1

for n € {0,1}*.
The measure py is oo-times R2-differentiable, with R2-derivative

1
psh = (A—o , 81, 50) (5.44)

and no higher order R%-derivative is significant, see Example 4.1.2. Moreover,
g is R%-analytic on [0, Ag], see Example 4.6.2, and our product rule implies
that an=1 p» is R%-analytic on [0, Ag] as well.

For the following we need an additional technical assumption:

(W4) Constants ¢, c1,p € [0,00) exist such that

Bo{mo®) | S0+ ca(Broma(Br)) s

Example 5.4.2 Denote by ¢;q the accumulated waiting time per cycle in o
G/G/1 queue, then ¢iq satisfies (W4) for p = 1. Indeed, any waiting time has
to be smaller than the cycle length 75(8)) and there are B\ non-zero waiting
times in a cycle; hence,

| Gia(W(1),...,W(Br+1))| < Br7a(Br) a.s.

and because
TBx (/8)\) < TBxg (IBAO) and By < ﬁz\o a.s.

condition (W4) is satisfied for ¢iq.
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For ease of exposition, we assume in the following that ¢ = 0 and ¢; = 1.
Applying the product rule of D-differentiation, see Lemma 4.2.1, yields for any
m>n

d‘n

B |45 )]sy = ]

dr N
=Bl 2 Ba({ro (K)1 MR (01,1 Mg )| Bro =m0

ne{0,1}"0
n!
=E Z Z nl .l Z ¢g({7—)\o (k)}vn)
l€L]1,Bxgin) i€Z]f) "0 T Bro' ne{01)%%0

Bxo
x JT (1) ) = 1% ) )| rg =
k=1

=K Z Z _n Z ¢g({7->\o(k)}777)

LEL[L,Brgim] €T "0 pego,1} %0
Bxrg

<11 ( o) () — e (m)) Bro =m| ,
k=1

where the last equality stems from the fact that only the first order derivative of
p is significant, that is, I € {0,1}. For m < n, the above n** order derivative
equals zero.

Remark 5.4.2 Because only the first order derivative of py is significant,
L1, Bh;n] = 0 if Br, < n. Indeed, the set L[1,Br,;n] contains those I €
{0,1}P% that satisfy Y, Ik = n, which already implies that I has at least n
elements. In words, the derivative only contributes on the event {8, > n} and
is otherwise zero.

For any | € L[1,B5;n] and ¢ € Z[l], the measures Hﬂ*" (terte) and

f;"l uf\lk'i’: ) shift the mass of the vectors 7. More specifically, let [ € L',[l, Brg; )

and i € Z[l}, if [y = 0, then the k** point of the Poisson-Ap-process is accepted
with probability A/Ag and rejected with probability 1 — A/Ag; whereas if [, = 1,
then the k** point is always accepted if i = 1 or i, = 1 and the point is always
rejected if i = —1 or i, = —1. Observe that for I € L[1,8x,;n] and i € Z[]]

the measures H?"l ,u(l’“““) and Hg’\°1 uf\"”z’“) can accept at most 3y, points. By
(W4), it holds for any n € {0,1}%

(LM < (BramolBro) )"
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and we obtain for the absolute value of the nt? order derivative:

[ om0

er]

= XEIJW]E |: Z Z n! Z ¢g({T)\o(k)}an)

1EL[L,Brgin] i€Z[]  pefo,1} %0
B

< IT (8 0 =1 0)

Bro = m}
,3,\0 = m:l .

> onl < B,

leﬁ[l,ﬁxo in)

< ——gﬁ-]E { Z Z n!(ﬂ)\o T)\O(IB)\O))p

Ao LEL[1,Brg i) i€Z[]]

The set Z[l] has at most 2"~! elements and

see Section G.5 in the Appendix. Hence,

&84t 0Ir = m]

< /\o—"E[ PR (Bro)

Brg = m] (5.45)
From the above we conclude that

E[ ;:pro(ﬂ)\g)] 00
is a sufficient condition for

>

m=1

dd:n [¢g({TA N | Bro = m” P(f, = m)

to be finite, and applying the dominated convergence theorem yields
n
E |6, (fra 1))

= i3 2 E[gutins)

ﬂAO = m] P(ﬂz\o = m)

- Z SB[l 0] = m] PO =), (50)
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inserting the explicit representation for the n** order derivative gives

Zﬁ > Z—-Z $o({mre(k)},m)

=1 Liecf1,8rim]i€Zll] 0 pego,13P%0

Bxg
i lnyis
X1 (%™ ) = ()
k=1

basic probability calculus now gives

=Y E| > Z— Y bel{mae(B)},m)

m=1  LieL[1,8xin] €]l ne{Ol}p*"

T H( W) - W))]
:E[ S YR Y an®ha

LeL[1,8xgin} i€T(l] Ab ne{0,1}%0

ﬁ)\ozm P(ﬁ)\[):m)a

Bxrg
p liisT
x1gzn || (uf\l'“ ® () — k)(nk))}
k=1
ez, ﬂxo,n] iezin nE{Orl}ﬁ’\O

Uk,
xH (6 (k) = = (00)) |Bro 2 1| P(Bry 2 1),
where the last but one equality follows from the fact that the expression for the
derivative only contributes on the event {8, > n}, see Remark 5.4.2.

The above analysis leads to (the first part of) the following theorem.

Theorem 5.4.1 Under assumption (W1) — (W4), suppose that for n € N it

holds that
[ﬂnw Tf\’o(ﬂ/\o)} < 00

Then, for any A with 0 < X < Ag, E[pg({ra(k)})] is finite and it holds that

SB[ 8y ()]
:]E[ DD LD SRR TR

LEL[1,B8ngin] 1€Z(!] nG{O,l}ﬁ)‘O

Bxrg

< I1 (u&“”i")(nk) — W ))]

k=1
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If, for 0 < Ao, a number ry, > p exists such that

(12, (o) ™0 | < oo,

then the Taylor series for E|:¢g({7'>\(k})})] exists at any point A € (0, o) and

the radius of convergence of the series is at least %/\0(7‘,\0 —-p).

Proof: Finiteness of E[¢,({mx(k)})] follows from (W4). It holds that

E, [qﬁg({n k)})} Z E (65 ({ma(0)})] Bro = m] P(Brg = m).

As a first step of the proof, we show that E [¢4({(7a(k)})] B, = m] is analytic.
Writing E[¢,({7a(k)}) | Bx, = m] as a Taylor series at A, with 0 < A < A, gives:

oo

g—IAI" LR [, ({ra(B)D)] Brg _m]l
LS arre [T ] oy )
n+p
= ]E[ |A|"2" v T/\O(m) Boro _m:I
i} E[ mym ”an (22, :m}
=]E[’ro mpezﬁom}ﬁ m]
< E[ (m) P+ 35)m| 5. =m] , (5.47)

where the last inequality stems from the fact that for m > 1 it holds that
mP = ™MmP < ™ By assumption, the expression on the right-hand side of
the above series of inequalities is finite provided that

A
p+'.-_°'<r)\o)

or, equivalently, if
1
!AI (’r)\u P) .

Hence, E [¢4({mr(k)})| Br, = m] can be written as a Taylor series at any A < Ag.
The domain of convergence of the Taylor series is (at least) the entire interval

(Ao = 3M0(ra = D), Ao + 3Ao(ra, — D))
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For the second step of the proof, we sum the Taylor series expansions for
m. For |A] < %)\o(r,\o — p), the bound for the Taylor series conditioned on the
event {fp = m} in (5.47) satisfies

o0

S E [Tfo(m)e(”%)m

m=0

ﬁ,\o=m] P(Bro =m) < o0,

and interchanging the order of summation and differentiation is justified in the
following row of equations, see Theorem G.4.1 in Section G.4 in the Appendix:

Ex[4,(( (1))

M

Ex[¢g({TA(k)})] Bro = m] P(Br, = m)

3
.!.

L A" LR [, (ra(B))] Brg = m) P, = m)

pnqg
M8

|
On.

3
ﬂ.

n

Z ¢9 {TX( )})Iﬁz\o = m] P(ﬂz\o =m)

3
il

i I
P’J8 M8

E [¢g({ma(B)})] ,

0

3
il

where the last equality follows from (5.46). This concludes the proof. OJ

We now turn to the application of the above results to waiting times. Let 7
denote the stationary distribution of W (k) provided that the arrival stream has
intensity A. We write E,, to indicate that the expectation is taken with respect
to mx. Under conditions (W1) — (W3)’, a sufficient condition for the existence
of a unique stationary distribution is that A < a, see Theorem 2.3.1. It follows
from renewal theory that

1 Ba+1
where
Ar+1
Y 9W(k) = do({r(k)}) - (5.49)
k=1

Theorem 5.4.1 provides sufficient conditions for differentiability of
E [Eg”{l g(W (k))] Moreover, setting

Br = ¢1({ma(k)}), (5.50)

we obtain sufficient conditions for differentiability of E[8)] as well. If Theo-
rem 5.4.1 applies, we can, in principle, expand the left-hand side of (5.48), that



5.4 Stationary Waiting Times 255

is, the stationary waiting time, into a Taylor series. Unfortunately, due to the
fact that E., [g(W)] is given through a fraction whose numerator and denomi-
nator both depend on A, higher-order derivatives are too complex to be of any
practical use. However, when a light traffic approximation is considered, the
individual derivatives have a surprisingly simple representation.

5.4.2 Light Traffic Approximation

In the previous section we studied (higher order) derivatives evaluated at a
point A that had to lie between 0 and a predefined reference point Ag. Instead of
derivatives we could have considered left sided derivatives in the above analysis
and in the Taylor series expansion we would then have replaced higher order
derivatives by their left sided counterparts. The resulting theorem is stated
below.

Theorem 5.4.2 (Theorem 5.4.1 revisited) Assume that assumptions (W1) —
(W4) are satisfied, and denote the mazimal Lyapunov exponent of {A(k)} by
a. For any A with a > X > 0 the following holds: If a number r\ > p exists such
that

]E[Tf\’(ﬂ,\) e P ] < 0,
then

E[¢g({ﬁ+z_\.(k)})]

h

= 2 B )| oy

A+A ht1
Y AR
LD

E[g, (im0 d

ANt N
where |A] < $A(ry —p).

The expected stationary waiting time can be expressed via expected values
taken over the first cycle of waiting times, see (5.48). Theorem 5.4.2 applies to
the numerator and the denominator appearing on the right-hand side of (5.48).
Hence, the Taylor series for the stationary waiting at A exists and letting A tend
to zero in the Taylor series yields a so called light traffic approximation of the
stationary waiting time. Light traffic approximations of stationary waiting times
in open max-plus linear queuing systems have been intensively studied in the
literature. Let W; denote the it* component of the vector of stationary waiting
times. The pioneering paper on light traffic expansions for E[W;] is [17], where
sufficient conditions for the existence of the light traffic approximation for E{W;]
are established and the (first) elements of the Taylor series are computed ana-
lytically. These results have been extended in [16] to E[f(W;)], where f belongs
to the class of performance measures F, where h € F if h : [0,00) — [0, 00) and
h{z) < cz” for > 0 and v € N. In [5] expansions are obtained for E[f (W, W;)],
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for f:[0,00)2 — [0,00) with f(z,y) < cz**z*2 for z,y > 0 and v1,v2 € N. In
[3, 4], explicit expressions are given for the moments, Laplace transform and
tail probability of the waiting time of the n** customer. Furthermore, starting
with these exact expressions for transient waiting times, exact expressions for
moments, Laplace transform and tail probability of stationary waiting times in a
certain class of max-plus linear systems with deterministic service are computed.

In the remainder of this section we will provide a heuristic approach to light
traffic approximations. To begin with, we will discuss light-traffic approxima-
tions of the cycle performance. As it will turn out, the elements of the light traffic
approximation are closely related to the variables W[m;41,1o, . .., 1] introduced
in Section 5.1.3.1.

According to Theorem 5.4.1, we have to compute

dn Ba+1
lim = [Z g(W(k))]

k=1

_g%ﬁﬁ[l“z Y Y dnnm

[lvﬂ)x;”] iEl[l] 1]6{0 1} A
I I lk,’Lk Ig,i l

for ¢, as in (5.49). The random variable in the above expression for the n
order derivative only contributes if 85 > n, which stems from the fact that
L[1, Br;n] = B for By < n (see Remark 5.4.2). Letting A tend to zero implies that

[
ne) and 122, p{™ ) (n)

(1 b becomes the Dirac

th

B tends to zero. Hence, the measures Hk 1 ,u(l"’”k)(

converge to point masses as A tends to 0. Specifically, u

measure in 1 and u )\ ~ becomes the Dirac measure in 0, see (5.44). Note that
Ll,n;n] = {(1,1,...,1)} and let 1 denote the vector in R™ with all elements
equal to one. For A sufficiently small, it holds

B i n )
oo Y el 0~ 3 TTul™0

1EL[1,Bxin] i€Zl] k=1 i€T(1] k=1
=> 11 <1ik=151(‘) + 1ik=——150('))
i€Z(1] k=1
and
> 5 a0~ 3 1470

>
i

leL[1,8x;n] i€I[l) k=1 i€Z[1] k=1

::]:

( i —151( )+ 1i;=—150(')) .

x
Il
—

ieZ(1]
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In words, the measures degenerate in the limit to point masses. For ¢ € Z[1], set
. 1 ifig=1,
i) = {0 if i = ~1,
for 1 <k <n,and
U @)} and 7l = |J @)}
1€Z[1] i€Z~[1]
Hence, for X sufficiently small,

" Ba+1
lim B [Z g(W(k))]

k=1

n+1
~ -JX—T:]EA [Z g(W :l

‘%E{ Y. sinkhm - Y ¢g({n(k)}m)]-

nET+[n] n€z-[n]
(5.51)

For example, for n = 1, we have Z%[1] = {1} and Z7[1] = {0}, which
implies that

d B+l 1
Iy A=01E [ :4;1 g(W(k))} zXE[%(TA(l)) - ¢g(@)] ,

for X sufficiently small, where ¢,(@) evaluates a sample path where the cycle con-
sists only of the initial customer and it holds that ¢4(0) = g(B(0)), see equation
(5.40). It thus remains to calculate the term E[¢y({72(1)})]. This term describes
the following experiment. At time zero an initial customer enters the system and
an additional customer arrives at time 7(1). This quantity has already been
computed in the previous section, where it was denoted by W(2;7(1)). For A
sufficiently small it holds that

d Ba+1 .
o /\=0E [ kgl g(W(k))} Y E[$g(12(1)) — ¢g(0)]

=<E[g(B(0)) + lw@ir1)>09(W(2;7A(1))) — g(B(0))]

Notice that the event {W(2;7,(1)) > 0} in the above equation describes the
event that the cycle contains W (1) and W (2). We set

H g — 9
lim V(1) = V¥(1),

provided the limit exists.
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Example 5.4.3 For the M/G/1 queue, we obtain

A% 1)(5 41)/ / g(s —a) f5(s)e *%ds da .

In particular, if the service times are exponentially distributed with rate p and
g € Cp([0,00)) for some p, then

9(1) = /Ooo/:og(s—a)ue_“sdsda.

We now turn to the second order derivative. For n = 2, we have I%[2] =

{(1,1),(0,0)} and Z~[2] = {(1,0),(0,1)}, which implies that the second order
derivative is approximated by

d2 B+l
- HE [ > g(W(k))}
~ L Zg<w k))]

QE {ﬁbg(’ﬂ\(l)aﬂ(z)) + ¢g(0) — ¢g(a(1)) - ¢g(7'>\(2))]

= ,\z E [Lw airs (01w (aira . 220 9 (W (37 (1), 7(2)))
—lw(2ira(2))>0 Q(W(2;T)\(2)))]

def VI(2),

for A sufficiently small.

Example 5.4.4 For the M/G/1 queue, a closed form expression for
E[1W(2;n(1>)>01W(3m(1>,n(2))>o Q(W(3;TA(1):TA(2)))]
can be obtained via (5.42). We address computing
E[IW(Z;U(2))>09(W(2;TA(Q)))] :

Recall that the sum of two independent exponentially distributed random vari-
ables with mean 1/X is governed by a Gamma-(2, \)-distribution with density
Nxe=*? for x > 0. Hence, following (5.41),

]E[IW(2;T,\(2))>0 g(W(Q;T(2)));} = )\2 Aoo /oo g(s — a)afs(s) e—)\a dsda .

In particular, if the service times are exponentially distributed with rate p and
g € Cp([0,00)) for some p, then

: g — g
limV§(2) = V*(2)
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exists, and it holds that

o pO0 o o0
Vg(2)=2/ / / / g(s1+52——a1—a2)
0 0 ay1tag YO

><,u"2 e H51 eTH5 oo dsy dag day

o0 [e%e) al1+taz [e’<]
+2/ / / / g(sl+82—a1—a2)
0 0 a ay+az—s1

xu? e™H eTH8 dsy dsy dag day
o0 [ ¢}
-—2/ / g(s—a)ape * dsda.
0 a
For the third order derivative, first observe that
T3] = {(1,1,1),(1,0,0),(0,1,0),(0,0,1}}

and

73] = {(1,1,0),(1,0,1),(0,1,1),(0,0,0)} .

The third order derivative is evaluated through

43 Br+1
—_— E Wik
| [;g( <>>}

~ %E[¢g(TA(1)yTA(2)’T>\(3)) + ¢g(Ta(1)) + dg(a(2)) + ¢g(Ta(3)})

—Bg(Ta(1),7a(2)) — dg(Ta(1),7a(3)) — bg(7a(2),7A(3)) — ¢y(0)]

~

6
~ ;;s]E[lwm;n(l)»o Tw (3ima1)ma2)>0 1w (43 (1), @),72(3)) >0

xg(W (4;72(1), 7(2),7A(3)))
Lw @i (1)>0 1w @5ma (1), @) >0 9(W (35 Ta (1), TA(2)))
+2- lwem >0 9(W(2;72(1)))
+ Iy @n>0 9(W(2;7A(2)))
+ 1wz @3)>0 9(W(257A(3)))
-2 lwm@)>0 9(W(2;7A(1)))
—lw(zim@)>09(W(2;7A(2)))
— L (2ira (1))>0 1w (Bira (1), (2))>0 9 (W (3, TA (1), TA(2)))
)

= Iw @i (2)>0 1w 372 (2),m (3050 9 (W (35 72(2), a 3)))]

), 7a(2)
= Iw (@2 (1)>0 1w @smr (1),72 (30 >0 9 (W (3; 72 (1), TA(3)
) Tal
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~

~ %E[lwmmu)»o Ly (33 (1),72(2))>0 1W (4575 (1),70 (2),72 (3)) >0
xg(W(4;72(1), 72(2), 72(3)))
+ 1w (2im 3)>0 9 (W (2, 72(3)))
— Iw(2im (1))>0 Iw 3ima (1) (3))>0 9 (W (35 7A (1), 7A (3)))
— L2 (2))>0 1w (3ima (2),m2(3)) >0 9 (W (3572 (2), 7 (3)))]
© vi@).
Example 5.4.5 The term

Ellw (2,7 (1)>0 1w (3ia (1),72.(2)) >0 1w (4573 (1), (2),72.(3)) >0
xg(W(4;72(1),72(2), 72(3)))]

in the above expression is easily evaluated via (5.43), and, choosing the densities
appropriately, the other terms can be evaluated via (5.41) and (5.42), respec-
tively. In particular, if the service times are exponentially distributed with rate
w and g € Cy([0, 00)) for some p, then the limit for VI(3) as X tends to zero,
denoted by V9(3), erists, and can be computed in the same vein as VI(2) and
Ve(1).

Generally, we set

n [Batl

Vi) © im L S: (W (k)
A(m) A0 dA™ g
k=1

provided that the limit exists. We summarize our discussion in the following
scheme.

Light Traffic Approximation Scheme: Assume that assumptions (W1) —
(W4) are satisfied. Suppose that for some Ao > 0 it holds that

Exo[re™0?] < oo

for rx, > 0 sufficiently small. Provided that the limit V9(n) exits for n < h,
the following light traffic approximation exists for E,, [ g(W)):

Bx+1 h yn
2|3 a0ve)| = 3 Xvann,

k=1

with r4(A) — 0 as A tend to zero.

We illustrate the above light traffic approximation by the following numerical
example.
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Example 5.4.6 Consider a M/M/1 queueing system with arrival rate A and

service rate p, and assume that p %ef A p < 1. For this system the expected

accumulated waiting time per cycle is equal to

mi_pﬁ : (5.52)

To see this, note that the expected stationary waiting time is equal to

LA
p(l-p)

Let {X,.} be the Markov chain describing the queue length in ¢ M/M/1 queue.
Notice that the arrival of a customer triggers an upward jump of X,,. Start {X,.}
in 0 and denote the expected number of upward jumps of {X,} until returns to
state 0 by C, then
201
p - 20 )
which gives

and using (5.48) equation (5.52) follows.

The accumulated waiting time is described through the functional ¢;q, that
is, we take g(x) = x in the previous section. Recall that ¢;q satisfies condition
(W4), see Ezample 5.4.2. Inserting pe=#* for f5(zx) in the formulae provided
in Example 5.4.3 to Example 5.4.5, the first three elements of the light traffic
approzimation are explicitly given by VI(n), forn =1,2,3.

The light traffic approximation is given by

Br+1 h n
E|l> g(W(k))] ~ 3 Vi),
k=1 n=1

For the numerical experiments we set p = 1. Figure 5.15 shows a light traffic
approzimation of degree h = 3 and Figure 5.16 shows a light traffic approzima-
tion corresponding to h = 5. In both figures, the thin line represents the true
expected accumulated waiting time and the thick line represents the Taylor series
approximation. It is worth noting that the light traffic approximations are fairly
accurate up to p~ 0.3 forh=3 and p= 04 for h = 5.

We now turn to light-traffic approximations for stationary waiting times.
Under conditions (W1) — (W3)’, a sufficient condition for the existence of a
unique stationary distribution is that A < a, see Theorem 2.3.1. It follows from
renewal theory that

1 Ba+1
Er [g(W)] = WE kz::l Q(W(k))} : (5.53)
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3.1 3.01
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1.(H 1.0H

0.1 0.3 0.5 0.7
o
Figure 5.15: Light traffic approxima-
tion of degree h = 3 for the accu-
mulated waiting time per cycle in a
M/M/1 queue.

0.1 0.3 0.5 0.7
P
Figure 5.16: Light traffic approxima-
tion of degree h = 5 for the accu-
mulated waiting time per cycle in a
M/M/1 queue.

Recall that for g(x) = 1, we can deduce expressions for higher-order derivatives

of E[B) + 1] from the Taylor series expansion for E [ZQV{I g(W(k))}

Notice that

gi%E[ﬂA+1] =1, (5.54)
and, provided that g(B(0)) = 0,
Ba+1
lim]E{ g(W (k) ] (5.55)
Al0

We thus obtain for the derivative of E., [g(W)]

)]
d Ba+1
lifn?d—)\E [gW)] —hm— L=19W(k ]
—lﬁrolvg 1).

Higher-order derivatives are obtained just as easy, where we make use of (5.54)
and (5.55) to simplify the expressions for the derivatives. We conclude the sec-
tion with a numerical example.

Example 5.4.7 The situation is as in Example 5.4.6 and we consider the ex-
pected stationary waiting time as performance measure of interest; this quantity

can be computed through
P

u(l=p)’
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2.0

0.1 0.3 0.5 0.7
p
Figure 5.17: Light traffic approxima-
tion of degree h = 3 for the station-
ary waiting time in a M/M/1 queue.

2.04

1.07

0.1 0.3 0.5 0.7
0

Figure 5.18: Light traffic approxima-
tion of degree h = 5 for the station-
ary waiting time in a M/M/1 queue.

for p=A/u < 1. For the numerical experiments we set y = 1.

Figure 5.17 shows a light traffic approzimation of degree h = 3 and Fig-
ure 5.18 shows a light traffic approximation corresponding to h = 5. In both
figures, the thin line represents the true expected stationary waiting time and
the thick line represents the Taylor series approximation. Notice that the light
traffic approximation is fairly accurate up to p = 0.35 for h = 3 and p = 0.55

for h =15,



Appendix A

Basic Algebra

Let R be a non-empty set equipped with a binary mapping ®. The mapping ©
is called associative if

Ya,b,ce R: a0® (b@c) = (a@b)@c.
The mapping is called commutative if
Va,beR: a®b=b0a.
An element z € R is called neutral element, or, identity for © if
VaeR: a®z=20a=a.

If ® represents ‘addition,” then z is also called a zero element of © and if ®
represents ‘multiplication,’ then z is also called a unity element of ©.
Let ®' be another binary mapping on R. We say that © is right distributive
over © if
Va,bce R: (a®'b)0c=(a0c)0 (hOc)

and @ is called left distributive over @ if
Va,bce R: a® (b0’ c)=(a®c)®' (bOc).
An element u € R is called absorbing for @ if

YVoeeR: aQu=u.



Appendix B

A Network with
Breakdowns

In this section, we derive the sample-path dynamic for the model with break-
downs introduced in Example 1.5.5.

For the first beginning of service! at the single-server station to take place,
two conditions have to be satisfied: the customer initially in service has to leave
the station, which happens at time z3(1), and a new customer has to arrive at
the single-server station. This happens at time z4(1) because the first customer
arriving at the single-server station is the first customer who leaves the multi-
server station. In formula,

z1(l) = z2(1) ® 24(1)
and, by finite induction,
.’131(]6) = $2(]C)®£174(k}), k>1.

The first departure from the single-server station takes place at time o and the
second departure takes place o time units after the first beginning of service. In
formula,

22(1) =0 and z3(2) = z1(1)®0.

Letting z2(0) = 0, finite induction yields:
.Z'g(k-l—l):l'](k)@a', k>0.

We now turn to the multi-server station. Following the same line of argument
as for the single-server station, the departure times at the multi-server station
follow

.734(k+1)=.1‘3(k‘)®0’, k>0,

1The first beginning of service is triggered by the first customer arriving at the station.
The initial customer is not considered as an arrival.
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where we set 23(0) = 0.

Consider the multi-server station with no breakdown. The first beginning of
service occurs at time z3(1) = 0 and for the second beginning of service the
following two conditions have to be satisfied: the first departure from the multi-
server takes place and a new customer arrives from the single-server station. In
formula,

and
23(2) = z2(1) ® x4(1) . (B.1)

By finite induction,
z3(k+1) = zo(k) ®z4(k), k>0,

where we set z4(0) = 0. The sample-path dynamic of the network with no
breakdown is thus given by

21k +1)=zo(k+ 1) D za(k + 1)

zok+1)=21(k)® 0

z3(k+ 1) =xz3(k) ® za(k)

zalk + 1) =z3(k) @0,

for k > 0. Replacing z5(k+1) and x4(k+1) in the first equation by the expression
on the right-hand side of equations two and four above, respectively, yields

z1(k+1) = (x1(k) ® 0) © (z3(k) ® ") .

Hence, for k > 0,

z1(k +1) = (z1(k) ® 0) & (z3(k) ® 0')
Tolk+ D) =z1(k)®0c

z3(k + 1) = x2(k) @ z4(k)

zg(k+ V) =z3(k)®@ o',

which reads in matrix-vector notation:

zk+1) =

®m o, Q Q
™

with k£ > 0.

In case a breakdown at the multi-server station has occurred, the first be-
ginning of service at the multi-server station takes place upon the departure of
the customer initially in service:

z3(1) = z4(1).
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The second beginning of service depends on two conditions: the second departure
from the multi-server station takes place and a new customer arrives from the
single-server station. In formula,

£3(2) = x2(1) @ 24(2),
compare with (B.1). By finite induction,
23(k+1) = za(k) D zg(k+1), k=>0.
The sample-path dynamic of the network with breakdown is therefore given by

z1(k+1)=xz2(k + 1) Dxyg(k+1)
ok + ) =2z1(k)®c

za(k + 1) =zo(k) ® za(k + 1)
za(k + 1) =z3(k) ® o',

for k > 0. As we have already explained, the above set of equations implies that

Furthermore, replacing z4(k + 1) on the right-hand side of the equation for
z3(k + 1) by z3(k) ® o’ yields

.’Eg(k + 1) = xz(k‘) @ (133(19) ® O"l) .

Hence, for k > 0,

z1(k + 1) = (z1(k) ® o) ® (z3(k) ® 0”)
ok + 1) =21(k)®0c

z3(k + 1) =z2(k) @ (z3(k) ® o)
zalk+ 1) =z3(k)®c',

which reads in matrix-vector notation:

oceo ¢
o€ €€
ceco ¢
ceo ¢

z(k+1) = ® z(k),

with £ > 0.



Appendix C

Bounds on the Moments of
the Binomial Distribution

For p € (0,1) it holds that
o0
S =
n=0 1- p
Taking the derivative with respect to » implies

> 1
ann_l = 7
n=1 (1 _p)

Multiplying both sides by (1 — p) yields
e 1
Z npn ! (1 - p) = )

= (1-p)

which is noticeably the first moment of the Binomial distribution.
For higher moments we derive an upper bound. Starting point is the following
equation:

d™ o~ , d™ 1
i " a Ty “
Note that P |
m.
dpm1-p  (1-p)mH (©2)
and

LS =S A D+ 2) - (- m)p®
dp n= n=0

[eo}
>y nmpt. (C.3)
n=0
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Inserting (C.2) and (C.3) into (C.1) yields

which implies
> &
" pt(l-p) < T
n=0 (1 - p)m
Hence, the m**® moment of the Binomial distribution is bounded by

m!
1-pm



Appendix D

The Shifted Negative
Binomial Distribution

Perform a series of mutually independent experiments each of which has prob-
ability of success 0 < ¢ < 1 and let 8, = k describe the event that the nt"
success occurred at the k** experiment. Then, the distribution of 3, — n, that
is, the number of failures until the nt* success is called negative binomial distri-
bution. The random variable 3, is thus governed by a shifted negative binomial
distribution.

In the following we will compute E[(8,)*], for I > 1. The basic equation for
the shifted binomial distribution reads

(D u-ane -1,

k=n

that is,

which implies

= (k-1 k _ 1=-g)"
SEAREEE
k=n

and
o0

k—1 (1 - gt
S (h71) o= 22T

k=n
for I > 1. Taking the [** derivative with respect to ¢ yields

0 ! — i
()L S+l (k41 =1)ee (k1) (’;:i) (1—q)k=dd—ql<%) :

k=n
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Hence,
3 e _pym (e 0 (A=t
;(k+l)(k+l 1) (k+ 1) P(Bn = k)= (-1) (1_q)ndql< = )

which implies

L v @t d (gt
]E[(ﬁn) ] < ( 1) (l—q)" dql ( q" ) ’



Appendix E

Probability Theory

E.1 Measures

Let S # 0 be a set. A o-field S on S is a collection of subsets of S with the
following properties: (i) S € &, (ii) if A € 8, then A € 8, where A° = {s €
S:s ¢ A}, and (iii) if A; € S, for i € N, then (J,cy4i € S. Let A denote a
collection of subsets of S. We denote by o(A) the o-field generated by A, that
is, the smallest o-field that contains A. Let (S,7) be a topological space. The
Borel field of S, denoted by B, is the o-field generated by the collection of open
sets 7, in formula: B = o(7T).

The pair (S,S), where S is a o-field on S, is called a measurable space. A
measure 4 on a measurable space (9,8) is a mapping p : § = RU {~o00, 0}
such that for any sequence {An} of mutually disjoint elements of § it holds that

oo [eo]
($) - Sou().
n=1 n=1
The measure m on (R, B), where B denotes the Borel field on R, assigning
m{{a,b]) = b — a to an interval (a,b] is called Lebesgue measure. It generalizes
the notion of length in geometry and is the case closest to everyday intuition.
The collection (S, S, u) is called measure space. A measure y is called signed
if u(A) < 0 for some A € § and otherwise it is called non-negative. Furthermore,
a measure 4 is called finite if u(A) € R for any A € S. We denote the set of
signed measures on (S,8) by M. A non-negative measure p is called o-finite if
there exist countably many sets A; in S such that u(A;) < co and |J; 4; = S.
Let (5,8) and (R,R) be two measurable spaces. A mapping g : S — R is
said to be measurable if for any A € R it holds true that {s € S : g(s) € A} € 8.
A measurable mapping is also called random variable.
Let u € M be non-negative. Then for any measurable mapping g : S —» R
the p-integral of g, denoted by

<gp>= /Sg(S)u(dS) ,
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is defined although it may take values in {—00, 00}. In particular, for any A € S,
<la,p>= p(4),

where 14 : .S — R is defined by 14(s) =1 for s € A and 14(s) = 0 otherwise.
For any signed measure u € M a measurable set S:[ exists such that, for
any A € S, it holds that u(AN ;) > 0, whereas (AN (S\ S;})) <0, see, for
example, Proposition IV.1.1 in [86] for a proof. The positive part of u is defined
by
W*(4) = w(AnsS), Aes

and the negative part by
W=(4) = ~u(An(S\ 8f), Aes.

The pair ([u]™, [i5] ™) is called Hahn-Jordan decomposition. The absolute measure
|| is defined by |u| = [w])* + [12]~. Integration with respect to a signed measure
is defined by

<gp>=<g Wt > -<g,y >

and integration with respect to an absolute measure is defined by
<glul>=<gW" >+ <g [l >, (E.1)

provided that the terms on the right-hand side of the above formulas are finite.
The Hahn-Jordan decomposition is unique in the sense that if G is another set,
such that u(ANG) > 0 and (AN G°) < 0 for any A € S, then u(ANG) =
u(ANSt) for any A € S. A signed measure y € M is finite if [u]*(S) and
[]~ (S) are finite.

A probability measure p is a non-negative measure such that p(S) = 1 (which
already implies that p{@) = 0). If 44 is a probability measure on (5, S), then the
collection (S, S, 1) is called probability space.

Consider o-finite measures 4 and v on a measurable space (9, S). u is said
to be absolutely continuous with respect to v if v(A) = 0, for A € S, implies
#{A) = 0. I p is absolutely continuous with respect to v, then a measurable
mapping dp/dv 1 S — R exists such that

U(A) = Aj—ﬁ(s)u(ds), Aes.

The mapping du/dv is called v-density of u, or Radon-Nikodym derivative.
Let (S, S, u) and (T, T, v) be probability spaces. The product of x and v on
S x T, denoted by p x v, is a measure such that

VAeS,BeT: (uxv)(AxB)= u(A)v(B)

and Fubini’s theorem states that
[t wx s = [ ([ e0ua9)va

= [ ([ reman) utas),
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for any measurable mapping f: S x T — R.

Let (5,8, 1) be a measure space and g : S — R a measurable mapping from
(S, 8) to (R, R), where R is a o-field over R. The induced measure of g, denoted
by w9, is defined as follows

©I(A) = ,u({seS:g(s)eA)}), AER.

The cumulative distribution function (c.d.f.) of a real-valued random variable
X defined on a probability space (S, S, ) is the function F : [—o00, 0] — [0, 1],
where
F(z) = p*((-o0,2]), —0<z<00.

We take the domain [—o0,00] since it is natural to assign the values 0 and 1
to F(~o0) and F(c0). A c¢.d.f. has the decomposition F{z) = F'(z) + F"(z),
where F'(z) is positive only on a set of Lebesgue measure zero, and F"(z)
is absolutely continuous with respect to the Lebesgue measure. The Radon-
Nikodym derivative of F" with respect to the Lebesgue measure exists and is
called probability density function (p.d.f.). If f is the p.d.f. of the c.d.f. F', then
it holds that f(z) = dF(z)/dzx except for a set of Lebesgue measure zero.

Let p be a finite measure on (S, S), where S is a locally compact Hausdorff
space, see any book on functional analysis for definitions, and & contains the
Borel field on S. The measure y is called regular if

u(A) = inf{u(U) : Uopenin S,ACc U}, A€S,
and for any open set U C S it holds

w(U) = sup{u(F) : F is compact in S,F c U}.

E.2 Polish Spaces

Let S be a nonempty set with zero element Og. A norm is a mapping || || : S —
[0, 00) having the properties (i) 0 < |lz|| < oo for z # 0g and ||0g]| = 0, (ii)
laz| = |a}|lz}f for @ € R and (iii) flz +yl < llzl| + [ly|| (triangle inequality),
for any z,y € S.

A metric is a mapping d : § x § — [0, 00) having the properties (i) d(z,y) =
d(y,z), (ii) d(z,y) = 0 & z = y, and (iii) d(z, 2z) < d(z,y) + d(y,2) (triangle
inequality), for any z,y,2z € S. If (i) and (iii) hold but d(z,y) = 0 is possible
when z # y, we call d a pseudo metric. A metric space (S,d) is a set S paired
with metric d.

An open set of (S,d) is a set A C S such that, for each s € A4, § > 0 exists
such that {x € S : d(z,s) < 6} C A. The collection of open subsets of S is
denoted by 7(d). Hence, (S, 7 (d)) is a topological space. The Borel field on a
metric space (S, d) is the o-field generated by 7 (d).

A metric is said to be complete if the metric space (S, d) is complete, that
is, if the limiting point of any Cauchy sequence in S lies in S. If there is a
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countable collection of open subsets of 7 (d) such that any open subset of S can
be written as union of these sets, then 7(d) is said to have a countable basis. A
topological space (S, T) is called a Polish space if (i) its topology is defined by
a complete metric (that is, there exists a metric d such that 7 = 7(d)) and (ii)
T has a countable basis.

E.3 The Shift-Operator

Many stochastic concepts, such as stationarity or coupling, can be expressed
through the shift-operator in a very elegant manner. Let (2, F, P) be a proba-
bility space. We call the mapping 6 : 2 — Q shift-operator if

¢ the mapping 0 is a bijective and measurable mapping from Q onto itself,

o the law P is left invariant by 6, namely E[X] = E[X o6)] for any measurable
and integrable random variable.

For any n,m € Z, we set 0™ o f™ = 0"*t™ In particular, #° is the identity and
(6™)~! = §~". By convention, the composition operator ‘o’ has highest priority
in all formulae, that is, X o §Y means (X 0 8)Y".
The shift operator allows to define sequences of random variables. To see this,
let X be a measurable mapping defined on (2, F) and set X (n,w) = X (6"w),
for n € T C Z. Because the law P is invariant, the distribution of X(n) is
independent of n. This motivates the following definition. We call {X (¢) : t € T'},
with X (¢) a R-valued random variable defined on (@, F) and T' C Z, §-stationary
if
X(tw) = X(0,0'w), weQ, (E.2)

for any t. We call a sequence X = {X(t) : t € T'} compatible with shift operator
6 if a version of X exists satisfying (E.2). Moreover, we call X stationary if X
is compatible with shift operator @ so that X is #-stationary.

The shift 8 is called ergodic if

R "
Jim - ];XOO = E[X] as.,
for any measurable and integrable function X : @ — R. We call a sequence
X ={X(¢):te T} ergodic if X is compatible with an ergodic shift operator.

An event A € F is called invariant if P(A) = P(6tA) for any t, where §!A =
{#'w : w € A}. Ergodicity of a shift operator is characterized by Birkhoff’s
pointwise ergodic theorem: the shift operator @ is ergodic if (and only if) the
only events in F that are invariant are Q and @, see [20].

Let X = {X(t) : t € T'} be a sequence of random elements on a state space
S. For m > 1, let o € S™ be a sequence of states such that

(X(t+m-1),X{t+m—2),...,X({t) =a
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with positive probability. Define the sequence of hitting times of X on « as
follows:

To=mf{t >0: (Xt+m—-1),X{t+m—-2),...,X(1)) =a}
and, for k£ > 0,
Tepr =nf{t > T +m: (XEt+m-1),XE+m—2),...,X(k)) =a}.

Result: (Theorem 2.10 in [11]) If X is a stationary and ergodic sequence
compatible with shift operator 6, then it holds that (i) T < co with probability
one for all k, and (ii) limg—c0 Tk = o0 with probability one.

E.4 Types of convergence

Let X, X,,, n > 0, be real-valued random variables defined on a common prob-
ability space (€2, F, P) with state space S and let S be equipped with the Borel
field.

E.4.1 Almost Sure Convergence

The sequence {X,} converges almost surely to X as n tends to oo if for any
§>0
lim P( sup | Xm — X| >6) =0,

n—oo m>n

or, equivalently,

P( lim sup IXm—X|>5) =0

O m>n

and yet another equivalent condition is that the event

{ lim anX}

n—o0

has probability one.

E.4.2 Convergence in Probability

The sequence {X,} converges in probability to X as n tends to oo if for any
§>0

lim P(| X, -X|>4d) =0,

n—oo

or, equivalently,
lim P(|X,— X|>48) =0.
n—00

Result: Almost sure convergence of {X,} to X implies convergence in proba-
bility of {X.} to X. On the other hand, convergence in probability of {X,} to
X implies a.s. convergence of a subsequence of {X,} to X.
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E.4.3 Convergence in Distribution (Weak Convergence)

Let Cp(R) denote the set of bounded continuous mapping from S onto R. A
sequence {u,} of measures on S is said to converge weakly to a distribution p
if
lim fd,un—/fdu, € Cp(R).

S

n—oo

Let p, denote the distribution of X,, and g the distribution of X. If {u,}
converges weakly to 4 as n tends to oo, then we say that {X,} converges in
distribution to X.

Result: Convergence in probability implies convergence in distribution but the
converse is not true.

E.4.4 Convergence in Total Variation

The total variation norm of a (signed) measure p on S is defined by

Lol

In particular, weak convergence of a sequence {u,} of measures on S towards a
distribution x is equivalent to

lellsw = sup

fECb(R)

lim |pn — plltw = 0.
n— 00

Let again w, denote the distribution of X, and u the distribution of X. If
{i4n} converges in total variation to u as n tends to co, then we say that {X,}
converges in total variation to X. The convergence in total variation of {X,}
to X can be expressed equivalently by

lim sup]P(X €A) - P(XeA)| =
Result: Convergence in total variation implies convergence in distribution (or
weak convergence) but the converse is not true.

E.4.5 Weak Convergence and Transformations

With the notation of the previous section we now state the continuous mapping
theorem. Let h : R — R be measurable with discontinuity points confined to a
set Dy, where u(Dy,) = 0. If p, converges weakly towards u as n tends to oo,
then ,uﬁ tends to u® as n tends to oo, or, equivalently,

n—o

tim [ J(h(@) n(de) = [s@nua), 1 eaum).

Hence, if {X,} converges weakly and h is continuous, then {h(X,)} converges
weakly.
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E.5 Weak Convergence and Norm Convergence

Let (S,d) be a separable metric space and denote the set of continuous real-
valued mappings on S by C(S). Let v : S — R be a measurable mapping such
that

infv(s) > 1.

SES

The set of mappings from S to R can be equipped with the so-called v-norm
introduced presently. For g : S — R, the v-norm of g, denoted by ||g||., is
defined by

def _|g(s)

= sup——,

loll, % sup s

see, for example, [64] for the use of the v-norm in the theory of measure-valued
differentiation of Markov chains. If g has finite v-norm, then |g(s)| < cwv(s) for
any s € S and some finite constant c¢. For example, the set of real, continuous
v-dominated functions, defined by

Do(S) ¥ {g € C(S)|3c > 01 |g(s)] < ev(s), Vs € S}, (E.3)
can be characterized as the set of all continuous mappings ¢ : S — R having
finite v-norm. Note that C®(S) is a particular D,(S)-space, obtained for v =
const. Moreover, the condition that 122 v(s) > 1 implies that C®(S) C D,(S)

8
for any choice of v.

The v-norm of a measure u on (S,S), with S the Borel-field with respect to
the metric d, is defined through

def
llello € sup
Hgll.<1

y

/S 9(s) u(ds)

or, more explicitly,

/S o(s) (ds)

[lells = sup
lgi<v

In particular, it holds that

lello = [ w(s) s, (®4)

see (E.1). Let {u,} be a sequence of measures on (S, S) and let u be a measure
on (S,8). We say that p, converges in v-norm towards p if

lim ||un — plfo = 0.
n—00

It can be shown that the set D,(S) endowed with the v-norm is a Banach
space. This last remark indicates the following fact: For each measure y with
J v(s)p(ds) finite, the mapping T}, : D,(S) — R defined through

def
Tu(g) = / gdu,
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is a continuous linear functional on the Banach space D,(S) and the operator
norm of T, satisfies ||T,.|| = ||ptllo. The Cauchy-Schwartz inequality thus holds
for v-norms, i.e.,

[ otomtas

for all g € D,(5) and p such that v is p-integrable.
Let {un} be a sequence of measures on (59,S) and let u be a measure on
(S,8). We say that ., converges weakly in D, (S5)-sense towards p if

< llgllo - lasllo

Jm [ g)ualds) = [ ols)uas),

for all g € D,(S); in symbols uy, Rl .

Remark E.5.1 Note that v-norm convergence implies D, (S)-convergence. This
can be seen as follows. According to Cauchy-Schwartz Inequality, for each g €
D, (S) it holds that:

j/m@%w@—/m@mw>

=L/mwum-uxw>sumnwmn—mw

Hence, |pn — pllo — O implies that the left-hand side in the above relation
converges to 0 as n — oo.

For a D,(S)-differentiable measure ug, D, (5)-convergence of the measure
(to+a — tig)/A) as A tends to zero implies v-norm continuity of ug. The precise
statement is given in the following theorem, where M"(S) denotes the set of all
measures 4 on (S,8) such that [vdy exists and is finite.

Theorem E.5.1 Let {ug}oco C MY(S) be D,(S)-differentiable at 6 € ©. Then
Lo+n converges in v-norm to ug, as h — 0. In symbols: }ltin%)ll,uﬂh — pglly = 0.

Proof: Assume without loss of generality that @ is an interior point of ©. Thus,
we can choose A > 0 such that [§ — A, 0 + A] C ©. Denote by T'(h) the linear
continuous functional on D,(S) defined as (h # 0):

1
(TW)0) = 5 [ 9(6) o1 = o),
for all g € D,(S). The operator norm of T'(h) satisfies:

”,u‘9 h— Mol
frey, = et sl
for all A # 0 such that |h| < A. By D,(5)-differentiability of ug, for each
g € D,(S):
sup |(T(h))(g)| < oo,
Ihl<A
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and the Banach-Steinhaus Theorem! yields

sup |T(h)||o = M < oo.
[al<A

Thus,
lo+n — pollo < M - |h|,

for [h] < A. Letting h — 0, concludes the proof. O
Recall that we introduced the following notation in Chapter 3. The set of all
probability measures on (S,S) is denoted by M1 = M;(S). Moreover, £ (ug)
denotes the set of continuous absolutely integrable mappings with respect to pg
and
L'ug:0€0) = [) L (1a)
0co
denotes the set of continuous absolutely integrable mappings with respect to ug
for any 6 € ©; see the section ‘List of Symbols.’
We assume that S,Z are two separable complete metric spaces endowed
with the mappings v : § — [1,00) and u : Z — [1,00), respectively. Let w :

S x Z — [1,00) be defined as w(s, 2) & v(s)u(z). Then we can consider the

space of continuous mappings on S X Z bounded by w up to a multiplicative
constant, denoted by D, (S x Z), see (E.3). Furthermore, if p : © — M;(S)
and v : © — My (Z), then D,(S) C L3 (e : 0 € ©) and Dy, (Z) C Li(vp : § € ©)
implies Dy, (S x Z) C LY((u X v)g : 6 € ©); for a proof use Fubini’s Theorem.

Lemma E.5.1 Let {ttn}n>1 € MY(S) and {vn}np1 C M¥(Z). If u, converges

, u(Z
in v-norm to y and v, D:(>) v, then

Do (Sx 2Z) Do (Sx2Z)
Un X Vp = XV and Vp X ln VX [
Proof: Note that v, D:":—(-g) v implies
Du(Z
(vn-v) 28 0, (E.5)

where O denotes the null-measure assigning value 0 to any measurable set.
Hence, in order to prove the first part of lemma, we may assume without loss

of generality that v, Dé—(—g) O and we have to show that
tn X Un Dw_(__.§_>><Z) 0.
Let g € Dy (S X Z), ie.,
l9(s, 2)| < llgllw v(s) u(z). (E.6)

1The result is also known in the literature as The Principle of Uniform Boundedness and
it basically asserts that weak and strong boundedness are equivalent. The precise statement
is as follows. Let (X, || - ||) be a Banach space and let K be a family of continuous linear
functionals from X to R. If for each z € X the set {T(z) : T € K} is bounded in R, then
sup{||T||: T € K} < oo.
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Then we have:

/g(s,z)(unxvn)(ds,dz) =//g(s,z)/.tn(ds)un(dz) =/hn(z)un(dz), (E.7)

where hn(2) = [ g(s,2)pn(ds), for n > 1. Set h(z) = [ g(s, z)uu(ds). Then,

|h(Z)|S/I9(8,Z)I ul(ds) < IIQIIw/v(S)U(z)IMI(dS)

~lgl ( / v(S)lul(dS)) u),

—_——
={lpllo

for all z € Z, where the inequality follows from (E.6). Thus, {|A{l. < |gllwllels,
which implies h € D,(Z). Consequently, by (E.5), [ h(z)v,(dz) — 0. To prove
the lemma it now suffices to show that [(hn(z) — h(z))vn(dz) — 0. To this end,
we note that for all z € Z:

in(2) = WIS [ lg(s, )] Jm ()
<lglha - u(z) [ o(s)lin — pl(ds)

= |lglw - ln — pllv - u(2),

where the last equality follows from (E.4). This yields

l / (hn(2) = h(2))vm(d2)

We have [u(z)vn|(dz) = ||vn|lu < oo for all n, and an immediate application
of the Banach-Steinhaus theorem yields

< [ 1n(@) =B onl(@2) < lgho lin =l Il

sup|lvnlle < oco.
n>1

Now, the fact that u, converges in v-norm to u concludes the proof of the first
part of the lemma.

For the proof of the second part of the lemma we apply Fubini’s theorem in
order to reverse the order of integration in (E.7). The proof of the second part
of the lemma then follows from the same line of argument as the proof of the
first part. O

In order to apply Lemma E.5.1, one has to assume that any g € D, (S x Z)
is continuous. However, it is possible to slightly deviate from the continuity
assumption. If g is bounded by some h € D,,(S X Z) and if the set of disconti-
nuities, denoted by Dy, satisfies (u X v)(Dg) = 0 (resp. (v x u)(Dy) = 0), then
Lemma E.5.1 applies to g as well.
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E.6 Coupling
E.6.1 Coupling Convergence

We say that there is coupling convergence in finite time (or, merely coupling) of
a sequence {X,} to a stationary sequence {Y o 8"} if

lim P(Vk: Xpik=Yo0") =1,

n—oo

or, equivalently, there exists an a.s. finite random variable N such that
Xnep = YoNte k>0,
Result: Coupling (convergence) implies total variation convergence.
E.6.2 Strong Coupling Convergence and Goldstein’s Max-
imal Coupling

We say that there is strong coupling convergence in finite time (or, merely strong
coupling) of a sequence {X,,} to a stationary sequence {Y o 67} if

N = inf{(n>0|Vk>0: Xppp00™ % =Y}
is finite with probability one.

Result: Strong coupling convergence implies coupling convergence but the
converse is not true.

We illustrate this with the following example. Let &,,, with £, € Z and
E[¢1] = o0, be an i.i.d. sequence and define X,,, for n > 1, as follows

&o for X,,_1 =0,
Xop=(Xp1—-1 forX,_1>2,
X, for X,,_1 =1,

where Xy = 0. It is easily checked that {X,} couples with the constant se-
quence 1 after & — 1 transitions. To see that {X,} fails to converge in strong
coupling, observe that the shift operator applies to the ‘stochastic noise’ &, as
well. Specifically, for k > 0,

Lo * for X,_1007% =0,
Xno00*% = {X,_1007% -1 for Xp_106°%>2,
X007k for X,_1007 %=1 ;

where X086~ % =0, and £_; = & o 0~*. This implies

NO=inf{n >0|Vk >0 : X, 00 "% =1}
=inf{n>0|Vk>20: £ —1<n}

=0 a.s.
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Result (Goldstein’s maximal coupling [80]): Let {X,} and ¥ be defined
on a Polish state space. If {X (n)} converges with coupling to Y, then a version
{X(n)} of {X (n)} and a version Y of ¥ defined on the same probability space
exists such that {X(n)} converges with strong coupling to V.

E.6.3 6-Coupling

Coupling and strong coupling, as introduced above, are related to total varia-
tion convergence. We now state the definition of §-coupling which is related to
weak convergence. (The classical terminology is ¢-coupling. We have changed it
to d-coupling to avoid confusion with the notation ¢ = —oco for the max-plus
semiring.)

Consider a metric space (F,d) and two sequences {X,} and {Y,} defined
on E. We say that there is §-coupling of these two sequences if

e for each § > 0, versions of {X,} and {Y,} exist defined on a common
probability space, and

e an a.s. finite random variable 7;s exists such that, for n > 75, it holds that
d(Xn,Y,) <6.

Result: Consider a sequence {X,,} and a stationary sequence {Y,,} defined on a
metric space E. If there is -coupling of the two sequences, then {X,} converges
weakly to Y.

E.7 The Dominated Convergence Theorem

Let (S, 8, ) be a probability space. Let fn : S — R, for n € N, be measurable
and assume that f,g : § — R are measurable mappings such that, for any
n € N, the set of points s € § with

L fn(s)] < g(s)

and

lim fo(s) = f(s)

n—oco

has p-measure one. If
J1a0) | uds) < oo,

then

tim [ fu(s) u(ds) = /S £(s) u(ds) .

n—o0 S
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E.8 Wald’s Equality

Let {X(n)} be an ii.d. sequence such that E[X(1)] is finite. Furthermore, let
7 be a non-negative integer-valued random variable with finite mean. If for all
m > 0 the event {7 = m} is independent of {X (m + n) : n > 1}, then

#[ro)

ER EX(1)] <

E.9 Regenerative Processes

Let {X (n)} denote a stochastic process with state space (S, S). A random time
Tk is called stopping time if the occurrence or non-occurrence of 74 at time £ is
known from {X (n) : n < t}, that is, the event {7 = ¢} liesin o({X(n) : n < t}),
for any t. The process {X(n)} is called classical regenerative, or, regenerative if
there exists a sequence of stopping times {7t} such that

o {T¢+1 — Tk, k > 0} is an i.i.d. sequence;

e for every sequence of times 0 < t; < 3 < -+ < t, and every k >
0, the random vectors (X (1), X (t2),..., X (tn)) and (X (7% + £1), X (7% +
ta),..., X (7 +t,)) have the same distributions, and the processes {X(n) :
n < 75} and {X(n) : n > 7%} are independent.

Thus, in a regenerative process, the regeneration points {7y : & > 0} cut
the process into independent and identically distributed cycles of the form
{X(n) : 7, € n < Tg41}. A distribution function is called lattice if it assigns
probability one to a set of the form {0,4,26,...}, for some § > 0, and it is
called non-lattice otherwise.

Result: Let {X(n)} be a regenerative process such that the distribution
of Tk41 — 7 is non-lattice. If, for a measurable mapping f : § — R,
E[S2™7} £(X(n))] is finite, then

n—=T1

1 E X7 (X ()]
1\}E>noo N 1; f(X(n)) = E[Tz - 7'1] a-s:




Appendix F

Markov Chains

Let (S, 8) denote a Polish state space, where S denotes the Borel field of S. The
mapping P : 8 x 8§ — [0,1] is a Markov kernel (on (S,8)) if

{(a) P(s;-) is a probability measure on (5,8), for all s € S; and
(b) P(:; B) is S measurable for all B € S.

The product of Markov kernels is again a Markov kernel. Specifically, let P, Q be
two Markov kernels on (S, S), then the product of P and @ is defined as follows:
for s € S and B € S set PQ(s; B) = (PoQ)(s,B) = [gP(s;dz)Q(z;B).
Moreover, write P™(s; ) for the measure obtained by the n fold product of P in
the above way.

When an initial distribution p is given, P defines a Markov chain {X(n)}
with state space (S,8):

P(X(n) € B) = [ ulds) P"(5B),

where P denotes the underlying probability measure on (5, S).
Let ¢ be a o-finite measure on (S, S). A Markov chain with transition kernel
P(z; B) is ¢-irreducible if

IP’(OX(n)eB

whenever ¢(B) > 0.
A Markov chain {X(n)} is called uniformly ¢-recurrent if there exists a
non-trivial measure ¢ on (S, S) such that for each A € S, with ¢(4) > 0,

X(O):a:) >0, z€8,BeS,

k
kl_l_'rgo Z AP™(z,A) =1

m=1
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uniformly in z, where 4 P™(z, A) is the taboo probability defined by
AP™(z,A) = P{X(m) € A, X(0)=z,X;¢A1<i<m-1}), AeS.

A uniformly ¢-recurrent Markov chain is also called Harris recurrent.

A d-cycle of a ¢-irreducible chain {X(n)} is a collection {Si,...,S54} of
disjoint subsets of S such that ¢(S — U ;S;) = 0 and P(s; Sit1) = 1 for s € S;
and 1 < i < d (take S;11 = S; when i = d). At least one d-cycle exists for a ¢-
irreducible chain and the period of the chain is the smallest d for which a d-cycle
exists. The chain is called aperiodic if it is ¢-irreducible and d = 1; otherwise
it is called periodic. Observe that aperiodicity of a chain already implies its ¢-
irreducibility. A uniformly ¢-recurrent and aperiodic Markov chain is also called
Harris-ergodic.

Result: A uniformly ¢-recurrent and aperiodic (resp. Harris ergodic) Markov
chain converges, for any initial distribution, weakly towards a unique stationary
regime 7. Moreover, for any measurable mapping f : S — R, with [ f(s) 7 (ds)
finite, it holds that

1 N
Jim, y S = J fomds) s

Let {X(n)} be a Harris ergodic Markov chain. For B € S, let 7, def TB(N)
denote the n*? hitting time of X (n) on B, where we set 7, = oo if X (n) doesn’t
visit B for at least n times. Hence, 7, is a stopping time. A set B € S is called
a regeneration set if, with probability one, 7, < oo, for any n € N, and with
probability one:

lim 7, = 00.
N=—3 00

A regeneration set B is called atom if the regeneration points {r : k > 0}
cut the Markov chain into independent and identically distributed cycles of
the form {X(n) : 7o € n < 7k41}. Thus, whenever X (n) hits B it starts
independent from the past. In particular, if we consider two versions of X (n),
where one version is started according to an initial distribution u and the other
according to an initial distribution v, then both versions couple when they
simultaneously hit B, which occurs after a.s. finitely many transitions.

Result: A Harris ergodic Markov chain {X (n)} with atom converges, for any
initial distribution, in strong coupling to its unique stationary regime. In addi-
tion to that, let B denote an atom of {X(n)}, then it holds that

L B[S o] X(0) € 5]
Jemte) = ==

for any measurable mapping f : § — R such that [¢ f(s)#(ds) is finite, where
71 denotes the first hitting time of X(n) on B.




Appendix G

Tools from analysis

G.1 Cesaro limits

A real-valued sequence {z,} is called Cesdro-summable if

n

1
lim — Im
n—oon
m=1
exists. If
lim z, =z
n—oo

exists, then
n

lim — E Tm = X.
n—oo N
m=1

In words, any convergent sequence is Cesaro-summable. The converse is, how-
ever, not true. To see this, consider the sequence z, = (—1)", n € N.

G.2 Lipschitz and Uniform Continuity

Let X C R be a compact set. A mapping f : X — R is called Lipschitz contin-
uous if K € R exists such that for any z,z + A € X is holds that

If(z) — f(z+A) < K|A].
The constant K is called Lipschitz constant.

Result (Mean-Value Theorem): For X = [a,b] C R, let f : X — R be
continuous on [a, b] and differentiable on ]a, b[. Then £ €]a, b[ exists such that

f(b) - f(a)

L = 1),
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where f’ denotes the derivative of f.

For differentiable mappings, a sufficient condition for Lipschitz continuity
can be found by the Mean-Value Theorem. The precise statement is given in
the following.

Result: For X = [a,b] C R, let f: X — R be continuous on [a, b] and differen-

tiable on |a, b[. If

def
= K < o0,

sup |f'(z)|

z€la,b[

then f is Lipschitz continuous on (a,b) with Lipschitz constant K.

G.3 Interchanging Limit and Differentiation

Let F denote a set of mappings from X = [a,b] C R to R. F is called uniformly
bounded if M € [0, 00) exists such that, for any f € F,

|flz)| < M, ze€X.

A mapping f : X = [a,b] C R is called uniformly continuous if for any n > 0
a § > 0 exists such that, for any 21,22 € X = [a,b] C R with |z; — z2]| < 4, it
holds that

|f(z1) — f(=2)] < 7.
The set F is called uniformly continuous if for any n > 0 a § > 0 exists such
that, for any z1,z2 € X = [a,b] C R with [x1 — 22| < § and any f € F, it holds
that

|f(@1) = fm2)] < m.
Result (Arzela-Ascoli): Let F be a (at least) countable set of mappings
from X = [a,b] C R to R. If F is uniformly bounded and uniformly continuous,
then one can choose a uniformly convergent sequence out of F.

Result: For n € N, let f, be a continuously differentiable mapping from X =
[a,b] C R to R. If

(i) fn converges pointwise to f on X,
(ii) the sequence of derivatives f], converges uniformly on X,

then f is differentiable and it holds that

lim fi(z) = f'(z).

n—oo

We combine the above results to the following statement.

Theorem G.3.1 For n € N, let f, be a twice differentiable mapping from
X=[a,b]CR toR.If
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(1) fn converges pointwise to f on X,
(ii) f) converges pointwise on X,

(iii) a constant M ezists, such that

max (sup sup |£.(z)|, sup sup |f,’[(m)]> <M,
neENzeX neNzeX

where fl! denotes the second order derivative of f,

then f is differentiable and it holds that
lim f;(z) = f'(z).

n—oo
Proof: By the foregoing result, it remains to be shown that f), converges uni-
formly on X. Set

F = {f,:neN}.

By assumption, F is uniformly bounded. Uniform continuity follows from the
fact that f}, is Lipschitz continuous with Lipschitz constant M. See Section G.2.
Since the Lipschitz constant is independent of n, F is uniformly continuous.
Hence, according to the Arzela-Ascoli Theorem we may choose a sequence { fn,, :
m € N} out of {f,} that converges uniformly on X. This yields

lim f,(z)=lim f, (z)

— 00 m—0o0

=fl($) ’

which concludes the proof of the theorem. [

G.4 Taylor Series Expansions

Fix zp € R and A > 0, let f : [zg,z0+ A] — R be an (n+ 1) times continuously
differentiable mapping on [zg, zo + A] (where differentiability at the boundary
has to interpreted as one-sided differentiability). Then it holds that

LA™ gm
fot &) =3, Tr g

m=0

f(x) + Ruta(zo) (G1)

Tr==xp

and v € (0, 1) exists such that
An+1 dn+1

Bnti(20) = (n+1)! dzntl

f(=z).

r=xo+vA

The above remainder term is called Lagrange remainder. An alternative way of
expressing Rp41 is the Cauchy remainder:

A"+1 n dn+1
Rn+1('770) = T(l "Vl) dxnt1

f(=z),

z=xo+V’'A
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where v/ is again a number in (0, 1). In addition to that, R, can be expressed
using integration as follows:

fl@)ydt. (G2

x=i

1 zo+A drntl
Rn+1(.7}()) = m/ (l’o +A - t)n d—mm
LI

The expression on the right-hand side of (G.1) is called a Taylor polynomial for
f of degree n at xg. If

2 A™ gm

2 @

m=0
exists, for given xg and A, then this series is called Taylor series or Taylor series
expansion for [ at xg evaluated at A. In the particular case zp = 0, (G.3) is also
called MacLaurin series. The radius of convergence of a Taylor series, denoted
by r(zg), is the largest A such that the sum in (G.3) exists and is finite. Because
Taylor series are power series, they converge absolutely if they converge at all.
Hence, if the radius of convergence of the Taylor series expansion for f at zg
is (o) > 0, then the series converges for any zo + A, with |A] < r(zg). The
radius of convergence of the Taylor series for f at x¢ is given by the formula of
Cauchy-Hadamard:
x
> , (G.4)

where 7(z¢) = 0 if the limsup equals co and r(xg) = oo if the lim sup equals 0.

A real-valued mapping f : U — R, with U C R, is called analytic if, for
any zg € U, a r(zg) > 0 exists such that the Taylor series for f at zp equals
f for any |A| < r(zp). For U open, it can be shown that analyticity of f on U
is equivalent to the existence of a holomorphic extension of f to the complex
plane, which explains the term ‘analytic.’

Let the Taylor series expansion for f at zo have radius of convergence r(zq) >
0 such that the Taylor series for f at zp equals f for any |A| < r(xo). This
implies that the expression in (G.1) converges to f for at least those xg + A,
with |A| < 7{zg). In other words, the remainder term Ry.1(zg) tends to 0 as
n tends to oo for all |A} < r(zo). Does this mean that increasing the degree of
the Taylor polynomial improves the accuracy of the approximation? To answer
this question, note that, for n € N,

f(z) (G.3)

T=Zg

dn
dz™

! . lim su !
r(zo) P

@

n

A™ g N AT gm
f(%*'M‘Zdec—m ~ f@|=| > o | f(z)
m=0 T=ZLo m=n+1 T=Ig
0 |A|m dm l
< — = f(=)
m=zn:+1 m! | dx™ w=1g
def
= 4nt1 -

Existence of the Taylor series implies that H, \, 0. Observe that R, < H,.
Hence, the error in predicting f(zo + A) by a Taylor polynomial of degree n is
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at most H,, where H,, is a monotone decreasing sequence. Thus, with growing
n, Rp+1 eventually decreases. Unfortunately, this does not imply that increasing
the order of a Taylor polynomial from 7 to n+ 1 will improve the quality of the
approximation. To see this, let f be given such that d™f/dx™ =0 for m > N,
for some finite N. In this case, it is not ruled out that the accuracy of the
approximation decreases with increasing the degree of the Taylor polynomial
provided the degree is smaller than N. For example, it can happen that

R, <Ru41 forn<N-1

and R,,+1 = 0 for n > N. In such a case, increasing the degree of the Taylor
polynomial may even decrease the quality of the approximation.

Let {f.} be a sequence of functions that converges point-wise to a function f.
Under appropriate conditions the limit of the Taylor series for f, will converge
to the Taylor series for f. The exact statement is given in the following theorem.

Theorem G.4.1 Consider X = [z¢,20+ A] C R and let {f.} be a sequence of
mappings such that

(i) fn converges pointwise to a mapping f on X,
(ii) d* f,/dz® converges pointwise on X as n tends to oo,

(iii) on X, the Taylor series for f, exists and converges to the true value of

fn7

(i) a sequence { My} exists, whereby

(a)
d* (£) < Mg, keN
sup sup | fn(x y kEN,
negme)g dxkfn - k
and
(b)
Z — M, < 0,
k!
k=0
then it holds that
el Ak dk 0 Ak dk
f@o+d) =) — - fl@) = lim » — —— fo(z) -
o k! dx* r=10 n-+00 prd k! dxF =10 "
Proof: Repeated application of Theorem G.3.1 yields, for any k,
. dk dk
Jim an(m) = ’d—wzf(@ (G.5)

on X, where differentiability at the boundary of X has to be understood as
one-sided differentiability. Assumption (iv)(a) implies that, for any n € N and
anyz € X,

k

d
wfn(x) < Mk .
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Together with assumption (iv)(b), the dominated convergence theorem can be
applied. This yields

nli)rr;oz = dmkfn ZT Jm da:kf"( )

and inserting (G.5) gives

o AF o AF
H Jim @) = kgk— mkf

which concludes the proof. O

G.5 Combinatorial Aspects of Derivatives

Let {fx} be a sequence of n times differentiable mappings from R to R and

denote the nt* order derivative of fy by f("), and let f(o) fr. We denote the
argument of fi by x. The first order derivative of the product [T}, f; is given

by
iﬁf _ iﬁf(lksi)
xi:1 [ 2 i )

k=1i=1

where 13—; = 1 if K = ¢ and zero otherwise. Generally, the nt* order derivative
of the product of m mappings is given by

dn m m m 2;‘= -
£l - 555 i),
i= 1=1 ko=1 kn=1 i=

Obviously, the above expression has m™ elements. However, some elements occur
more than once. Specifically, let

E[l,m;n]:{(ll,...,lm) € {0,...,n}™

j";lkzn}

k=1

and interpret [ = (I1,...,ln) as ‘taking the I{* order derivative of the k** el-
ement of an m fold product,” then the combination of higher-order derivatives
corresponding to ! € £[1,m;n| occurs
n!
Il !

times in the n** order derivative. Indeed, there are n! /U1t - 1,! possibilities of
placing n balls in m urns such that finally urn &k contains [ balls. Hence,

danfz— > ,Hf‘”

leL[l,m; n]
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(1)

elements, which stems from the fact that this is exactly the number of possi-
bilities of placing n balls in m urns. Denoting the number of elements of a set
A C N™ by |A|, this can be written by

The above sum has

m+n-—1
n .

et min)| = (

Recall that the overall derivative is built out of m™ elementary expressions and

thus
> "
_ =m".
1o.. !
leL[1,m;n] h! !

For | € L[1,m;n] introduce the set
I =

{(il,...,im) ik € {0,+1,-1}, ik = 0 iff [ =0 and ] ik=+1}.

11yeeaim

lk-',éo

The set Z[I] has at most 2"~! elements, that is,
Vie L[l,min] : |Z[]] < 2771,

This can be seen as follows. Any [ € L[1,m;n] has at most n entries different
from zero. We can place any possible allocation of ‘+1’ and ‘~1’ on n—1 places.
The n** place is completely determined by this allocation because we have to
chose this element so that

II @ =+1.

i1y tm

1, #£0
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Appendix to Section 5.1.3.2

Table H.1 lists values for the Taylor polynomial of degree h = 2 and h =
3, respectively, for various traffic loads of the M/M/1 queue. Specifically, the
upper values refer to the Taylor polynomial of degree h = 2, the values in the
second row are those for the Taylor polynomial of degree h = 3, and the values
in brackets are the ‘true’ values (which stem from intensive simulation). For
the naive approximation, the values V;4(2;0,1) are the upper values and the
values V;4(3;0,1,2) are listed on the second row. Eventually, the table list the
stationary expected waiting for the various traffic loads.

Table H.2 lists values for the Taylor polynomial of degree h = 2 and h = 3,
respectively, for various traffic loads of the D/M/1 queue. Specifically, the upper
values refer to the Taylor polynomial of degree & = 2, the values in the second
row are those for the Taylor polynomial of degree h = 3, and the values in
brackets are the ‘true’ values (which stem from intensive simulation). For the
naive approximation, the values V;4(2;0,1) are the upper values and the values
Via(3;0,1,2) are listed on the second row.
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Table H.1: Approximating the expected m** waiting time in a M /M/1 queue
via a Taylor polynomial of degree 2 and 3, respectively.

m p=01 p=0.3 p=05 p=07 p=09
0.1066 0.3598 0.7893 1.3080 1.4534
5 0.1101 0.4010 0.8025 1.1374 1.5364

[0.1110 ] | [0.4082] | [0.7804 ] | [1.1697 ] | [ 1.5371 ]
0.1066 | 0.3600 | 08444 | 1.0948 | 2.4537
10 0.1100 | 0.4036 | 09802 | 1.6228 | 1.5537
[0.1110] | [0.4264] | [0.9235] | [1.5894 ] | [ 2.3303 ]
0.1066 | 0.3600 | 08457 | 2.2934 | 6.0912
20 0.1100 | 04036 | 09963 | 26459 | —5.7325
[0.1110] | [0.4283] | [0.9866] | [1.9661] | [ 3.3583 ]
0.1066 | 0.3600 | 0.8457 | 2.3077 | 14.7404
50 0.1100 | 0.4036 | 09963 | 2.8626 | —6.1387
[0.1115] | [0.4283] | [0.9994] | [2.2617 ] | [ 5.0376 ]
0.1066 | 0.3249 | 05185 | 0.6810 | 0.8161
01100 | 03707 | 06378 | 0.8813 | 1.0931

0.1111 0.4285 1 2.3333 9.0000

naive

analytic
(n = o0)

Table H.2: Approximating the expected m** waiting time in a D/M/1 queue
via a Taylor polynomial of degree 2 and 3, respectively.

m p=0.1 p=03 p=05 | p=07 1| p=0.9
0.00004542 0.04241 0.2443 0.6171 0.8955
5 0.00004542 0.04259 0.2412 0.5918 1.0584
[0.00004601 ] | [0.04266 ] | [0.2410] | [0.5981 ] | [1.0225 ]
0.00004542 0.04241 0.2127 0.8314 1.1456
10 0.00004542 0.04261 0.2533 0.7115 1.7005
[0.00004602] | [0.04268 ] | [0.2535] | [0.7460 ] | [1.5102 |
0.00004542 0.04241 0.2536 0.9246 2.2680
20 0.00004542 0.04261 0.2560 0.8606 0.3134
[0.00004615 ] | [0.04268 ] | [0.2552 ] | [0.8387 | | [2.1053 ]
0.00004542 0.04241 0.2536 0.9292 5.7393
50 0.00004542 0.04261 0.2560 0.8957 | —4.4469
[0.00004607 ] | [0.04268 ] | [0.2552 ] | [0.8747 ] | [2.9735 ]
0.00004542 0.04118 0.1902 0.3791 0.5579
0.00004542 0.04229 0.2175 0.4743 0.7389

naive
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